
HAL Id: hal-02391793
https://hal.science/hal-02391793

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fully Polynomial-Time Approximation Scheme for
Speed Scaling with a Sleep State

Antonios Antoniadis, Chien-Chung Huang, Sebastian Ott

To cite this version:
Antonios Antoniadis, Chien-Chung Huang, Sebastian Ott. A Fully Polynomial-Time Approximation
Scheme for Speed Scaling with a Sleep State. Algorithmica, 2019, 81, �10.1007/s00453-019-00596-3�.
�hal-02391793�

https://hal.science/hal-02391793
https://hal.archives-ouvertes.fr

Algorithmica (2019) 81:3725–3745
https://doi.org/10.1007/s00453-019-00596-3

A Fully Polynomial-Time Approximation Scheme for Speed
Scaling with a Sleep State

Antonios Antoniadis1 · Chien-Chung Huang2 · Sebastian Ott3

Received: 12 October 2016 / Accepted: 7 June 2019 / Published online: 19 June 2019
© The Author(s) 2019

Abstract
We study classical deadline-based preemptive scheduling of jobs in a computing envi-
ronment equipped with both dynamic speed scaling and sleep state capabilities: Each
job is specified by a release time, a deadline and a processing volume, and has to be
scheduled on a single, speed-scalable processor that is supplied with a sleep state.
In the sleep state, the processor consumes no energy, but a constant wake-up cost is
required to transition back to the active state. In contrast to speed scaling alone, the
addition of a sleep state makes it sometimes beneficial to accelerate the processing
of jobs in order to transition the processor to the sleep state for longer amounts of
time and incur further energy savings. The goal is to output a feasible schedule that
minimizes the energy consumption. Since the introduction of the problem by Irani et
al. (ACM Trans Algorithms 3(4), 2007), its exact computational complexity has been
repeatedly posed as an open question (see e.g. Albers and Antoniadis in ACM Trans
Algorithms 10(2):9, 2014; Baptiste et al. in ACM Trans Algorithms 8(3):26, 2012;
Irani and Pruhs in SIGACTNews 36(2):63–76, 2005). The currently best known upper
and lower bounds are a 4/3-approximation algorithm and NP-hardness due to Albers
and Antoniadis (2014) and Kumar and Shannigrahi (CoRR, 2013. arXiv:1304.7373),
respectively. We close the aforementioned gap between the upper and lower bound on
the computational complexity of speed scaling with sleep state by presenting a fully
polynomial-time approximation scheme for the problem. The scheme is based on a
transformation to a non-preemptive variant of the problem, and a discretization that
exploits a carefully defined lexicographical ordering among schedules.

Keywords Approximation algorithms · Energy efficiency · Polynomial-time
approximation scheme

A. Antoniadis: Supported in part by Deutsche Forschungsgemeinschaft (DFG) Grant AN 1262/1-1.

A preliminary version of this paper appeared in SODA 2015 [3].

B Antonios Antoniadis
aantonia@mpi-inf.mpg.de

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00596-3&domain=pdf
http://orcid.org/0000-0003-2152-7883
http://arxiv.org/abs/abs/1304.7373

3726 Algorithmica (2019) 81:3725–3745

1 Introduction

As energy efficiency in computing environments becomesmore crucial, chipmanufac-
turers are increasingly incorporating energy-saving functionalities to their processors.
One of the most common functionalities is dynamic speed scaling, where the pro-
cessor can adjust its speed dynamically. A higher speed yields a higher performance,
but this performance comes at the cost of more energy consumption. On the other
hand, a lower speed results in better energy-efficiency, but at the cost of performance
degradation. In practice, it has been observed [7,11] that the power consumption of the
processor is approximately proportional to its speed cubed. However, even when the
processor is idling, it consumes a non-negligible amount of energy just for the sake of
“being active” (for example because of leakage current). Due to this fact, additional
energy can be saved by incorporating a sleep state to the processor. A processor in
a sleep state consumes zero (or negligible) energy; however, there is an extra energy
cost when it is transitioned back to the active state.

This article studies the offline problem of minimizing energy consumption of a
processor which is equipped with both speed scaling and sleep state capabilities. This
problem is called speed scaling with sleep state, first introduced by Irani et al. [18].

Let us state the problem more formally. The given processor has two states: the
active state, during which it can execute jobs and consume some energy, and the sleep
state, during which no jobs can be executed but also no energy is consumed. We
assume that a wake-up operation, that is a transition from the sleep state to the active
state, incurs a constant energy cost C > 0, whereas transitioning from the active state
to the sleep state is free of charge. Further, as in [2,18], the power required by the
processor in the active state is an arbitrary convex and non-decreasing function P of
its speed s. In accordance to all previous work in the area, we make the necessary
assumptions that the power function P is fixed and therefore not part of the input.1 We
also assume that P(0) > 0, since (i) as already mentioned, real-world processors are
known to have leakage current and (ii) otherwise the sleep state would be redundant.
Further motivation for considering arbitrary convex power functions for speed scaling
can be found, for example, in [8].

The input is a set J of n jobs. Each job j is associated with a release time r j , a
deadline d j and a processing volume v j . One can think of the processing volume as
the number of CPU cycles that are required in order to completely process the job, so
that if job j is processed at a speed of s, then v j/s time-units are required to complete
the job. We call the interval [r j , d j) the allowed interval of job j , and say that job j is
active at time point t if and only if t ∈ [r j , d j).2 Furthermore, we may assume without
loss of generality that min j∈J r j = 0, and that vmin := min j∈J v j is normalized to 1
(if vmin �= 1 is the case, we can scale the instance by dividing the r j ’s, d j ’s, and v j ’s
by vmin , and using the power function P(s) · vmin along with the original wake-up
cost C). Further, let dmax := max j∈J d j be the latest deadline of any job.

1 It is assumed that we have access to an oracle which allows us to evaluate P(s) for any value of s and
perform simple operations involving values returned by P . Similarily the critical speed (defined later) is a
known parameter of P(s).
2 Unless stated differently, throughout the text an interval will always have the form [·, ·).

123

Algorithmica (2019) 81:3725–3745 3727

A schedule is defined as amapping of every time point t to the state of the processor,
its speed, and the job being processed at t (or null if there is no job running at t). Note
that the processing speed is zero whenever the processor sleeps, and that a job can only
be processed when the speed is strictly positive. A schedule is called feasible when
the whole processing volume of every job j is completely processed in j’s allowed
interval [r j , d j). Preemption of jobs is allowed.

The energy consumption incurred by schedule S while the processor is in the active
state, is its power integrated over time, i.e.

∫
P(s(t))dt , where s(t) is the processing

speed at time t , and the integral is taken over all time points in [0, dmax) during which
the processor is active under S. Assume that S performs k transitions from the sleep
state to the active state. (We will assume throughout the paper that initially, prior to the
first release time, as well as finally, after the last deadline, the processor is in the active
state. However, our results can be easily adapted for the setting where the processor is
initially and/or eventually in the sleep state). Then the total energy consumption of S
is E(S) := ∫

P(s(t))dt + kC , where again the integral is taken over all time points
at which S keeps the processor in the active state. We are seeking a feasible schedule
that minimizes the total energy consumption.

Observe that, by Jensen’s inequality, and by the convexity of the power function,
it is never beneficial to process a job with a varying speed. Irani et al. [18] observed
the existence of a critical speed scri t , which is the most efficient speed for processing
jobs. This critical speed is the smallest speed that minimizes the function P(s)/s. Note
that, by the convexity of P(s), the only case where the critical speed scri t is not well
defined, is when P(s)/s is always decreasing. However, this would render the setting
unrealistic, and furthermore make the algorithmic problem trivial, since it would be
optimal to process every job at an infinite speed. We may therefore assume that this
case does not occur. Further, it can be shown (see [18]) that for any s ≥ scri t , the
function P(s)/s is non-decreasing.

1.1 PreviousWork

The theoretical model for dynamic speed scaling was introduced in a seminal paper
by Yao, Demers and Shenker [21]. They developed a polynomial time algorithm
called YDS, that outputs a minimum-energy schedule for this setting. Irani, Shukla
and Gupta [18] initiated the algorithmic study of speed scaling combined with a sleep
state. Such a setting motivates the so-called race to idle technique: one saves overall
energy by accelerating some jobs in order to transition the processor to the sleep state
for longer periods of time (see [4,13,14,20] and references therein for more informa-
tion regarding the race to idle technique). Irani et al. developed a 2-approximation
algorithm for speed scaling with sleep state, but the computational complexity of the
scheduling problem has remained open. The first step towards attacking this open
problem was made by Baptiste [9], who gave a polynomial time algorithm for the spe-
cial case where the processor must execute all jobs at a fixed speed, and all jobs are of
unit size. Baptiste’s algorithm is based on a clever dynamic programming formulation
of the scheduling problem, and was later extended to (i) arbitrarily-sized jobs in [10],
and (ii) a multiprocessor setting in [12].

123

3728 Algorithmica (2019) 81:3725–3745

More recently, Albers andAntoniadis [2] improved the upper bound on the approxi-
mation ratio of the general problem, by developing a 4/3-approximation algorithm. For
the special case of agreeable deadlines and a power function of the form P(s) = sα+β

(with constant α > 1 and β > 0), Bampis et al. [5] provided an exact polynomial time
algorithm. With respect to the lower bound, [2] gave an NP-hardness reduction from
the partition problem. The reduction uses a particular power function that is based on
the partition instance, i.e., it is considered that the power function is part of the input.
The reduction of [2] was later refined by Kumar and Shannigrahi [19], to show that the
problem is NP-hard for any fixed, non-decreasing and strictly convex power function.

The online setting of the problem has also been studied. Irani et al. [18] gave a
(22α−2αα + 2α−1+2)-competitive online algorithm. Han et al. [15] improved upon
this result by developing an (αα + 2)-competitive algorithm for the problem. Both of
the above results assume a power function of the form P(s) = sα + β, where α > 1
and β > 0 are constants.

A more thorough discussion on the above scheduling problems can be found in the
surveys [1,17].

1.2 Our Contribution

We study the offline setting of speed scaling with sleep state. Since the introduction of
the problem by Irani et al. [18], its exact computational complexity has been repeatedly
posed as an open question (see e.g. [2,10,17]). The currently best known upper and
lower bounds are a 4/3-approximation algorithm and NP-hardness due to [2] and [2,
19], respectively. In this paper, we settle the open question by presenting a fully
polynomial-time approximation scheme.

At the core of our approach is a transformation of the original preemptive problem
into a non-preemptive scheduling problem of the same type. At first sight, this may
seem counterintuitive, especially as Bampis et al. [6] showed that (for the problem
of speed scaling alone), for the same instance, the ratio of an optimal preemptive
solution against an optimal non-preemptive solution can be very high. However, this
does not apply in our case, as we consider the non-preemptive problem on a modified
instance, where each job is replaced by a polynomial number of pieces. Furthermore,
in our analysis, we make use of a particular lexicographic ordering that does exploit
the advantages of preemption.

In order to compute an optimal schedule for the modified instance via dynamic
programming, we require a number of properties that pieces must satisfy in a valid
schedule. The definition of these properties is based on a discretization of the time
horizon by a polynomial number of time points. Roughly speaking, we focus on those
schedules that start and end the processing of each piece at such time points, and satisfy
a certain constraint on the processing order of the pieces. Proving that a near-optimal
schedule in this class of schedules exists is the most subtle part of our approach.

On one hand, the processing order constraint can be exploited by the DP; on the
other hand, such a constraint is difficult to establish in an optimal schedule with the
introduced indivisible volumes (since pieces of different jobs might have different
volumes and cannot easily be interchanged). To get around this, we first ensure the

123

Algorithmica (2019) 81:3725–3745 3729

right ordering in an optimal schedule for the preemptive setting, and then perform a
series of transformations to a non-preemptive schedulewith the above properties. Each
of these transformations increases the energy consumption only by a small factor, and
maintains the correct ordering among the pieces.

We remark that Baptiste [9] used a dynamic program of similar structure for the
special case of unit-sized jobs and a fixed-speed processor equipped with a sleep state.
His dynamic program is also based on a particular ordering of jobs, which, however,
is not sufficient for our setting. Since we have pieces of different sizes, the swapping
argument used in [9] fails.

In Sect. 2,we describe theYDSalgorithm from [21] for the problemof speed scaling
without a sleep state, and then show several properties that a schedule produced by
YDS has for our problem of speed scaling with sleep state. We then, in Sect. 3, define
a particular class of schedules that have a set of desirable properties, and show that
there exists a schedule in this class, whose energy consumption is within a (1 + ε)-
factor from optimal. Finally, in Sect. 4, we develop an algorithm based on a dynamic
program, that outputs, in polynomial time, a schedule of minimal energy consumption
among all the schedules of the aforementioned class.

2 Preliminaries

We start by giving a short description of the YDS algorithm presented in [21]. For any
interval I , let B(I) be the set of jobs whose allowed intervals are contained in I . We
define the density of I as

dens(I) =
∑

j∈B(I) v j

|I | .

Note that the average speed that any feasible schedule uses during interval I is no
less than dens(I). YDS works in rounds. In the first round, the interval I1 of maximal
density is identified, and all jobs in B(I1) are scheduled during I1 at a speed of
dens(I1), according to the earliest deadline first policy. Then the jobs in B(I1) are
removed from the instance and the time interval I1 is “blacked out”. In general, during
round i , YDS identifies the interval Ii ofmaximal density and then processes all jobs in
B(Ii) at a uniform speed of dens(Ii), removes the jobs in B(Ii) from the instance, and
“shrinks” the interval Ii to length zero. YDS terminates when all jobs are scheduled,
and its running time is polynomial in the input size.

We remark that the speed used for the processing of jobs can never increase between
two consecutive rounds, i.e., YDS schedules the jobs by order of non-increasing
speeds. Furthermore, all the jobs scheduled in each round i have their allowed intervals
within Ii .

Given any job instance J , let FAST(J) be the subset of J that YDS processes
at a speed greater than or equal to scri t , and let SLOW(J) := J \ FAST(J). The
following lemma is an extension of a fact proven by Irani et al. [18].

123

3730 Algorithmica (2019) 81:3725–3745

Lemma 1 For any job instanceJ , there exists an optimal schedule (w.r.t. speed scaling
with sleep state) in which

1. Every job in FAST(J) is processed according to YDS.
2. Every job k ∈ SLOW(J) is run at a uniform speed sk < scri t , and the processor

never (actively) runs at a speed less than sk during [rk, dk).
We call an optimal schedule with these properties a YDS-extension for J .

Proof To break ties among different optimal schedules with equal energy consumption
(which canoccurwhen the power function is not strictly convex for any s),we introduce
the pseudo cost function

∫
s(t)2dt (this ideawas first used in [18]). Consider aminimal

pseudo cost schedule Y , so that Y satisfies property 1 of the lemma, and minimizes
the energy consumption among all schedules satisfying this property. It was shown in
[18] that Y is optimal for instance J , and that under Y

Every job k ∈ SLOW(J) is run at a uniform speed sk , and the processor
never (actively) runs at a speed less than sk during those portions of [rk, dk)
where no job from FAST(J) is processed.

(∗)

It therefore remains to prove that the speeds sk are no higher than scri t . For the sake
of contradiction, assume that there exists a job j ∈ SLOW(J) which is processed
at speed higher than scri t . Let I be a maximal time interval, so that (i) I includes at
least part of the execution of j , and (ii) at any time point t ∈ I the processor either
runs strictly faster than scri t , or executes a job from FAST(J). Then there must exist
a job k ∈ SLOW(J) (possibly k = j) which is executed to some extent during I,
and whose allowed interval is not contained in I (otherwise, when running YDS,
the density of I after the jobs in FAST(J) have been scheduled is larger than scri t ,
contradicting the fact that YDS processes all remaining jobs slower than scri t). By the
maximality of I, there exists some interval I ′ ⊆ [rk, dk) right before I or right after
I, during which no job from FAST(J) is executed, and the processor either runs with
speed at most scri t or resides in the sleep state. The first case contradicts property (∗),
as k is processed during I and thus at speed sk > scri t . In the second case, we can use
a portion of I ′ to slightly slow down k to a new speed s′, such that scri t < s′ < sk .
The resulting schedule Y ′ has energy consumption no higher than Y , as P(s)/s is
non-decreasing for s ≥ scri t . Furthermore, if Cp is the pseudo cost of Y , then Y ′ has
pseudo cost Cp − vksk + vks′ < Cp. This contradicts our assumptions on Y . �	

Clearly, in general a schedule produced by YDS only satisfies the first condition
and is not a YDS-extension.

By the preceding lemma, we may use YDS to schedule the jobs in FAST(J),
and need to find a good schedule only for the remaining jobs (which are exactly
SLOW(J)). To this end, we transform the input instance J to an instance J ′, in
which the jobs FAST(J) are replaced by dummy jobs. This introduction of dummy
jobs bears resemblance to the approach of [2]. We then show in Lemma 2, that any
schedule forJ ′ with a certain property, can be transformed to a schedule forJ without
any degradation in the approximation factor.

Consider the schedule SYDS that algorithm YDS produces on J . Let Ii = [yi , zi),
i = 1, . . . , � be the i th maximal interval in which SYDS continuously runs at a speed

123

Algorithmica (2019) 81:3725–3745 3731

greater than or equal to scri t , and let T1, . . . , Tm be the remaining maximal intervals in
[0, dmax) not covered by intervals I1, I2, . . . , I�. Furthermore, let T := ∪1≤k≤m Tk .
Note that eachmaximal interval Ii or Ti may contain subintervals identified in different
rounds of YDS, and thus more than one speed levels may be employed in each such
maximal interval. Also note that the intervals Ip and Tq (1 ≤ p ≤ � and 1 ≤ q ≤ m)
partition the time horizon [0, dmax), and furthermore, by thewayYDS is defined, every
job j ∈ FAST(J) is active in exactly one interval Ii , and is not active in any interval
Ti . On the other hand, a job j ∈ SLOW(J) may be active in several (consecutive)
intervals Ii and Ti ′ . We transform J to a job instance J ′ as follows:

• For every job j ∈ SLOW(J), if there exists an i such that r j ∈ Ii (resp. d j ∈ Ii),
then we set r j := zi (resp. d j := yi), else we keep the job as it is.

• For each Ii , we replace all jobs j ∈ FAST(J) that are active in Ii by a single job jdi
(d stands for “dummy”) with release time at yi , deadline at zi , and processing vol-
ume vdi equal to the total volume that SYDS schedules in Ii , i.e. vdi = ∑

j∈B(Ii) v j .

Clearly, the above transformation can be done in polynomial time. Note that after the
transformation, there is no release time or deadline in the interior of any interval Ii .
Furthermore, we have the following proposition:

Proposition 1 FAST(J ′) = { jdi : 1 ≤ i ≤ �} and SLOW(J ′) = SLOW(J).

Proof Since J ′ = { jdi : 1 ≤ i ≤ �} ∪ SLOW(J), and furthermore SLOW(J ′) and
FAST(J ′) are disjoint sets, it suffices to show that (i) FAST(J ′) ⊇ { jdi : 1 ≤ i ≤ �}
and that (ii) SLOW(J ′) ⊇ SLOW(J).

For (i), we observe that no job jdi can be feasibly scheduled at a uniform speed
less than scri t . As YDS uses a uniform speed for each job, these jobs must belong to
FAST(J ′).

For (ii), consider the execution of YDS on J ′. More specifically, consider the
first round when a job from SLOW(J) is scheduled. Let I be the maximal density
interval of this round, and let JS and Jd be the sets of jobs from SLOW(J) and
{ jdi : 1 ≤ i ≤ �}, respectively, that are scheduled in this round (note that I contains
the allowed intervals of these jobs). As the speed used by YDS is non-increasing from
round to round, it suffices to show that dens(I) < scri t .

Consider a partition of I into maximal intervals Λ1, . . . , Λa , s.t. each Λk is con-
tained in some interval Ii or Ti . Then

dens(I) =
∑

j∈Jd
v j

|I| +
∑

j∈JS
v j

|I|
=

∑

Λk�T

(|Λk |
|I| dens(Λk)

)

+
∑

Λk⊆T |Λk |
|I| ·

∑
j∈JS

v j
∑

Λk⊆T |Λk |

≤
⎛

⎜
⎝

∑

Λk�T

|Λk |
|I|

⎞

⎟
⎠ dens(I) +

⎛

⎜
⎝1 −

∑

Λk�T

|Λk |
|I|

⎞

⎟
⎠ ·

∑
j∈JS

v j
∑

Λk⊆T |Λk | ,

123

3732 Algorithmica (2019) 81:3725–3745

since no Λk can have a density larger than dens(I) (because I is the interval of
maximal density). It follows that

dens(I) ≤
∑

j∈JS
v j

∑
Λk⊆T |Λk | .

Furthermore, by the definition of SLOW(J), it is possible to schedule all jobs in JS

during I∩T , at a speed slower than scri t (since none of the steps in the transformation
from J to J ′ reduce the time any job is active during T). Together with the previous
inequality, this implies dens(I) < scri t . �	

The following lemma suggests that for obtaining an FPTAS for instance J , it
suffices to give an FPTAS for instance J ′, as long as we schedule the jobs jdi exactly
in their allowed intervals Ii .

Lemma 2 Let S′ be a schedule for input instance J ′, that (i) processes each job jdi
exactly in its allowed interval Ii (i.e. from yi to zi), and (ii) is a c-approximation
for J ′. Then S′ can be transformed in polynomial time into a schedule S that is a
c-approximation for input instance J .

Proof Given such a schedule S′, we leave the processing in the intervals T1, . . . , Tm
unchanged, and replace for each interval Ii the processing of job jdi by the original
YDS-schedule SYDS during Ii . It is easy to see that the resulting schedule S is a feasible
schedule for J . We now argue about the approximation factor.

Let OPT be a YDS-extension for J , and let OPT′ be a YDS-extension for J ′.
Recall that E(·) denotes the energy consumption of a schedule (including wake-up
costs). Additionally, let E I (S) denote the total energy consumption of S in all inter-
vals I1, . . . , I� without wake-up costs (i.e. the energy consumption for processing or
being active but idle during those intervals), and define similarly E I (S′), E I (OPT),
and E I (OPT ′) for the schedules S′, OPT, and OPT′, respectively. Since S′ is a c-
approximation for J ′, we have

E(S′) ≤ cE(OPT ′).

Note that OPT′ schedules exactly the job jdi in each Ii (using the entire interval for
it) by Proposition 1, and thus each of the schedules S, S′, OPT, and OPT′ keeps the
processor active during every entire interval Ii . Therefore

E(S) − E(S′) = E I (S) − E I (S′),

since S and S′ have the same wake-up costs and do not differ in the intervals T1,
. . . , Tm . Moreover,

E(OPT) − E(OPT ′) = E I (OPT) − E I (OPT ′),

as E(OPT) − E I (OPT) and E(OPT ′) − E I (OPT ′) are both equal to the optimal
energy consumption during T of any schedule that processes the jobs SLOW(J)

123

Algorithmica (2019) 81:3725–3745 3733

in T and resides in the active state during each interval Ii (including all wake-up
costs of the schedule). Clearly, E I (S) = E I (OPT), and since both S′ and OPT′
schedule exactly the job jdi in each Ii (using the entire interval for it), we have that
E I (S′) ≥ E I (OPT ′). Therefore

E(S) − E(S′) ≤ E(OPT) − E(OPT ′).

We next show that 0 ≤ E I (OPT) − E I (OPT ′) = E(OPT) − E(OPT ′), which
implies

E(S) ≤ E(OPT) − E(OPT ′) + E(S′)
≤ c(E(OPT) − E(OPT ′)) + E(S′)
≤ c(E(OPT) − E(OPT ′)) + cE(OPT ′)
≤ cE(OPT).

Since YDS (when applied to J) processes a volume of exactly vdi in each interval Ii ,
the average speed of OPT in Ii is vdi /|Ii |. On the other hand, OPT′ runs with a speed
of exactly vdi /|Ii | during Ii , and therefore E I (OPT) ≥ E I (OPT ′). �	

3 Discretizing the Problem

After the transformation in the previous section,we have an instanceJ ′. In this section,
we show that there exists a “discretized” schedule for J ′, whose energy consumption
is at most 1 + ε times that of an optimal schedule for J ′. In the next section, we will
show how such a discretized schedule can be found by dynamic programming.

Before presenting formal definitions and technical details, we here first sketch the
ideas behind our approach.

A major challenge of the original problem is that we need to deal with an infinite
number of possible schedules. We overcome this intractability by “discretizing” the
problemas follows: (1)we break each job in SLOW(J ′) into smaller pieces, and (2)we
create a set of time points and introduce the additional constraint that each piece of a job
has to start and end at these time points. The number of the introduced time points and
job pieces are both polynomial in the input size and 1/ε, which substantially reduces
the amount of guesswork we have to do in the dynamic program. The challenge is
how to find such a discretization and argue that it does not increase the optimal energy
consumption by too much.

3.1 Further Definitions and Notation

We first define the set W of time points. Given an error parameter ε > 0, let δ :=
min{ 14 , ε

4
P(scri t)

P(2scri t)−P(scri t)
}. Intuitively, δ is defined in such a way that speeding up the

processor by a factor (1+ δ)3 does not increase the power consumption by more than
a factor 1 + ε (see Lemma 5).

123

3734 Algorithmica (2019) 81:3725–3745

ti ti+1

ti+1ti

Fig. 1 We assume that r = 1 . . . 8 and that x(i) = 2. The red dashed points correspond to j = 1 and the
blue dotted points to j = 2. For clarity, we drew the points defined from ti and from ti+1 in two separate
pictures. Note that for each j the number of points is the same and the points of the same color are at equal
distance from each other (Color figure online)

Let W ′ := ⋃
j∈J ′ {r j , d j }, and consider the elements of W ′ in sorted order. Let

ti , 1 ≤ i ≤ |W ′| be the i th element ofW ′ in this order. We call an interval [ti , ti+1) for
1 ≤ i ≤ |W ′| − 1 a zone, and observe that every zone is either equal to some interval
Ii or contained in some interval Ti .

For each i in 1, . . . , |W ′| − 1, let x(i) be the largest integer j so that

(1 + δ) j
1

4n2scri t (1 + δ)�1/δ� ≤ ti+1 − ti .

We are now ready to define the set W of time points as follows:

W := W ′ ⋃

i s.t. [ti ,ti+1)⊆T
0≤ j≤x(i)

1≤r≤16n6�1/δ�2(1+�1/δ�)
{

ti + r ·
(1 + δ) j 1

4n2scri t (1+δ)�1/δ�
16n6�1/δ�2(1 + �1/δ�) ,

ti+1 − r ·
(1 + δ) j 1

4n2scri t (1+δ)�1/δ�
16n6�1/δ�2(1 + �1/δ�)

}

.

Let us explain how these time points in W come about. As we will show later
(Lemma 3(2)), there exists a certain optimal schedule for J ′ in which each zone
[ti , ti+1) ⊆ T contains at most one contiguous maximal processing interval, and this
interval “touches” either ti or ti+1 (or both). The geometric series

(1 + δ) j
1

4n2scri t (1 + δ)�1/δ�
of time points are used to approximate the ending/starting time of this maximal pro-
cessing interval. For each guess of the ending/starting time, we split the guessed
interval, during which the job pieces (to be defined formally immediately) are to be
processed, into 16n6�1/δ�2(1 + �1/δ�) many intervals of equal length. An example
of the set W for a given zone can be seen in Fig. 1.

123

Algorithmica (2019) 81:3725–3745 3735

Note that |W | is polynomial in the input size and 1/ε.

Definition 1 We split each job j ∈ SLOW(J ′) into 4n2�1/δ� equal sized pieces, and
also consider each job jdi ∈ FAST(J ′) as a single piece on its own. For every piece u
of some job j , let job(u) := j , ru := r j , du := d j , and vu := v j/(4n2�1/δ�) if
j ∈ SLOW(J ′), and vu := v j otherwise. Furthermore, let D denote the set of all
pieces derived from all jobs in J ′.

Note that |D| = � + |SLOW(J ′)| · 4n2�1/δ� is polynomial in the input size and
1/ε. We now define an ordering of the pieces in D.

Definition 2 Fix an arbitrary ordering of the jobs in J ′ , s.t. for any two different jobs
j and j ′, j ≺ j ′ implies r j ≤ r j ′ . Now extend this ordering to the set of pieces, s.t.
for any two pieces u and u′, there holds

u ≺ u′ ⇒ job(u) � job(u′).

We point out that any schedule for J ′ can also be seen as a schedule for D, by
implicitly assuming that the pieces of any fixed job are processed in the above order.

We are now ready to define the class of discretized schedules.

Definition 3 A discretized schedule is a schedule for J ′ that satisfies the following
two properties:

(i) Every piece is completely processed in a single zone, and without preemption.
(ii) The execution of every piece starts and ends at a time point from the set W .

A discretized schedule S is called well-ordered if and only if

(iii) For any time point t , such that in S a piece u ends at t , S schedules all pieces
u′ � u with du′ ≥ t after t .

Finally,we define a particular ordering over possible schedules,whichwill be useful
in our analysis.

Definition 4 Consider a given schedule. For every job j ∈ J ′, and every x ≤ v j , let
c j (x) denote the earliest time point at which volume x of job j has been finished under
this schedule. Furthermore, for any j ∈ J ′, we define

q j :=
∫ v j

0
c j (x)dx .

Let j1 ≺ j2 ≺ · · · ≺ j|J ′| be the jobs in J ′. A schedule S is lexicographically
smaller than a schedule S′ if and only if it is lexicographically smaller with respect to
the vector (q j1 , q j2 , . . . , q j|J ′|).

Observe that shifting the processing interval of any fraction of some job j to an
earlier time point (without affecting the other processing times of j) decreases the
value of q j .

123

3736 Algorithmica (2019) 81:3725–3745

3.2 Existence of a Near-Optimal Discretized Schedule

In this section, we first show that there exists a YDS-extension forJ ′ with certain nice
properties (recall that a YDS-extension is an optimal schedule satisfying the properties
of Lemma 1). We then explain how such a YDS-extension can be transformed into a
well-ordered discretized schedule, and prove that the speed of the latter, at all times, is
at most (1+ δ)3 times that of the former. This fact essentially guarantees the existence
of a well-ordered discretized schedule with energy consumption at most 1+ ε that of
an optimal schedule for J ′. The transformation is depicted in Fig. 2.

Lemma 3 Let OPT be a lexicographically minimal YDS-extension for J ′. Then the
following hold:

1. Every job jdi is scheduled exactly in its allowed interval Ii .
2. Every zone [ti , ti+1) ⊆ T has the following two properties:

(a) There is at most one contiguous maximal processing interval within [ti , ti+1),
and this interval either starts at ti and/or ends at ti+1. We call this interval the
block of zone [ti , ti+1).

(b) OPT uses a uniform speed of at most scri t during this block.

3. There exist no two jobs j ′ � j , such that a portion of j is processed after some
portion of j ′, and before d j ′ .

Proof 1. Since FAST(J ′) = { jdi : 1 ≤ i ≤ �} (by Proposition 1), and OPT is a
YDS-extension, it follows that each jdi is processed exactly in its allowed interval
Ii .

2. (a) Assume for the sake of contradiction that [ti , ti+1) ⊆ T contains a number of
maximal intervals N1, N2, . . . , Nψ (ordered from left to right3) during which
jobs are being processed, with ψ ≥ 2. Let M1, M2, . . . , Mψ ′ (again ordered
from left to right) be the remaining maximal intervals in [ti , ti+1), so that
N1, . . . , Nψ and M1, . . . , Mψ ′ partition the zone [ti , ti+1). Furthermore, note
that for each i = 1, . . . , ψ ′, the processor is either active but idle or asleep
during the whole interval Mi , since otherwise setting the processor asleep dur-
ing the whole interval Mi would incur a strictly smaller energy consumption.
We modify the schedule by shifting the intervals Ni , i = 2, . . . , ψ to the left,
so that N1, N2, . . . , Nψ now form a single contiguous processing interval. The
intervals Mk lying to the right of N1 are moved further right and merge into
a single (longer) interval M ′ during which no jobs are being processed. If the
processor was active during each of these intervals Mk , then we keep the pro-
cessor active during the new interval M ′, else we transition it to the sleep state.
We observe that the resulting schedule is still a YDS-extension (note that its
energy consumption is at most that of the initial schedule), but is lexicograph-
ically smaller.
For the second part of the statement, assume that there exists exactly one con-
tiguous maximal processing interval N1 within [ti , ti+1), and that there exist

3 For any two time points t1 < t2, we say that t1 is to the left of t2, and t2 is to the right of t1.

123

Algorithmica (2019) 81:3725–3745 3737

two M-intervals, M1 and M2 before and after N1, respectively.
We consider two cases:

• The processor is active just before ti , or the processor is asleep both just
before ti and just after ti+1: In this case we can shift N1 left by |M1| time
units, so that it starts at ti . Again, we keep the processor active during
[ti + |N1|, ti+1) only if it was active during both M1 and M2. As before,
the resulting schedule remains a YDS-extension, and is lexicographically
smaller.

• The processor is in the sleep state just before ti but active just after ti+1: In
this casewe shift N1 by |M2| timeunits to the right, so that its right endpoint
becomes ti+1. During the new idle interval [ti , ti +|M1|+|M2|)we set the
processor asleep. Note that in this case the processor was asleep during
M1. The schedule remains a YDS-extension, but its energy consumption
becomes strictly smaller: (i) either the processor was asleep during M2, in
which case the resulting schedule uses the same energywhile the processor
is active but has onewake-up operation less, or (ii) the processorwas active
and idle during M2, in which case the resulting schedule saves the idle
energy that was spent during M2.

(b) The statement follows directly from the second property of Lemma 1 and the
fact that all jobs processed during [ti , ti+1) belong to SLOW(J ′) and are active
in the entire zone.

3. Assume for the sake of contradiction that there exist two jobs j ′ � j , such that
a portion of j is processed during an interval Z = [ζ1, ζ2), ζ2 ≤ d j ′ , and some
portion of j ′ is processed during an interval Z ′ = [ζ ′

1, ζ
′
2), with ζ ′

2 ≤ ζ1. We first
observe that both jobs belong to SLOW(J ′). This follows from the fact that both
jobs are active during the whole interval [ζ ′

1, ζ2), and processed during parts of this
interval, whereas any job jdi (which are the only jobs in FAST(J ′)) is processed
exactly in its entire interval [yi , zi) (by statement 1 of the lemma).
By the second property of Lemma 1, both j and j ′ are processed at the same
speed. We can now apply a swap argument. Let L := min{|Z |, |Z ′|}. Note that
OPT schedules only j ′ during [ζ ′

2−L, ζ ′
2) and only j during [ζ2−L, ζ2). Swap the

part of the scheduleOPT in [ζ ′
2−L, ζ ′

2)with the schedule in the interval [ζ2−L, ζ2).
Given the above observations, it can be easily verified that the resulting schedule
(i) is feasible and remains a YDS-extension, and (ii) is lexicographically smaller
than OPT. �	
The next lemma shows how to transform the lexicographically minimal YDS-

extension for J ′ of the previous lemma into a well-ordered discretized schedule. This
is the most crucial part of our approach. Roughly speaking, the transformation needs
to guarantee that (1) in each zone, the volume of a job j ∈ SLOW(J ′) processed is an
integer multiple of v j/(4n2�1/δ�) (this is tantamount to making sure that each zone
has integral job pieces to deal with), (2) the job pieces start and end at the time points
in W , and (3) all the job pieces are processed in the “right order”. As we will show,
the new schedule may run at a higher speed than the given lexicographically minimal
YDS-extension, but not by too much.

123

3738 Algorithmica (2019) 81:3725–3745

Lemma 4 Let OPT be a lexicographically minimal YDS-extension for J ′, and let
sS(t) denote the speed of schedule S at time t, for any S and t. Then there exists a
well-ordered discretized schedule F, such that at any time point t ∈ T , there holds

sF (t) ≤ (1 + δ)3sOPT (t),

and for every t /∈ T , there holds

sF (t) = sOPT (t).

Proof Through a series of three transformations, we will transform OPT to a well-
ordered discretized schedule F , while upper bounding the increase in speed caused by
each of these transformations. More specifically, we will transform OPT to a schedule
F1 satisfying (i) and (iii) of Definition 3, then F1 to F2 where we slightly adapt the
block lengths, and finally F2 to F which satisfies all three properties of Definition 3.
Each of these transformations can increase the speed by at most a factor (1 + δ) for
any t ∈ T and does not affect the speed in any interval Ii .

Transformation 1 (OPT → F1): We will transform the schedule so that

(i) For each job j ∈ SLOW(J ′), an integer multiple of v j/(4n2�1/δ�) volume of
job j is processed in each zone, and the processing order of jobs within each
zone is determined by ≺. Together with property 1 of Lemma 3, this implies that
F1 (considered as a schedule for pieces) satisfies Definition 3(i).

(ii) The well-ordered property of Definition 3 is satisfied.
(iii) For all t ∈ T it holds that sF1(t) ≤ (1+ δ)sOPT (t), and for every t /∈ T it holds

that sF1(t) = sOPT (t).

Note that by Lemma 3, every zone is either empty, filled exactly by a job jdi , or
contains a single block. For any job j ∈ SLOW(J ′), and every zone [ti , ti+1), let V i

j
be the processing volume of job j that OPT schedules in zone [ti , ti+1). Since there
can be at most 2n different zones, for every job j there exists some index h(j), such
that V h(j)

j ≥ v j/(2n).
For every job j ∈ SLOW(J ′), and every i �= h(j), we reduce the load of job j

processed in [ti , ti+1), by setting it to

V̄ i
j =

⌊
V i
j /

v j

4n2�1/δ�)
⌋

· v j

4n2�1/δ� .

Finally, we set the volume of j processed in [th(j), th(j)+1) to V̄h(j)
j = v j −

∑
i �=h(j) V̄ i

j . To keep the schedule feasible, we process the new volume of each non-
empty zone [ti , ti+1) ⊆ T in the zone’s original block Bi , at a uniform speed of∑

j∈SLOW(J ′)(V̄ i
j)/|Bi |. Here, the processing order of the jobs within the block is

determined by ≺.
Note that in the resulting schedule F1, a job may be processed at different speeds

in different zones, but each zone uses only one constant speed level.

123

Algorithmica (2019) 81:3725–3745 3739

scrit

scrit

scrit

scrit

F1

F2

F

⇓

⇓

⇓

Transformation 3

Transformation 2

Transformation 1

Fig. 2 An illustration of the three transformations. In Transformation 1, volume is shifted between the
blocks so that each block contains an integer number of pieces for each job. Note how volume was shifted
between the two star-patterned blocks. In Transformation 2, the block lengths are adapted, so that both
block-endpoints align with W , see for instance brick-patterned block. Finally, in Transformation 3, some
pieces within each block are acellerated while others decelerated in order to make sure that the execution
of any piece starts and ends at a timepoint in W . See for example the leftmost pieces. We note that each of
the three transformations is designed in a way so that no speed increases by more than an (1 + δ)-factor

123

3740 Algorithmica (2019) 81:3725–3745

It is easy to see that F1 is a feasible schedule in which for each job j ∈ SLOW(J ′),
an integer multiple of v j/(4n2�1/δ�) volume of j is processed in each zone, and
that V̄ i

j ≤ V i
j for all i �= h(j). Furthermore, if i = h(j), we have that V̄ i

j − V i
j ≤

v j/(2n�1/δ�), and V i
j ≥ v j/(2n). It follows that V̄ i

j ≤ V i
j + V i

j /�1/δ� ≤ (1 + δ)V i
j

in this case, and therefore sF1(t) ≤ (1 + δ)sOPT (t) for all t ∈ T . We note here,
that for every job jdi , and the corresponding interval Ii , nothing changes during the
transformation.

We finally show that F1 satisfies the well-ordered property of Definition 3. Assume
for the sake of contradiction that there exists a piece u ending at some t , and there
exists a piece u′ � u with du′ ≥ t that is scheduled before t . Recall that we can
implicitly assume that the pieces of any fixed job are processed in the corresponding
order ≺. Therefore job(u′) � job(u), by definition of the ordering ≺ among pieces.
Furthermore, if [tk, tk+1) and [tk′ , tk′+1) are the zones in which u and u′, respectively,
are scheduled, then k′ < k, as k′ = k would contradict F1’s processing order of jobs
inside a zone. Also note that du′ ≥ tk+1, since t ∈ (tk, tk+1], and (tk, tk+1) does not
contain any deadline. This contradicts property 3 of Lemma 3, as the original schedule
OPT must have processed some volume of job(u′) in [tk′, tk′+1), and some volume
of job(u) in [tk, tk+1).

Transformation 2 (F1 → F2): In this transformation, we slightly modify the
block lengths, as a preparation for Transformation 3. For every non-empty zone
[ti , ti+1) ⊆ T , we increase the uniform speed of its block until it has a length of
(1 + δ) j 1

4n2scri t (1+δ)�1/δ� for some integer j ≥ 0, keeping one of its endpoints fixed

at ti or ti+1. Note that in F1, the block had length at least 1
4n2scri t (1+δ)�1/δ� , since it

contained a volume of at least 1/(4n2�1/δ�), and the speed in this zone was at most
(1 + δ)scri t . The speedup needed for this modification is clearly at most (1 + δ).

As this transformation does not change the processing order of any pieces nor
the zone in which any piece is scheduled, it preserves the well-ordered property of
Definition 3.

Transformation 3 (F2 → F): In this final transformation, we want to establish Def-
inition 3(ii). To this end, we shift and compress certain pieces in F2, such that every
execution interval starts and ends at a time point fromW (this is already true for pieces
corresponding to jobs jdi). The procedure resembles a transformation done in [16]. For
any zone [ti , ti+1) ⊆ T , we do the following: Consider the pieces that F2 processes
within the zone [ti , ti+1), and denote this set of pieces by Di . If Di = ∅, nothing needs
to be done. Otherwise, let γ be the integer such that (1 + δ)γ 1

4n2scri t (1+δ)�1/δ� is the
length of the block in this zone, and let

Δ := 1

64n8�1/δ�3scri t (1 + δ)(1 + �1/δ�) .

Note that in the definition of W , we introduced 16n6�1/δ�2(1 + �1/δ�) many time
points (for j = γ and r = 1, . . . , 16n6�1/δ�2(1+�1/δ�)) that subdivide this block into
16n6�1/δ�2(1 + �1/δ�) intervals of length Δ. Furthermore, since |Di | ≤ 4n3�1/δ�,

123

Algorithmica (2019) 81:3725–3745 3741

there must exist a piece u ∈ Di with execution time Γu ≥ 4n3�1/δ�(1+�1/δ�)Δ. We
now partition the pieces in Di \ {u} into D+, the pieces processed after u, and D−,
the pieces processed before u. First, we restrict our attention to D+. Let q1, . . . , q|D+|
denote the pieces in D+ in the order they are processed by F2. Starting with the last
piece q|D+|, and going down to q1, we modify the schedule as follows. We keep the
end of q|D+|’s execution interval fixed, and shift its start to the next earlier time point
in W , reducing its uniform execution speed accordingly. At the same time, in order
to avoid overlaps, we shift the execution intervals of all qk, k < |D+| by the same
amount to the left (leaving their lengths unchanged). Eventually, we also move the
execution end point of u by the same amount to the left (leaving its start point fixed).
This shortens the execution interval of u and “absorbs” the shifting of the pieces in
D+ (note that the processing speed of u increases as its interval gets shorter). We
then proceed with q|D+|−1, keeping its end (which now already resides at a time point
in W) fixed, and moving its start to the next earlier time point in W . Again, the shift
propagates to earlier pieces in D+, which are moved by the same amount, and shortens
u’s execution interval once more. When all pieces in D+ have been modified in this
way, we turn to D− and apply the same procedure there. This time, we keep the start
times fixed and instead shift the right end points of the execution intervals further to
the right. As before, u “absorbs” the propagated shifts, as we increase its start time
accordingly. After this modification, the execution intervals of all pieces in Di start
and end at time points in W .

To complete the proof, we need to argue that the speedup of piece u is bounded by
a factor (1 + δ). Since |Di | ≤ 4n3�1/δ�, u’s execution interval can be shortened at
most 4n3�1/δ� times, each time by a length of at most Δ. Furthermore, recall that the
execution time of u was Γu ≥ 4n3�1/δ�(1 + �1/δ�)Δ. Therefore, its new execution
time is at least Γu − 4n3�1/δ�Δ ≥ Γu − Γu

1+�1/δ� , and the speedup factor thus at most

Γu

Γu − Γu
1+�1/δ�

= 1

1 − 1
1+�1/δ�

≤ 1 + δ.

Again, the transformation does not change the processing order of any pieces nor
the zone in which any piece is scheduled, and thus preserves the well-ordered property
of Definition 3. �	

We now show that the speedup used in our transformation does not increase the
energy consumption by more than a factor of 1 + ε. To this end, observe that for any
t ∈ T , the speed of the schedule OPT in Lemma 4 is at most scri t , by Lemma 3(2).
Furthermore, note that the final schedule F has speed zero whenever OPT has speed
zero. This allows F to use exactly the same sleep phases as OPT (resulting in the same
wake-up costs). It therefore suffices to prove the following lemma, in order to bound
the increase in energy consumption.

Lemma 5 For any s ∈ [0, scri t], there holds

P
(
(1 + δ)3s

)

P(s)
≤ 1 + ε.

123

3742 Algorithmica (2019) 81:3725–3745

Proof

P
(
(1 + δ)3s

)

P(s)

(1)≤ P
(
(1 + 4δ)s

)

P(s)

= P(s) + 4δs P(s+4δs)−P(s)
4δs

P(s)

(2)≤ P(s) + 4δs P(s+scri t)−P(s)
scri t

P(s)

(3)≤ P(s) + 4δs P(2scri t)−P(scri t)
scri t

P(s)
(4)≤ 1 + 4δ

scri t
P(scri t)

· P(2scri t) − P(scri t)

scri t
(5)≤ 1 + ε.

In the above chain of inequalities, (1) holds since δ ≤ 1
4 and P(s) is non-decreasing.

(2) and (3) follow from the convexity of P(s), and the fact that 4δs ≤ scri t . Inequality
(4) holds since scri t minimizes P(s)/s (and thus maximizes s/P(s)), and (5) follows
from the definition of δ. �	

We summarize the major result of this section in the following lemma.

Lemma 6 There exists awell-ordereddiscretized schedulewith an energy consumption
no more than (1 + ε) times the optimal energy consumption for J ′.

4 The Dynamic Program

In this section, we show how to use dynamic programming to find a well-ordered
discretized schedule with minimum energy consumption. In the following, we discuss
only how to find theminimum energy consumption of this target schedule, as the actual
schedule can be easily retrieved by proper bookkeeping in the dynamic programming
process.

Recall that D is the set of all pieces andW the set of time points. Let u1, u2, . . . , u|D|
be the pieces in D, and w.l.o.g. assume that u1 ≺ u2 ≺ . . . ≺ u|D|.

Definition 5 For any k ∈ {1, . . . , |D|}, and τ1 ≤ τ2, τ1, τ2 ∈ W , we define Ek(τ1, τ2)

as the minimum energy consumption during the interval [τ1, τ2], of a well-ordered
discretized schedule so that

1. all pieces {u � uk : τ1 < du ≤ τ2} are processed in the interval [τ1, τ2), and
2. the machine is active right before τ1 and right after τ2.

In case that there is no such feasible schedule, let Ek(τ1, τ2) = ∞.
The DP proceeds by filling the entries Ek(τ1, τ2) by decreasing index of k. The

base cases are
E|D|+1(τ1, τ2) := min{P(0)(τ2 − τ1),C},

123

Algorithmica (2019) 81:3725–3745 3743

for all τ1, τ2 ∈ W , τ1 ≤ τ2. For the recursion step, suppose that we are about to fill in
Ek(τ1, τ2). There are two possibilities.

• Suppose that duk /∈ (τ1, τ2]. Then clearly Ek(τ1, τ2) = Ek+1(τ1, τ2).
• Suppose that duk ∈ (τ1, τ2]. By definition, piece uk needs to be processed in the
interval [τ1, τ2). We need to guess its actual execution period [b, e) ⊆ [τ1, τ2),
and process the remaining pieces {u � uk+1 : τ1 < du ≤ τ2} in the two intervals
[τ1, b) and [e, τ2). We first rule out some guesses of [b, e) that are bound to be
wrong.

– By Definition 3(i), in a discretized schedule, a piece has to be processed com-
pletely inside a zone [ti , ti+1) (recall that ti ∈ W ′ are the release times and
deadlines of the jobs). Therefore, in the right guess, the interior of [b, e) does
not contain any release times or deadlines; more precisely, there is no time
point ti ∈ W ′ so that b < ti < e.

– By Definition 3(iii), in a well-ordered discretized schedule, if piece uk ends
at time point e, then all pieces u′ � uk with deadline du′ ≥ e are processed
after uk . However, consider the guess [b, e), where e = du′ for some u′ � uk
(notice that the previous case does not rule out this possibility). Then u′ cannot
be processed anywhere in a well-ordered schedule. Thus, such a guess [b, e)
cannot be right.

By the preceding discussion, if the guess (b, e) is right, the two sets of pieces
{u � uk+1 : τ1 < du ≤ b} and {u � uk+1 : e < du ≤ τ2}, along with piece uk ,
comprise all pieces to be processed that are required by the definition of Ek(τ1, τ2).
Clearly, the former set of pieces {u � uk+1 : τ1 < du ≤ b} has to be processed
in the interval [τ1, b); the latter set of pieces, in a well-ordered schedule, must be
processed in the interval [e, τ2) if [b, e) is the correct guess for the execution of
the piece uk .
We therefore have that

Ek(τ1, τ2)

= min
b,e∈W , [b,e)⊆[τ1,τ2),[b,e)⊆[ruk ,duk),

�ti∈W ′, s.t. b<ti<e,
�u′�uk , s.t. du′=e.

{
Ek+1(τ1, b) + P

(vuk

e − b

)
(e − b) + Ek+1(e, τ2)

}

if there exist b, e ∈ W with the properties stated under the min-operator, and
Ek(τ1, τ2) = ∞ otherwise.

Theorem 1 There exists a fully polynomial-time approximation scheme (FPTAS) for

speed scaling with sleep state. Its time complexity is O(n
32

ε17
(log n2dmax

ε
)4).

Proof Given an arbitrary instance J for speed scaling with sleep state, we can trans-
form it in polynomial time to an instance J ′, as seen in Sect. 2. We then apply the
dynamic programming algorithm that was described in this section to obtain a well-
ordered discretized schedule S ′ of minimal energy consumption for instance J ′. By

123

3744 Algorithmica (2019) 81:3725–3745

Lemma6,we have thatS ′ is a (1+ε)-approximation for instanceJ ′. Furthermore, note
that every discretized schedule (and therefore also S ′) executes each job jdi exactly in
its allowed interval Ii = [yi , zi). This holds because there are no time points from the
interior of Ii included in W , and any discretized schedule must therefore choose to
run jdi precisely from yi ∈ W to zi ∈ W . Therefore, by Lemma 2, we can transform
S ′ to a schedule S in polynomial time and obtain a (1 + ε)-approximation for J .

We next analyze the running time. The pre-processing of the instance and the YDS
algorithm are easily dominated by the dynamic program. By construction in Sect. 3.1,

|W | = O(n
7

ε4
log n2dmax

ε
), |W ′| = O(n) and |D| = O(n

3

ε
). The total number of entries

in the dynamic program is O(|D||W |2). For each single entry of Ek(τ1, τ2), we need

to check O(
(|W |

2

)
) possibilities. For each possibility, we need O(n) time. In sum, this

gives the running time of O(n|D||W |4) = O(n
32

ε17
(log n2dmax

ε
)4). �	

Acknowledgements Open access funding provided by Max Planck Society.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
2. Albers, S., Antoniadis, A.: Race to idle: new algorithms for speed scaling with a sleep state. ACM

Trans. Algorithms 10(2), 9 (2014)
3. Antoniadis, A., Huang, C.-C., Ott, S.: A fully polynomial-time approximation scheme for speed scaling

with sleep state. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015 (2015)

4. Bailis, P., Reddi, V.J., Gandhi, S., Brooks, D., Seltzer, M.I.: Dimetrodon: processor-level preventive
thermal management via idle cycle injection. In: DAC, pp. 89–94. ACM (2011)

5. Bampis, E., Dürr, C., Kacem, F., Milis, I.: Speed scaling with power down scheduling for agreeable
deadlines. Sustain. Comput.: Inf. Syst. 2(4), 184–189 (2012)

6. Bampis, E., Kononov, A., Letsios, D., Lucarelli, G., Nemparis, I.: From preemptive to non-preemptive
speed-scaling scheduling. In: COCOON, pp. 134–146. Springer, New York (2013)

7. Bansal, N., Chan, H.-L., Katz, D., Pruhs, K.: Improved bounds for speed scaling in devices obeying
the cube-root rule. Theory Comput. 8(1), 209–229 (2012)

8. Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function. ACM Trans.
Algorithms 9(2), 18 (2013)

9. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm
for offline dynamic power management. In: SODA, pp. 364–367. ACM Press, New York (2006)

10. Baptiste, P., Chrobak,M., Dürr, C.: Polynomial-time algorithms forminimumenergy scheduling. ACM
Trans. Algorithms 8(3), 26 (2012)

11. Brooks,D.M., Bose, P., Schuster, S.E., Jacobson,H., Kudva, P.N., Buyuktosunoglu,A.,Wellman, J.-D.,
Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: design and modeling challenges
for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)

12. Demaine, E.D., Ghodsi, M., Hajiaghayi, M., Sayedi-Roshkhar, A.S., Zadimoghaddam,M.: Scheduling
to minimize gaps and power consumption. J. Sched. 16(2), 151–160 (2013)

13. Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation in server farms. In:
SIGMETRICS/Performance, pp. 157–168. ACM, New York (2009)

14. Garrett, M.: Powering down. ACM Queue 5(7), 16–21 (2007)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2019) 81:3725–3745 3745

15. Han, X., Lam, T.W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Deadline scheduling and power manage-
ment for speed bounded processors. Theor. Comput. Sci. 411(40–42), 3587–3600 (2010)

16. Huang, C., Ott, S.: New results for non-preemptive speed scaling. In: MFCS, pp. 360–371. Springer,
New York(2014)

17. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News 36(2), 63–76 (2005)
18. Irani, S., Shukla, S.K., Gupta, R.: Algorithms for power savings. ACM Trans. Algorithms 3(4) (2007)
19. Kumar, G., Shannigrahi, S.: NP-hardness of speed scaling with a sleep state. CoRR (2013).

arXiv:1304.7373
20. Raghavan, A., Emurian, L., Shao, L., Papaefthymiou,M.C., Pipe, K.P.,Wenisch, T.F., Martin,M.M.K.:

Utilizing dark silicon to save energy with computational sprinting. IEEE Micro 33(5), 20–28 (2013)
21. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy. In: FOCS, pp.

374–382. IEEE Computer Society (1995)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Antonios Antoniadis1 · Chien-Chung Huang2 · Sebastian Ott3

Chien-Chung Huang
cchuang@di.ens.fr

Sebastian Ott
se-ott@web.de

1 Saarland University and Max-Planck-Institut für Informatik, Saarbrücken, Germany

2 École Normale Supérieure, Paris, France

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

123

http://arxiv.org/abs/1304.7373
http://orcid.org/0000-0003-2152-7883

	A Fully Polynomial-Time Approximation Scheme for Speed Scaling with a Sleep State
	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminaries
	3 Discretizing the Problem
	3.1 Further Definitions and Notation
	3.2 Existence of a Near-Optimal Discretized Schedule

	4 The Dynamic Program
	Acknowledgements
	References

