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Introduction

Let Γ Ă PGL d pRq be a discrete subgroup. Following Guivarc'h, Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF] has shown that if Γ contains a proximal element and acts irreducibly on R d then its action on projective space PpR d q has a smallest closed invariant set. This is usually called Benoist's limit set or simply the limit set of Γ on PpR d q and denoted by L Γ .

In contrast with the negatively curved situation, the limit set of a subgroup Γ whose Zariski closure has rank ě 2 need not be a fractal object. Examples of this phenomena are provided, for example, by Benoist [START_REF] Benoist | Convexes divisibles I. In Algebraic groups and arithmetic[END_REF] in his work on strictly convex divisible sets, showing that these groups have a C 1 -sphere as limit set, or by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] where he proved that the limit set of a Hitchin representation is a C 1 -curve. We refer the reader to P.-S.-W [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] and to Zhang-Zimmer [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF] for new examples of infinite co-volume Zariski-dense groups whose limit set is a proper C 1 submanifold.

Intermediate phenomena can also ocur. The easiest example could be by considering two different hyperbolizations ρ, η : π 1 S Ñ PSL 2 pRq of a closed surface S with genus ě 2. The limit set of the representation pρ, ηq : π 1 S Ñ PSL 2 pRq ˆPSL 2 pRq in BH 2 ˆBH 2 is a Lipschitz circle that is never C 1 . This Lipschitz property can be easily deduced from the fact that the Hölder map ξ : BH 2 Ñ BH 2 conjugating the action ρ with η is order preserving.

This actually fits in the broader framework of what is now known as maximal representations, introduced in Burger-Iozzi-W. [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF]Theorem 8]. These are a class of representations of π 1 S into an Hermitian Lie group, that have maximal Toledo invariant, a notion that generalizes the characterization, proved by Goldman [START_REF] Goldman | Topological components of spaces of representations[END_REF], of the Teichmüller space of S as those representation with maximal Euler number.

It is proved by Burger-Iozzi-Labourie-W. [START_REF] Burger | Maximal representations of surface groups: Symplectic Anosov structures[END_REF] that maximal representations have Lipschitz limit set in the Shilov boundary of the target group (see Section 9 for further detail).

The main object of this paper are discrete groups whose limit set is a Lipschitz manifold, i.e. it is locally the graph of a Lipschitz map. The groups we will consider verify a stronger form of "quasi-isometrically embedded", called projective Anosov which we now define.

Let τ be an inner product on R d and for g P GL d pKq denote by σ 1 pgq ě ¨¨¨ě σ d pgq the singular values of g associated to τ, that is, the square roots of the eigenvalues of gg ˚, where g ˚is the adjoint operator of g. Given g P PGL d pKq one can consider a lift g P GL d pKq with det g P t´1, 1u, we define then σ i pgq " σ i pgq.

Let Γ be a finitely generated group, fix a finite symmetric generating set and denote by | | the associated word length on Γ. Let ρ : Γ Ñ PGL d pKq be a homomorphism, then the following are equivalent: i) There exist positive constants c, µ such that for all γ P Γ one has

σ 2 σ 1 pρpγqq ď ce ´µ|γ| ,
ii) The group Γ is hyperbolic and there exist equivariant maps pξ ρ , ξ ρ q : BΓ Ñ PpR d q ˆPppR d q ˚q such that for every x ‰ y P BΓ one has ker ξ ˚pyq'ξpxq " R d ; and the bundle over UΓ whose fiber is (the induced on the quotient of) hompξpxq, ker ξ ˚pyqq is contracting for the associated canonical flat bundle automorphism.

If either condition is satisfied we will say that ρ is a projective Anosov representation.

Remark 1.1. The implication ii)ñi) comes from Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] and Guichard-W. [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF]. The implication i)ñii) is due to Kapovich-Leeb-Porti [START_REF] Kapovich | Morse actions of discrete groups on symmetric space[END_REF], see also Guéritaud-Guichard-Kassel-W. [START_REF] Guéritaud | Anosov representations and proper actions[END_REF] and Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] for different approaches.

Recall that if pa n q nPN Ă R `is a sequence of positive numbers then the critical exponent of the Dirichlet series s Þ Ñ Inspired by Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Theorem B], the main purpose of this work is to prove the following result, whose scope of application is considerable broader.

Theorem A. Let Γ be a word-hyperbolic group such that BΓ is topologically a sphere of dimension p. Let ρ : Γ Ñ PSL d pRq be a strongly irreducible projective Anosov representation such that ξ ρ pBΓq is locally the graph of a Lipschitz map. Then the Dirichlet series

s Þ Ñ ÿ γPΓ ˜σ1 ¨¨¨σ p`1 σ p`1 1
`ρpγq ˘¸s has critical exponent equal to 1. Furthermore, if p " 1 the same holds replacing strong irreducibility with weak irreducibility.

We say that a projective Anosov representation ρ is weakly irreducible if the vector space span `ξρ pBΓq ˘is R d . Let us introduce some more standard notation before explaining some consequences of such equality.

Let E " tpa 1 , . . . , a d q P R d : ř i a i " 0u and fix p P 1, d . Denote by ε p P E ˚the coordinate function ε p paq " a p and the pth-root a p " ε p ´εp`1 . Consider the set of simple roots defined by Π " ta k : k P 1, d ´1 u and E `" ta P E : a 1 ě ¨¨¨ě a d u the associated Weyl chamber. The Cartan projection a : PGL d pRq Ñ E `is defined by apgq " `log σ 1 pgq, . . . , log σ d pgq ˘,

note that this map depends on the choice of τ. Consider a representation ρ : Γ Ñ PGL d pRq, then the entropy of a given linear form ϕ P E ˚is denoted by h ρ pϕq and is defined as the critical exponent of the Dirichlet series For each simple root a p , we denote the associated fundamental weight by

ω p paq " p ÿ 1 a i .
We introduce the pth-unstable Jacobian J u p P E ˚defined by J u p " pp `1qω a1 ´ωap`1 , so that Theorem A states that if ρ is projective Anosov and ξ ρ pBΓq is a Lipschitz manifold of dimension p, then h ρ pJ u p q " 1 (provided the corresponding irreducibility assumptions hold).

We proceed to explain some applications of Theorem A before explaining the main ideas of its proof.

Maximal representations. Let G R be a Hermitian Lie group. By definition, its symmetric space X G R carries a G R -invariant symplectic form Ω. Given a closed genus g ě 2 surface and a representation ρ : π 1 S Ñ G R , its Toledo invariant is defined by Tpρq " ż S f ˚Ω, for a(ny) ρ-equivariant map f : S Ñ X G R . It is proved by Burger-Iozzi-W. [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF] that | Tpρq| ď p2g ´2q rankpG R q. One says that ρ is maximal if its Toledo invariant is maximal in modulus.

We obtain the following entropy one result for maximal representations.

Theorem 1.2. Let G R be a classical simple Hermitian Lie group of tube type. Let ρ : Γ Ñ G R be a maximal representation, and let ǎ denote the root associated to the stabilizer of a point in the Shilov boundary of G R . Then h ρ pǎq " 1.

We give the precise linear form on E ˚, where we denote by ε k P E ˚the k-th coordinate function.

Target group ρ : π 1 S Ñ G K maximal Spp2p, Rq h ρ p2ε p q " 1 SUpp, pq h ρ p2ε p q " 1 SO ˚p4pq h ρ p2ε p q " 1 SO 0 p2, pq h ρ pε 1 ´ε2 q " 1 Theorem 1.2 also holds for the exceptional Hermitian Lie group of tube type if the respresentation is Zariski-dense, and we expect it to hold unconditionally. We refer the reader to §9 for a slightly more general statement, further explanations and consequences, in particular concerning a sharp upper bound on the exponential orbit growth rate for the action on the symmetric space (see Proposition 9.9). θ-positive representations. In [START_REF] Guichard | Positivity and higher Teichmüller theory[END_REF] Guichard-W. introduced the notion of θpositivity for a subset θ of the simple roots of a real semisimple Lie group G R , and used such notion to define θ-positive representations, a class of representations that encompasses Hitchin representations, maximal representations and includes a new class of representations into the group SOpp, qq of elements preserving a symmetric bilinear form Q of signature pp, qq in R p`q . The definition of positivity is rather involved and we postpone it to §10. In that Section we prove the following result:

Theorem 1.3. Let ρ : Γ Ñ SOpp, qq be a θ-Anosov representation that is θ-positive. Then the images of the boundary maps ξ k : BΓ Ñ Is k pR p,q q are C 1 submanifolds for each 1 ď k ă p ´1, and the image ξ p´1 pBΓq is Lipschitz.

We will prove the two parts of Theorem 1.3 separately, respectively in Corollary 10.2 and Proposition 10.3. Theorem A implies then the following: Corollary 1.4. Let ρ : Γ Ñ SOpp, qq be a θ-Anosov representation that is θ-positive and weakly irreducible, then h ρ pa k q " 1 for every k ď p ´1.

Applying ideas from Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF], this corollary gives the following rigid upper bound for the critical exponent of the action of a positive representation in the symmetric space X p,q of SOpp, qq (see Theorem 10.5). Endow X p,q with a SOpp, qqinvariant Riemannian metric such that the totally geodesic copy of H 2 induced by the representation Λ : SL 2 pRq Ñ SOpp, qq that stabilizes a subspace of R d of signature pp, p ´1q, has constant curvature -1. Denote by d the induced distance in X p,q .

For a representation ρ : Γ Ñ SOpp, qq and x 0 P X p,q denote by h

Xp,q ρ the critical exponent of the Dirichlet series s Þ Ñ ÿ γPΓ e ´sdpx0,ρpγqx0q . Theorem 1.5. Let Γ be the fundamental group of a surface and let ρ : Γ Ñ SOpp, qq be θ-positive. Then h Xp,q ρ ď 1. Furthermore if equality is achieved at a totally reducible representation η then η splits as W ' V with W having signature pp, p ´1q and η|W has Zariski closure the irreducible POp2, 1q in POpp, p ´1q and η|V lies in a compact group.

Observe that the argument from [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF] does not apply directly since the Anosov-Levi space of a θ-positive representation has codimension one (instead of 0, which is the case treated in [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]), see §10.

H p,q -convex-cocompact representations. Generalizing work of Mess [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF] and Barbot-Mérigot [START_REF] Barbot | Anosov Ads representations are quasi-Fuchsian[END_REF], Danciger-Guéritaud-Kassel [START_REF] Danciger | Convex cocompactness in pseudo-Riemannian hyperbolic spaces[END_REF] introduced a class of representations called H p,q -convex cocompact.

The subspace of PpR d q consisting of negative definite lines for the form Q is called the pseudo-Riemannian hyperbolic space and denoted by H p,q´1 " t P PpR d q : Q| ´t0u ă 0u.

The cone of isotropic lines is usually denoted by BH p,q´1 .

Instead of the original definition of convex-cocompactness, we recall the characterization given by [START_REF] Danciger | Convex cocompactness in pseudo-Riemannian hyperbolic spaces[END_REF]Theorem 1.11].

Definition 1.6. A projective Anosov representation ρ : Γ Ñ POpp, qq is H p,q´1convex cocompact if for every pairwise distinct triple of points x, y, z P BΓ, the restriction Q| ξpxq'ξpyq'ξpzq has signature p2, 1q.

Before stating the main consequence in this case let us introduce some more notation. Consider a representation Λ : POpp, 1q Ñ POpp, qq such that its image stabilizes a p `1-dimensional subspace V of R d where Q|V has signature pp, 1q. Endow the symmetric space X p,q with a POpp, qq-invariant Riemannian metric such that the totally geodesic copy of H p in X p,q induced be Λ has constant curvature ´1. Then one has the following upper bound. Proposition 1.7. Assume that BΓ is homeomorphic to a p ´1-dimensional sphere and let ρ : Γ Ñ POpp, qq be strongly irreducible and H p,q´1 -convex-cocompact, then h Xp,q ρ ď p ´1.

One expects this upper bound to be rigid in the following sense: if the upper bound is attained then Γ is necessarily a co-compact lattice in POpp, 1q and the given representation preserves a totally geodesic copy of H p of the type induced by Λ. However, only the case p " 2 is known due to Collier-Tholozan-Toulisse [START_REF] Collier | The geometry of maximal representations of surface groups into SO(2,n)[END_REF], this actually fits in the framework of the maximal representations.

Section 8 contains more information on H p,q -convex cocompact representations, in particular the relation with recent work by Glorieux-Monclair [START_REF] Glorieux | Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry[END_REF].

C 1 -dichotomy for closed surface groups. In the case of fundamental groups of surfaces, or more generally of lattices in PSL 2 pRq, we deduce from our main result an interesting dichotomy for the regularity of the image of the boundary map.

Recall that an element g P PGL d pRq is proximal if the generalized eigenspace associated to its greatest eigenvalue (in modulus) has dimension 1. A representation Λ : G Ñ PGL d pRq of a given group G is proximal if its image contains a proximal element.

Corollary 1.8. Let Λ : PSL 2 pRq Ñ PSL d pRq be a (possibly reducible) proximal representation such that ^2Λ is also proximal. Let S be a closed surface of genus ě 2 and let ρ 0 : π 1 S Ñ PSL 2 pRq be discrete and faithful. Then we have the folloqing dichotomy: i) If the top two weights spaces of Λ belong to the same irreducible factor, then for every small deformation π 1 S Ñ PSL d pRq of Λρ 0 the image of the boundary map to projective space is C 1 . ii) Otherwise, for every weakly irreducible small deformations π 1 S Ñ PSL d pRq of Λρ 0 the image of the boundary map to projective space is not Lipschitz.

The regular case, item i) in Corollary 1.8, is inspired by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF], who treated the case (of arbitrary deformations) of the irreducible representations, and was proven in P.-S.-W [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Proposition 9.4]. The novelty of this paper is item ii), inspired by Barbot [START_REF] Barbot | Three-dimensional Anosov flag manifolds[END_REF] who proved it for d " 3. We believe both items placed together give a clearer picture.

Observe that it is easy to obtain similar results for other group G by considering suitable linear representations. On the other hand the double proximality assumption is necessary: the composition of a maximal representation not in the Hitchin component and the irreducible linear representation of Spp2n, Rq of highest weight w n is proximal but its second exterior power is not proximal; it is possible to check that no small Zariski dense deformation satisfies either (i) or (ii).

We refer the reader to §7 for further explanations and consequences for hyperconvex representations.

1.1. Two main ingredients of the proof of Theorem A. The proof of Theorem A goes by proving indepently both inequalities. One inequality (Corollary 1.9) follows from a general result on Hausdorff dimension of limit sets (for projective Anosov representations) which we now explain. The other inequality follows from an improvement on a result by Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Théorème 8.1] concerning the existence of pρpΓq, ϕq-Patterson-Sullivan measures. Its discussion is postponed to Subsection 1.1.2.

1.1.1. The affinity exponent and the unstable Jacobian. Recall that for a metric space pΛ, dq and for s ą 0 one defines

H s pΛq " inf ε t ÿ U PU diam U s : U is a covering of Λ with sup U PU diam U ă εu
and that the Hausdorff dimension of Λ is defined by dim Hff pΛq " infts : H s pΛq " 0u " supts : H s pΛq " 8u.

(1.1)

Given a representation ρ : Γ Ñ PGL d pRq, we consider, in analogy with Falconer's work [START_REF] Falconer | The Hausdorff dimension of self-affine fractals[END_REF], the piecewise Dirichlet series

Φ Aff ρ psq " ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p´1 σ 1 `ρpγq ˘˙ˆσ p σ 1
`ρpγq ˘˙s´pp´2q : s P rp ´2, p ´1s.

As in Falconer [START_REF] Falconer | The Hausdorff dimension of self-affine fractals[END_REF], one directly observes that h Aff ρ " infts : Φ Aff ρ psq ă 8u " supts : Φ Aff ρ psq " 8u P p0, 8s, this critical exponent is usually called the affinity exponent (or affinity dimension), probably because the target group in Falconer's work was the affine group Affpdq " GL d pRq ¸Rd .

Let ρ : Γ Ñ PGL d pRq be a projective Anosov representation and denote by dim Hff pξpBΓqq the Hausdorff dimension of ξpBΓq Ă PpR d q associated to a POpdq-invariant metric. This is independent of the choice of chosen inner product. Observe also that in this case, the terms in the sum of Φ Aff ρ psq can be bounded above by ce ´µs|γ| and thus h Aff ρ ă 8.

The second main result of this paper is the following (see §3 for a statement for arbitrary local fields): 1.1.2. On the existence of Patterson-Sullivan measures. Let tu 1 , . . . , u d u be a τorthonormal basis of R d and denote by A " exp diag E the group of determinant one matrices, diagonal in this ordered basis. Denote also by N the group of unipotent upper triangular matrices and recall that the Iwasawa decomposition of PGL d pRq states that every g P PGL d pRq can be uniquely written as a (non-commutative) product g " k g a g n g ,

Theorem B. Let ρ : Γ Ñ PGL d pRq
where k g P K " POpτ q, a g P A and n g P N.

Recall that a full flag of R d is a collection of subspaces pV i q d i"0 with V i Ă V i`1 and dim V i " i. The space of full flags of R d is denoted by F, it is a K-homogeneus space and the stabilizer in K of the flag e " pu 1 ' ¨¨¨' u i q d i"1 is denoted by M. Given a flag x P F, we will denote by x p the associated p-dimensional subspace.

The Iwasawa cocycle introduced by Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF] is the cocycle b : PGL d pRqˆF Ñ E defined such that, if g P PGL d pRq and x " k x e P F then gk x " k `exp diag bpg, xq ˘n, where the right hand side is the Iwasawa decomposition of gk x . It is the higher rank analog of the more studied Busemann cocycle in negative curature (see for example Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemma 6.6]).

A more hands-on definition is the following (see Lemma 4.9). For p P Π " 1, d one has

ω p `bpg, xq ˘" log }gv 1 ^¨¨¨^gv p } }v 1 ^¨¨¨^v p } (1.2)
where tv 1 , . . . , v p u is any basis of the p-dimensional space x p of x and } } is the norm on ^pR d induced by τ . Notice that ω p `bpg, xq ˘, the sum of the first p coordinates of bpg, xq, only depends on x p , so it is actually more natural to consider the Iwasawa cocycle defined on partial flags. Given θ Ă Π denote by F θ the space of partial flags with dimension jumps only in θ. Consider also the subspace E θ of E defined by

E θ " č pRθ ker a p .
The fundamental weights tω p |E θ : p P θu span its dual pE θ q ˚so Riesz Theorem gives an Iwasawa cocycle b θ : PGL d pRq ˆFθ Ñ E θ .

We recall the following definition from [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF].

Definition 1.10. Given a discrete subgroup ∆ ă PGL d pRq and ϕ P pE θ q ˚a p∆, ϕq-Patterson-Sullivan measure on F θ is a finite Radon measure µ such that for every g P ∆ one has dg

˚µ dµ pxq " e ´ϕ`b θ pg ´1,xq ˘.
The core of the second inequality in Theorem A is the following result (see also Theorem 5.14). Given θ Ă Π denote by i θ " td ´p : p P θu. We say that px, yq P F θ ˆFi θ , are transverse if for every p P θ one has that x p X y d´p . A complementary hyperplane of F θ is a subset of F θ of the form tx P F θ : x is not transverse to y 0 u for a given y 0 P F i θ .

Theorem C. Let ρ : Γ Ñ PGL d pRq be a proyective Anosov representation and consider θ Ă Π such that a 1 P θ. Let ϕ P pE θ q ˚. If there exists a pρpΓq, ϕq-Patterson-Sullivan measure on F θ whose support is not contained on a complementary subspace, then h ρ pϕq ď 1.

A similar result has been earlier proved by Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Théorème 8.1], inspired on a classical result by Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF]. However, Quint's theorem does not require the representation to be Anosov and the obtained inequality is not enough for what we need.

We refer the reader to §5 for a version of Theorem C where the target group is an arbitrary semi-simple group over a local field.

Recently Dey-Kapovich developed Patterson-Sullivan theory for Anosov representations [START_REF] Dey | Patterson-Sullivan theory for Anosov subgroups[END_REF]. There are important differences between their approach and ours: while we consider Hausdorff dimension with respect to the Riemannian distance on the flag manifold and measures quasi-invariant with respect to a functional that doesn't induce a norm on the Weyl chamber, they consider distances on the flag varieties which are induced from Finsler metrics on the symmetric space. In particular our results seem complementary.

1.2. Plan of the paper. In §2 we introduce some required preliminaries, and recall some needed results from Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] and P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]. Section 3 deals with the affinity exponent and Hausdorff dimension for Anosov representations, in it we prove Theorem B for any local field.

Section §4 is basically a reminder on (more or less) standard definitions on semisimple algebraic groups over a local field.

In §5 we recall objets from higher rank Patterson-Sullivan Theory and in subsection 5.3 we prove Theorem 5.14 (a broader version of Theorem C).

Section §6 glues the pieces to complete the proof of Theorem A. The remaining sections deal with applications of this result, as explained earlier in this introduction.

Acknowledgements. We would like to thank J.-F. Quint for pointing us to Falconer's work and suggesting to consider the affinity exponent.

Preliminaries

We recall in this section the notions we will need concerning Anosov representations and cone types. We refer the reader to [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] and the references therein for more details.

Throughout the paper K will denote a local field with absolute value

|¨| : K Ñ R `.
If K is non-Archimedean, we require that |ω| " 1 q where ω denotes the uniformizing element, namely a generator of the maximal ideal of the valuation ring O, and q is the cardinality of the residue field O{ωO (this is finite because K is, by assumption, local). This guarantees that the Hausdorff dimension of P 1 pKq " 1.

2.1. Singular values and Anosov representations into PGL d pV K q. A K-norm } } on a K vector space V K induces a norm on every exterior power of V ; the angle between two vectors >pv, wq is the unique number in r0, πs such that sin >pv, wq :" }v ^w} }v}}w}

Given two points rvs, rws P PV , we define their distance as dprvs, rwsq :" sin >pv, wq, and given any two subspaces P, Q ă V we define their minimal angle as >pP, Qq " min vPP zt0u min wPQzt0u >pv, wq.

An element a P GLpV K q is a semi-homothecy (for a norm } ¨}) if there exists a a-invariant K-orthogonal1 decomposition V " V 1 ' ¨¨¨' V k and σ 1 , ¨¨¨, σ k P R such that for every i P 1, k and every v i P V i one has

}av i } " σ i }v i }.
The numbers σ i are called the ratios of the semi-homothecy a.

Following Quint [START_REF] Quint | Cônes limites de sous-groupes discrets des groupes réductifs sur un corps local[END_REF]Théorème 6.1], we fix a maximal abelian subgroup of diagonalizable matrices A Ă GLpV K q, a compact subgroup K Ă GLpV K q such that, if N is the normalizer of A in GLpV K q, then N " pN X KqA, and a K-norm } } on V preserved by K, and such that A acts on V by semi-homothecies. Let e 1 ' ¨¨¨' e d be the eigenlines of A (here d " dim V ) and choose the Weyl chamber A `consistsing of those elements a P A whose corresponding semi-homothecy ratios verify σ 1 paq ě ¨¨¨ě σ d paq.

For every g P GLpV K q we choose a Cartan decomposition g " k g a g l g with a g in A `, k g , l g P K, and denote by σ 1 pgq ě σ 2 pgq ě ¨¨¨ě σ d pgq the semi-homotecy ratios of the Cartan projection a g P A `(these do not depend on the choice of the Cartan decomposition once K and } ¨} are fixed). In order to simplify notation we will often write σi σj pgq " σipgq σj pgq . We define, for p P 1, d ´1 , u p pgq " k g ¨ep P V.

The set tu p pgq : p P 1, d´1 u is an arbitrary orthogonal choice of the axes (ordered in decreasing length) of the ellipsoid tAv : }v} " 1u, and, by construction, for every v P g ´1u p pgq one has }gv} " σ p pgq}v}. Let U p pgq " u 1 pgq ' ¨¨¨' u p pgq " k g ¨pe 1 ' ¨¨¨' e p q.

If g is such that σ p pgq ą σ p`1 pgq, then we say that g has a gap of index p. In that case the decomposition U d´p pg ´1q ' g ´1pU p pgqq is orthogonal (cfr. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Remark 2.4]) and, if K is Archimedean, the p-dimensional space U p pgq is independent of the Cartan decomposition of g. We will denote by Π " ta 1 , . . . , a d´1 u the root system of PGLpV K q, and, given a subset θ Ă Π, by F θ the associated partial flag manifold. Given θ Ă Π we also denote by U θ pgq the partial flag U θ pgq " tU p pgq : a p P θu. The θ-basin of attraction of g B θ,α pgq " tx θ P F θ pK d q : min apPθ

> `xp , U d´p pg ´1q ˘ą αu (2.1)
is the complement of the α-neighborhood of U θ c pg ´1q. When θ consists of a single root a we will write B a,α pgq instead of B tau,α pgq Remark 2.1. If g has a gap of index p, then U d´p pg ´1q is well defined if K is Archimedean, and any two possible choices have distance at most σp`1 σp pgq if K is non-Archimedean. It follows that, also in the non-Archimedean case, B θ,α pgq only depends on K provided α is bigger than the minimal singular value gap.

We recall for later use the following lemma, which explains the choice of the term basin of attraction: Lemma 2.2 (Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF]Lemma A.6]). For every g P PGL d pKq, and x P B a1,α pgq it holds

dpU 1 pgq, g ¨xq ď 1 sinpαq σ 2 σ 1
pgq.

Anosov representations.

Let Γ be a word-hyperbolic group with identity element e, fix a finite symmetric generating set S Γ . For γ P Γ ´teu denote by |γ| the least number of elements of S Γ needed to write γ as a word on S, and define the induced distance

d Γ pγ, ηq " |γ ´1η|. A geodesic segment on Γ is a sequence tα i u k 0 of elements in Γ such that d Γ pα i , α j q " |i ´j|. Definition 2.3. A representation ρ : Γ Ñ PGL d pKq is a p -Anosov 2 if there exist positive constants c, µ such that for all γ P Γ one has σ p`1 σ p `ρpγq ˘ď ce ´µ|γ| . (2.2) 
An a 1 -Anosov representation will be called projective Anosov.

The following result was proven in Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] for K " R, the same arguments also give the result for any local field: Proposition 2.4 ([6, Lemma 2.5]). Let ρ : Γ Ñ PGL d pKq be a projective Anosov representation. Then there exists η ρ ą 0 and L P N such that for every geodesic segment

tα i u k 0 in Γ through e with |α 0 |, |α k | ě L one has > ´U1 `ρpα k q ˘, U d´1 `ρpα 0 q ˘¯ą η ρ .
Proposition 2.4 is a key ingredient in the construction of boundary maps:

Proposition 2.5 ([6, Lemma 4.9]). Let ρ : Γ Ñ PGL d pKq be projective Anosov and pα i q 8 0 Ă Γ a geodesic ray based at the identity converging to x P BΓ then

ξ 1 ρ pxq :" lim iÑ8 U 1 `ρpα i q ˘ξd´1 ρ pxq :" lim iÑ8 U d´1 `ρpα i q ȇxist,
do not depend on the ray and define continuous ρ-equivariant transverse maps ξ 1 ρ : BΓ Ñ PpK d q, ξ d´1 ρ : BΓ Ñ P `pK d q ˚˘. Furthermore, there are positive constants C, µ depending only on ρ such that d ´U1 `ρpα k q ˘, ξ 1 ρ pxq ¯ď Ce ´µk The following Lemma from concerning properties of boundary maps will be precious in Section 3.1: Lemma 2.6 (Bochi-Potrie-S. [6, Lemma 3.9]). Let ρ : Γ Ñ PGL d pKq be projective Anosov, then there exist constants ν P p0, 1q, a 0 ą 0 and a 1 ą 0 such that for every γ, η P Γ one has

d Γ pγ, ηq ě νp|γ| `|η|q ´a0 ´a1 | log d `U1 pρpγqq, U 1 pρpηqq ˘|.
2 In the language of Bochi-Potrie-S. [6, Section 3.1] a ap-Anosov representation is called pdominated.

Hausdorff dimension of the limit set and the affinitiy exponent

Generalizing the definition given in the introduction, we define the affinity exponent h Aff ρ of a projective Anosov representation ρ : Γ Ñ PGLpV K q as the critical exponent of the broken Dirichlet series

Φ Aff ρ psq " ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p´1 σ 1 `ρpγq ˘˙d K ˆσp σ 1 `ρpγq ˘˙s´d K pp´2q s P rd K pp ´2q, d K pp ´1qs
where the dimension

d K of P 1 pKq is 1 unless K " C in which case d C " 2.
The goal of the section is to prove the following result:

Theorem 3.1. Let K be a local field. If ρ : Γ Ñ PGLpV K q is a 1 -Anosov then dim Hff `ξ1 ρ pBΓq ˘ď h Aff ρ .
The proof of Theorem 3.1 is elementary and based on the construction of a good cover of the image of the limit map (explicitely constructed in § 3.1) which we show, in § 3.2 to be contained in ellipses of controlled axis.

3.1. Coarse Cone types. In P.-S.-W. [36, Section 2.3.1] we used cone types at infinity to construct well behaved coverings of the boundary of the group. For the purposes of this paper a coarse version of these sets will be more useful, which we now introduce.

Recall that a sequence pα i q 8 0 is a pc 0 , c 1 q-quasigeodesic if for every pair i, j it holds 1 c 0 |i ´j| ´c1 ď d Γ pα i , α j q ď c 0 |i ´j| `c1 .

We associate to every element γ a coarse cone type at infinity, consisting of endpoints at infinity of quasi geodesic rays based at γ ´1 passing through the identity:

C c0,c1 8 
pγq " ! rpα i q 8 0 s P BΓ| pα i q 8 0 is a pc 0 , c 1 q-quasigeodesic with α 0 " γ ´1, e P tα i uq Hyperbolicity of Γ lets us understand the overlaps of coarse cone types; this will be crucial in Section 5.3 to guarantee bounded overlap of suitable covers of the limit set.

) . B c1 peq γ ´1 Γ C c0,c1
Proposition 3.2. Let Γ be word-hyperbolic. For every c 0 , c 1 there exists C ą 0 such that if

γC c0,c1 8 pγq X ηC c0,c1 8 pηq ‰ H then d Γ pγ, ηq ď ˇˇ|γ| ´|η| ˇˇ`C. Proof. Assume that x P γC c0,c1 8 pγq X ηC c0,c1 8 
pηq. Since Γ is hyperbolic, by the Morse Lemma, there exists K ą 0 (only depending on c 0 , c 1 and the hyperbolicity constant of Γ) such that γ is at distance at most K from a geodesic ray from e to x. The same holds then for η, and, using the hyperbolicity of Γ again, we can assume, up to making the constant K worse (but still depending on c 0 , c 1 only), that the two rays agree. This implies that there exist g 0 and g 1 on a geodesic ray from e to x such that dpγ, g 0 q ď K and dpη, g 1 q ď K. Since g 0 and g 1 lie in a geodesic we have dpg 0 , g 1 q ď ˇˇ|g 0 | ´|g 1 | ˇˇand thus dpγ, ηq ď 4K `ˇ| γ| ´|η| ˇˇ.

Our next goal is to show that, for an Anosov representation, the intersections of Cartan's basins of attraction B θ,α pρpγqq with the image of the boundary map are contained in the image of a suitably big coarse cone type of γ. Let now θ Ă Π be a subset containing the first root a 1 . We will denote by π θ,1 : F θ pK d q Ñ PpK d q the canonical projection. Recall from (2.1) that, for every α, we asociate to each g P PGLpV K q a basin of attraction B θ,α pgq Ă F θ . We will now use Lemma 2.6 to show that, for every α, there exist c 0 , c 1 such that the intersection of a θ-basin of attraction B θ,α pρpγqq is contained in a pc 0 , c 1 q-coarse cone type. Proposition 3.3. Let ρ : Γ Ñ PGLpV K q be projective Anosov and consider α ą 0. There exist c 0 , c 1 only depending on α and ρ such that for every θ Ă Π containing a 1 , and every γ P Γ

pξ 1 q ´1 pπ θ,1 pB θ,α pρpγqqqq Ă C c0,c1 8 pγq.
Proof. It is enough to show that if ξ 1 pxq P π θ,1 pB θ,α pρpγqqq and |γ| is big enough, then there is a quasi-geodesic ray from γ ´1 to x that passes through the identity whose constants only depend on α and ρ. Consider a quasigeodesic ray tα i u converging to x, and fix 1 ą α 1 ą α. Since, by assumption, ξ 1 pxq P B a1,α pρpγqq, we can find a constant L depending on ρ only, such that for every i ą L it holds U 1 pρpα i qq P B a1,α 1 pρpγqq (the uniformity of L follows from the last statement in Proposition 2.5). By definition we have >pU 1 pρpα i qq, U d´1 pρpγ ´1qqq ą α 1 , and thus, in particular, dpU 1 pρpα i qq, U 1 pρpγ ´1qq ą α 1 . Let now pα i q ´|γ| S i"0 be a geodesic segment with α 0 " e, α ´|γ| S " γ. Up to further enlarging α 1 and L (depending on the representation only) we have also that dpU 1 pρpα ´Lqq, U 1 pρpα L qq ą α 1 . Lemma 2.6 implies that the sequence pα i q 8

i"´|γ| S obtained as concatenation of the geodesic between γ ´1 and the identity and the ray from the identity to x is a quasi geodesic ray, thus the result.

Corollary 3.4. Let ρ : Γ Ñ PGLpV K q be projective Anosov and consider α ą 0. There exists C only depending on α and ρ such that for every θ Ă Π containing a 1 , if ξ 1 pBΓq X π θ,1 ´ρpγq ¨Bθ,α pρpγqq X ρpηq ¨Bθ,α pρpηqq ¯‰ H then dpγ, ηq ď ˇˇ|γ| ´|η| ˇˇ`C.

Proof. This follows immediately combining Proposition 3.3 and Proposition 3.2.

In particular we can use basins of attraction to construct coverings of the image of the boudary map with bounded overlap: Proposition 3.5 (Cfr. P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Lemma 2.21]). Let ρ : Γ Ñ PGLpV K q be projective Anosov. There exists α small enough so that, for every T ą 0, the family of open sets U T :" tρpγq ¨Ba1,α pρpγqq : |γ| " T u defines an open covering of ξ 1 pBΓq. Furthermore there exists a constant C depending on α (and ρ) such that for every x P BΓ and every T , ξpxq is contained in at most C elements of U T .

Proof. Let x P BΓ, let tγ i u be a geodesic ray based at the identity representing x. Propositions 2.4 and 2.5 guarantee that there exists α " α ρ such that >ρpγ ´1 T qξ 1 pxq, U d´1 pρpγ ´1 T qq ą α, therefore ξ 1 pxq P ρpγ T qB a1,α pρpγ T qq. The second statement is a direct consequence of Corollary 3.4.

3.2.

Ellipses. The purpose of this section is to prove that for a projective Anosov representation, the set ρpγq ¨Ba1,α pρpγqq is coarsely contained in an ellipsoid with axes of size σ 2 σ 1 pρpγqq, . . . , σ d σ 1 pρpγqq.

Definition 3.6. Let V be a d-dimensional K-vector space with K-norm } ¨}. Let u 1 ' ¨¨¨' u d be a K-orthogonal decomposition and let v " ř v i u i be the associated decomposition of v P V , for suitable v i P K. Choose positive real numbers a 2 ě . . . a d ě 1. If K is Archimedean, an ellipsoid about Ku 1 is the projectivisation of

tv P V : |v 1 | 2 ě d ÿ 2 pa i |v i |q 2 u for some a i ą 0. If, instead, K is non-Archimedean, an ellipsoid about Ku 1 is the projectivisation of " v P V : |v 1 | ě max 2ďiďd pa i |v i |q *
The vector spaces u 1 ' u i are the axes of the ellipsoid and the size of the axis u 1 ' u i is 1{a i . We need the following covering lemma. Proof. We consider the affine chart of PpV q corresponding to u 1 " 1. The ellipsoid E is contained in the product of the balls

t|v i | ď β i u Ă K (it agrees with such product if K is non-Archimedean). If K is Archimedean, the ball t|v i | ď β i u is contained in the union of Q βi βp U d K balls of radius β p .
Since the product of d balls of radius β p is contained in a ball of radius ? dβ p we obtain that E can be covered by

R β 2 β p V d K ¨¨¨R β p´1 β p V d K balls of radius ? dβ p . If, instead, K is non-Archimedean, the ball t|v i | ď β i u can be decomposed in q Y log q p β i βp q
] balls of radius β p , and hence E can be covered with

q Y log q ´β2 βp ¯] . . . q Y log q ´βp´1 βp ¯]
balls of radius β p . Proposition 3.8. Consider α ą 0. For every g P PGLpV K q one has that the image of the corresponding Cartan's basin of attraction g ¨Ba1,α pgq is contained in the ellipsoid about U 1 pgq with axes u 1 pgq ' u i pgq of size

1 sin α σ i σ 1 pgq.
Proof. Assume first that K is Archimedean. By definition of B a1,α pgq, for every v P K d with K ¨v P B a1,α pgq one has

|v 1 | 2 ě psin αq 2 d ÿ 1 |v i | 2 ,
where pv 1 , ¨¨¨, v d q are the coefficients in the decomposition of v with respect to the orthogonal splitting V " À g ´1u i pgq. Since the coefficients w i of gv in the decomposition induced by the orthogonal decomposition V "

À u i pgq satisfy |w i | " σ i pgq|v i |, one has |w 1 | 2 " σ 1 pgq 2 |v 1 | 2 ě σ 1 pgq 2 psin αq 2 d ÿ i"2 |v i | 2 " σ 1 pgq 2 psin αq 2 d ÿ i"2 1 σ i pgq 2 |w i | 2 .
One concludes that gv lies on the corresponding ellipsoid. The non-Archimedean case follows analogously.

3.3.

The lower bound on the affinity exponent. We now have all the ingredients needed to prove Theorem 3.1:

Proof. For each T ą 0 denote by U T the covering of ξ 1 pBΓq given by Proposition 3.5. By definition, U " U γ P U T is of the form ρpγq ¨Ba1,α pρpγqq for some γ satisfying |γ| " T. Proposition 3.8 applied to ρpγq implies that ρpγq ¨Ba1,α pρpγqq is contained in an ellipsoid about Ku 1 pρpγqq of axes with sizes 1 sin α σ 2 σ 1 pρpγqq, . . . ,

1 sin α σ d σ 1 pρpγqq.
Furthermore, since ρ is Anosov, we deduce from Lemma 2.2 that sup U PU T diam U is arbitrarily small as T goes to infinity. Recall that the s-capacity H s was defined by Equation (1.1). Applying the covering Lemma 3.7 to these ellipses and any p P 2, d , we obtain

H s pξpBΓqq ď 2 2p ˜?d sin α ¸s inf T ÿ γ:|γ|ěT ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p´1 σ 1 `ρpγq ˘˙d K ˆσp σ 1 `ρpγq ˘˙s´d K pp´2q .
By definition, the affinity exponent h Aff ρ is such that for all s ą h Aff ρ the broken Dirichlet series

ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p´1 σ 1 `ρpγq ˘˙d K ˆσp σ 1 `ρpγq ˘˙s´d K pp´2q : s P rd K pp ´2q, d K pp ´1qs
is convergent and thus for all s ą h Aff ρ we have

2 p ˜?d sin α ¸s inf T ÿ γ:|γ|ěT ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p´1 σ 1 `ρpγq ˘˙d K ˆσp σ 1 `ρpγq ˘˙s´d K pp´2q " 0.
As a result we conclude that for all s ą h Aff ρ the s-capacity H s pξpBΓqq vanishes, hence h Aff ρ ě dim Hff pξpBΓqq. This completes the proof.

The following generalization of Corollary 1.9 is also immediate: Corollary 3.9. Let ρ : Γ Ñ PGLpV K q be projective Anosov. If dim Hff `ξpBΓq ˘ě pp ´1qd K , then dim Hff pξpBΓqq ď d K pp ´1qh ρ pJ u p´1 q. Proof. Observe that, for every p with d K pp ´1q ď h Aff ρ , and for every s P rd K pp 1q, d K ps, the broken Dirichlet series defining the affinity exponent

Φ Aff ρ psq " ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p σ 1 `ρpγq ˘˙d K ˆσp`1 σ 1 `ρpγq ˘˙s´d K pp´1q
is smaller than or equal to the series associated to the unstable Jacobian

Φ J u p´1 ρ psq " ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘¨¨¨σ p σ 1 `ρpγq ˘˙s d K pp´1q
.

The result follows as Φ

J u p ρ psq ď Φ J u p´1 ρ psq.

Semi-simple algebraic groups

Let G be a connected semi-simple K-group, G K the group of its K-points, A a maximal K-split torus and XpAq the group of its K ˚-characters. Consider the real vector space E ˚" XpAq b Z R and E its dual. For every χ P XpAq, we denote by χ ω the corresponding linear form on E.

4.1.

Restricted roots and parabolic groups. Let Σ be the set of restricted roots of A in g, the set Σ ω is a root system of E ˚. Let Σ `be a system of positive roots and Π the associated subset of simple roots. Let E `be the Weyl chamber determined by the positive roots pΣ ω q `.

Let W be the Weyl group of Σ, it is isomorphic to the quotient of the normalizer N G K pA K q of A K in G K by its centralizer Z G K pA K q. Let i : E Ñ E be the opposition involution: if u : E Ñ E is the unique element in the Weyl group with upE `q " ´Et hen i " ´u.

A subset θ Ă Π determines a pair of opposite parabolic subgroups P θ and Pθ whose Lie algebras are defined by

p θ " à aPΣ `Yt0u g a ' à aPxΠ´θy g ´a,
and pθ " à

aPΣ `Yt0u g ´a ' à aPxΠ´θy g a .
The group Pθ is conjugated to the parabolic group P i θ . Let l θ " p θ X pθ be the Lie algebra of the associated Levi group. The K-flag space associated to θ is F θ pG K q " G K {P θ,K , the G K orbit of the pair prP θ,K s, r Pθ,K sq is the unique open orbit for the action of G K in the product F θ pG K q ˆFi θ pG K q. This orbit is denoted by F p2q θ pG K q. For y P F i θ pG K q denote by Annpyq " tx P F θ pG K q : px, yq R F θ pG K q p2q u (4.1)

the closed submanifold of flags in F θ pG K q that are not transverse to y. Denote by p¨, ¨q a W -invariant inner product on E, p¨, ¨q the induced inner product on E ˚and define xχ, ψy " 2pχ, ψq pψ, ψq and let tω a u aPΠ be the dual basis of Π, i.e. xω a , by " δ ab . The linear form ω a is the fundamental weight associated to a.

4.2.

Cartan decomposition. Let ν : A K Ñ E be defined, for z P A K , as the unique vector in E such that for every χ P XpAq one has χ ω pνpzqq " log |χpzq|.

Denote by

A K " ν ´1pE `q.
Let K Ă G K be a compact group that contains a representative for every element of the Weyl group W. This is to say, such that the normaliser N G K pA K q verifies N G K pA K q " pN G K pA K q X KqA K . One has G K " KA K K and if z, w P A K are such that z P KwK then νpzq " νpwq. There exists thus a function a : G K Ñ E such that for every g 1 , g 2 P G K one has that g 1 P Kg 2 K if and only if apg 1 q " apg 2 q. It is called the Cartan projection of G K .

In the case of G K " PGLpV K q this is nothing but the ordered list of semihomotecy ratioes defined in Section 2.1.

4.3.

Representations of G K . Let Λ : G Ñ PGLpV q be a finite dimensional rational3 irreducible representation and denote by φ Λ : g Ñ slpV q the Lie algebra homomorphism associated to Λ. Then the weight space associated to χ P XpAq is the vector space V χ " tv P V : φ Λ paqv " χpaqv @a P A K u and if V χ ‰ 0 then we say that χ ω P E ˚is a restricted weight of Λ. Theorem 7.2 of Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF] states that the set of weights has a unique maximal element with respect to the order χ ě ψ if χ ´ψ is positive on E `. This is called the highest weight of Λ and denoted by χ Λ . For every g P G K one has

log }Λg} Λ " χ Λ papgqq. (4.2) 
If g " k g z g l g with k, l P K and z g P A K then for all v P Λpl ´1 g qV χΛ one has }Λgpvq} Λ " }Λg} Λ }v} Λ .

Denote by W χΛ the ΛA K -invariant complement of V χΛ . Note that the stabilizer in G K of W χΛ is Pθ,K , and thus one has a map of flag spaces pξ Λ , ξ Λq :

F p2q θΛ pG K q Ñ G p2q dim Vχ Λ pV q. (4.3)
This is a proper embedding which is an homeomorphism onto its image. Here G p2q dim Vχ Λ pV q is the open PGLpV K q-orbit in the product of the Grassmannian of pdim V χΛ q-dimensional subspaces and the Grassmannian of pdim V ´dim V χΛ qdimensional subspaces.

One has the following proposition by Tits (see also Humphreys [30, Chapter XI]). Proposition 4.4 (Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF]). For each a P Π there exists a finite dimensional rational irreducible representation Λ a : G Ñ PSLpV a q, such that χ Λa is an integer multiple of the fundamental weight ω a and dim V χΛ a " 1. All other weights of Λ a are of the form χ a ´a ´ÿ bPΠ n b b,

where n b P N.

We will fix from now on such a set of representations and call them, for each a P Π, the Tits representation associated to a.

4.4.

The center of the Levi group P θ,K X Pθ,K . We now consider the vector subspace E θ " č aPΠ´θ ker a ω together with the unique projection π θ : E Ñ E θ , that is invariant under the subgroup W θ of the Weyl group spanned by reflections associated to roots in Π ´θ:

W θ " tw P W : wpvq " v @v P E θ u.
The dual space pE θ q ˚is canonically the subspace of E ˚of π θ -invariant linear forms and it is spanned by the fundamental weights of roots in θ pE θ q ˚" tϕ P E ˚: ϕ ˝πθ " ϕu " xω a : a P θy.

Since π 2

θ " π θ , the pre-composition with π θ induces a projection E ˚Ñ pE θ q denoted by ϕ Þ Ñ ϕ θ :" ϕ ˝πθ .

The following examples will be relevant in Section 7 and 8 respectively:

Example 4.5. Let G K " PGLpV K q, consider p P 2, d´2 and let θ " ta 1 , a p , a d´1 u, so that E θ " tpa 1 , . . . , a d q P E : a 2 " ¨¨¨" a p and a p`1 " ¨¨¨" a d´1 u is three dimensional. Using the fact that the fundamental weights ω i (for i " 1, p, d ´1) belong to pE θ q ˚one checks that the projection is pRq preserving a signature pp, qq bilinear form with p ă q. One has that E " tpa 1 , . . . , a p q : a i P Ru equipped with the root system Σ ω " tε i : i P 1, p u Y ta Þ Ñ a i ´aj : i, j P 1, p u.

ε 1 pπ θ paqq " a 1 , ε i pπ θ paqq " a 2 `
A Weyl chamber can be chosen as E `" ta P E : a i ě a i`1 @i P 1, p ´1 and a p ě 0u and the associated set of simple roots Π " ta i : i P 1, p ´1 u Y tε p u. Consider then θ " ta i : i P 1, p ´1 u, so that E θ " ker ε p and thus a i P pE θ q ˚for i P 1, p ´2 . Moreover, a θ p´1 " ε p´1 and one has that a θ p´1 | E `´t0u ě a p´1 | E `´t0u . 4.5. Gromov product. Recall from S. [START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF] that the Gromov product4 based at K is the map p¨|¨q K : F p2q θ pG K q Ñ E θ defined to be the unique vector px|yq K P E θ such that χ a ppx|yq K q " ´log sin > } }Λ a pξ Λa x, ξ Λa yq for all a P θ, where χ a is the fundamental weight associated to the Tits representation Λ a of a. Note that max aPθ χ a ppx|yq K q " max aPθ |χ a ppx|yq K q| " ´log min aPθ sin > } }Λ a pξ Λa x, ξ Λa yq.

(4.4)

On has the following remark from Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF].

Remark 4.7 ([6, Remark 8.11]). Let Λ : G Ñ PGLpV q be a finite dimensional rational irreducible representation, if px, yq P F

p2q θΛ pG K q then pξ Λ x|ξ Λyq } }Λ " χ Λ ppx|yq K q.
where } } Λ denotes the (stabilizer of the) inner product on V such that ΛK is orthogonal (see Definition 4.3). 4.6. Iwasawa cocycle and its relation to representations of G. Another important decomposition of Lie groups that will play a role in our work is the Iwasawa decomposition:

G K " KA K U Π,K , where P Π,K is the minimal parabolic subgroup, and U Π,K is its unipotent radical. For general local field K the decomposition of an element is not necessarily unique, but if z 1 , z 2 P A K are such that z 1 P Kz 2 U Π,K , then νpz 1 q " νpz 2 q.

Quint used the Iwasawa decomposition to define the Iwasawa cocycle b Π pg, xq " νpzq where x " krP θ,K s P F θ pG K q with k P K, g P G K and gk has Iwasawa decomposition gk " lzu Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF] proves the following lemma. One also has the following behavior of b θ under the representations of G.

Lemma 4.9 (Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemma 6.4]). Let Λ : G Ñ PGLpV q be a proximal irreducible representation, then for every x P F θΛ pG K q and g P G K one has

χ Λ `bθΛ pg, xq ˘" log }Λpgqv} Λ }v} Λ ,
where v P ξ Λ pxq ´t0u.

4.7.

Cartan attractors and Cartan's attracting basins. Consider g P G K and let g " k g z g l g be a Cartan decomposition. Given θ Ă Π, the Cartan attractor of g in F θ pG K q is defined by

U θ pgq " U K θ pgq " k g rP θ,K s,
and the Cartan basin of g is defined, for α ą 0, by B θ,α pgq " tx P F θ pG K q : `x|U i θ pg ´1q ˘K ă αu.

Remark 4.10. If Λ : G Ñ PGLpV q is a rational irreducible representation with θ Λ Ă θ then

ξ Λ pU θ pgqq " U } }Λ dim Vχ Λ `Λpgq ˘.
Notice that the flag U θ pgq is an arbitrary choice of a "most expanding" flag of type θ for g, however, it is clear from the definition that given α ą 0 there exists a constant K α such that if y P F θ pG K q belongs to B θ,α pgq then for all a P θ one has |χ a `apgq ´bθ pg, yq ˘| ď K α . where tv 1 , . . . , v p u is any basis of the p-dimensional space x p of x and } } is the norm on ^pK d induced by τ . Notice that, by definition, the number ω p pbpg, xqq only depends on x p , so in order to simplify notation we will also denote it by ω p pbpg, x p qq.

Patterson-Sullivan measures in non-Anosov directions

An interesting quantity associated to a discrete subgroup Γ ă G K is its critical exponent h X Γ which measures the exponential orbit growth rate of orbit points in balls (in the symmetric space of G K ) as the radius grows. The theory of Quint's growth indicator function, which we briefly recall in Section 5.1 allows to deduce information on h X Γ from information on the critical exponent of linear forms φ on the Weyl chamber E, that are often easier to handle with the aid of Patterson-Sullivan measures. When the discrete group Γ ă G K is the image of an Anosov representation ρ : Γ Ñ G K , and the form φ belongs to the dual of the Levi-Anosov subspace E θρ , then the thermodynamical formalism applies (see the Theorem 5.12).

In this section we will, instead, be interested in studying forms φ that do not belong to pE θρ q ˚. Our main result is Theorem 5.14 in which we show that, provided a representation ρ is Anosov with respect to some root, the existence of Patterson-Sullivan measure in any flag manifold, and thus also in non-Anosov directions φ, have strong implications on the critical exponent of φ.

5.1.

Quint's growth indicator. We recall here some definitions from Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF][START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF].

Let Γ Ă G K be a discrete subgroup, its Quint growth indicator function 

Ψ Γ pvq " }v} inf vPC h } } C ,
where the infimum is taken over all open cones containing v. One can easily check that Ψ Γ does not depend on the chosen norm } } and is 1-positively-homogenous.

Dually one considers the growth on linear forms. The limit (or Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF]) cone L Γ of Γ is defined as the limit points of sequences t n apg n q where pt n q nPN Ă R converges to 0 and pg n q nPN Ă Γ. Denote its dual cone by pL Γ q ˚" tϕ P E ˚: ϕ|L Γ ´t0u ě 0u, and, for ϕ P pL Γ q ˚let h Γ pϕq be the critical exponent of the Dirichlet series One has the following.

Lemma 5.1. It holds h Γ pmintφ 1 , . . . , φ k uq " maxth Γ pφ 1 q, . . . , h Γ pφ k qu.

Proof. One inequality is clear. For the other one, one has

h Γ pmintφ 1 , . . . , φ k uq ď lim tÑ8 1 t log k ÿ i"1 #tγ P Γ|φ i papρpγqqq ă tu ď lim tÑ8 1 t log k max i #tγ P Γ|φ i papρpγqqq ă tu " maxth Γ pφ 1 q, . . . , h Γ pφ k qu
One can then define the subset D Γ " tϕ P pL Γ q ˚: h Γ pϕq P p0, 1su.

The next lemma is clear from the definitions, but is very useful in applications: Lemma 5.2. If φ belongs to D Γ , then φ `ψ P D Γ for every ψ P pL Γ q ˚.

The following result from Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF] allows to deduce information on te critical exponent of various norms in terms of growth of linear functions, that are often easier to compute: Proposition 5.3 (Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF]). One has that The importance of the set D Γ is provided by the following theorem: it is possible to compute the orbit growth rate with respect to various norms studying properties of the set D Γ : Theorem 5.4 (Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF]). If the Zariski closure of Γ is semi-simple then Ψ Γ is concave, consequently for every norm } } on E one has

D Γ " tϕ P E ˚: @v P E `ϕpvq ě Ψ Γ pvqu,
h } } Γ " inft}ϕ} ˚: ϕ P D Γ u
where } } ˚is the induced operator norm on E ˚.

Remark 5.5. Recall that, if we endow the symmmetric space (or the affine building) X associated to G K with a G K -invaraint Riemannian metric, there exists an Euclidean norm } } X on E such that for every g P G K one has d X prKs, grKsq " }apgq} X .

Theorem 5.4 provides then the following formula for the critical exponent of a discrete group with reductive Zariski-closure in the symmetric space X: h X Γ " inft}φ} X : φ P D Γ u.

The topological boundary Q Γ of D Γ will be called Quint's indicator set of Γ. We will also denote by

Q Γ,θ " Q Γ X pE θ q ˚.
Let us record here a useful direct consequence of the convexity of D Γ . Lemma 5.6. Let Γ Ă G K be a discrete subgroup and let φ, ϕ P pL Γ q ˚, then

h Γ pφ `ϕq ď h Γ pφqh Γ pϕq h Γ pφq `hΓ pϕq
We end this subsection with the following definition from Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]. Definition 5.7. Given θ Ă Π and ϕ P pE θ q ˚a pΓ, ϕq-Patterson-Sullivan measure on F θ pG K q is a finite Radon measure µ such that for every g P Γ one has If ρ : Γ Ñ G K is θ-Anosov and Λ a is as in Proposition 4.4, then Λ a ρ : Γ Ñ PGLpV K q is projective Anosov. In particular subsection 2.2 applies to arbitrary G K and one obtains the following result. Theorem 5.9 (Kapovich-Leeb-Porti [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF]). If ρ : Γ Ñ G K is θ-Anosov then Γ is word-hyperbolic and there exist continuous equivariant maps ξ θ ρ : BΓ Ñ F θ pG K q and ξ i θ ρ : BΓ Ñ F i θ pG K q such that the product map pξ θ ρ , ξ i θ ρ q : B p2q Γ Ñ F p2q θ pG K q is transverse.

We will sometime use the notation introduced in [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] and, if x P BΓ is a point, denote by

x θ ρ :" ξ θ ρ pxq P F θ pG K q the image of x via the boundary map. If θ " ta k u consists of a single root we will also write ξ k ρ and x k ρ instead of ξ ta k u ρ and x ta k u ρ . If θ Ă Π contains the root a, we denote by π a : F θ pG K q Ñ F a pG K q the natural projection. It is easy to deduce from Corollary 3.4 the following more general statement:

Corollary 5.10. Let ρ : Γ Ñ G K be a-Anosov and consider α ą 0. There exists C only depending on α and ρ such that for every θ Ă Π containing a, if ξ a ρ pBΓq X π a ´ρpγq ¨Bθ,α pρpγqq X ρpηq ¨Bθ,α pρpηqq ¯‰ H then dpγ, ηq ď ˇˇ|γ| ´|η| ˇˇ`C.

Definition 5.11. Given a representation ρ : Γ Ñ G K we define its Anosov-Levi space as pE θρ q ˚where θ ρ " ta P Π : ρ is a-Anosovu.

It is spanned by the fundamental weights tω a : a P θ ρ u.

A more precise description of the indicator set of ρ can be given on its Anosov-Levi space. The following is a combination of Bridgeman-Canary-Labourie-S. [8, Theorem 1.3], Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Proposition 4.11] and S. [START_REF] Sambarino | Hyperconvex representations and exponential growth[END_REF].

Theorem 5.12. Let ρ : Γ Ñ G K be a representation, then Q ρpΓq,θρ is an analytic co-dimension 1 embedded sub-manifold of pE θρ q ˚that varies analytically with ρ; moreover its restriction to the dual of the vector space spanned by the periods is strictly convex.

5.3.

When some wall is not attained. The purpose of this subsection is to explore Q ρpΓq in directions that are not controlled by the roots with respect to which ρ is Anosov. Definition 5.13. Let ρ : Γ Ñ G K be an a-Anosov representation. Consider θ Ă Π with a P θ and let µ ϕ be a `ρpΓq, ϕ ˘-Patterson-Sullivan measure on F θ pG K q for some ϕ P pE θ q ˚. We say that ρ is µ ϕ -irreducible if for every y P F i θ pG K q one has

µ ϕ `Annpyq ˘ă µ ϕ `Fθ pG K q ˘.
It is clear that if ρpΓq is Zariski dense in G K then it is µ ϕ -irreducible for any Patterson-Sullivan measure. Even assuming Zariski-density, the following result is a refinement of Quint [40, Théorème 8.1] when θ contains a root with respect to which ρ is Anosov. Indeed, in the general case treated by Quint, one needs to control the mass of shadows on the flag space associated to Π ´θ, and, as a result, the existence of a pρpΓq, ϕq-Patterson Sullivan measure only ensures that ϕ `ρθ c is in D ρpΓq , where ρ θ c is a suitable form that is non-negative on the Weyl chamber. In our case, the Anosov condition with respect to one root in θ permits to control ϕ directly.

Theorem 5.14. Let ρ : Γ Ñ G K be an a-Anosov representation. Consider θ Ă Π with a P θ and let µ ϕ be a `ρpΓq, ϕ ˘-Patterson-Sullivan measure on F θ pG K q for some ϕ P pE θ q ˚. Assume ρ is µ ϕ -irreducible, then ϕ P D ρpΓq .

The rest of the section is devoted to the proof of this result. We begin with the following lemma from Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]. Quint assumes that the representation is Zariski dense, an hypothesis that is too strong for the appliations we have in mind. We observe however that for the proof to work only µ ϕ -irreducibility is needed. We sketch the proof for completeness. Lemma 5.15 ([40, Lemme 8.2]). Let ρ : Γ Ñ G K be a representation, µ ϕ be a `ρpΓq, ϕ ˘-Patterson-Sullivan measure on F θ pG K q. Assume ρ is µ ϕ -irreducible, then there exists α 0 ą 0 such that for every given 0 ă α ă α 0 there exist k ą 0 only depending on α, such that for every γ P Γ one has k ´1e ´ϕ`a pρpγqq ˘ď µ ϕ ´ρpγqB θ,α pρpγqq ¯ď ke ´ϕ`a pρpγqq ˘.

Proof. Observe that µ ϕ -irreducibility guarantees that there exist α, k ą 0 such that for every γ P Γ, µ φ pB θ,α pρpγqqq ě k: indeed otherwise there would be a sequence of reals α n Ñ 0 and elements γ n P Γ with µ φ pB θ,αn pρpγ n qqq ď 1{n. We can assume, up to extracting a subsequence, that the complement of B θ,αn pρpγqq converges to Annpyq for some y P F i θ , and this contraddicts µ ϕ -irreducibility. The result then follows from the definition of pρpΓq, φq-Patterson-Sullivan measure using Equation (4.5).

The rest of the proof of Theorem 5.14 is similar to the argument showing that if there exists a Patterson-Sullivan density of a given exponent, then this exponent must be greater than the critical exponent (see for example Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF] and Quint's notes [START_REF] Quint | An overview of Patterson-Sullivan theory[END_REF]Theorem 4.11]):

Proof of Theorem 5.14. We have to show that for every s ą 0 one has ÿ γPΓ e ´p1`sqϕ `apρpγqq ˘ă 8.

Corollary 5.10 implies that given α ą 0 there exists N P N, such that if t ą 0 and Γ t " tγ P Γ : t ď |γ| ď t `1u, then for every x P BΓ one has where C is independent of t. This is to say, there exists K ą 0 independent of t P R `such that ÿ γPΓt e ´ϕ`a pρpγqq ˘ă K.

# ! γ P Γ t : π ´1 a pξ a ρ pxqq X ρpγqB θ,α pρpγqq ‰ H ) ď N,
Since ϕ P pL ρpΓq q ˚and ρ is a-Anosov there exist positive δ, δ 1 and C such that ϕ `apρpγqq ˘ě δ 1 a `ρpγq ˘ě δ|γ| ´C.

One concludes that for every s ą 0 one has e ´δsn ă 8, as desired.

Anosov representations with Lipschitz limit set

In this section we will prove Theorem A. We will hence fix some notation throughout this section. Assumption 6.1. The group Γ will be a word-hyperbolic group whouse boundary BΓ is homeomorphic to a sphere of dimension d Γ . We will also fix a projective Anosov representation ρ : Γ Ñ PSL d pRq such that the sphere ξ 1 ρ pBΓq is a Lipschitz submanifold of PpR d q, i.e. it is locally the graph of a Lipschitz map. Note that we have restricted ourselves to K " R.

6.1. The p-th Jacobian. Given a line contained in a p `1-dimensional subspace V of R d , the space of infinitesimal deformations of inside V T PpV q Ă T PpR d q carries a natural volume form induced by the choice of a scalar product τ on R d . Namely, if one considers the τ -orthogonal decomposition V " ' K V , then one canonically identifies T PpV q " homp , K

V q and thus one can define Ω ,V P ^ppT l PpV qq by Ω ,V pϕ 1 , . . . , ϕ p q " v ^ϕ1 pvq ^¨¨¨^ϕ p pvq }v} p`1

for any v P ´t0u.

Definition 6.2. The linear form J u p P pE ta1,ap`1u q ˚defined by J u p " pp `1qω 1 ´ωp`1 is called the p-th unstable Jacobian. Lemma 6.3. Given g P PSL d pRq and a partial flag p , V q P F ta1,ap`1u pR d q, one has

g ˚Ωg ,gV " exp ´´J u p `bta1,ap`1u pg, p , V qq ˘¯Ω ,V .
Proof. This is an explicit computation using equation (4.6) and the definition of Ω ,V . Indeed, whenever ϕ 1 , . . . , ϕ p P homp , K V q are linearly independent, the vectors tv, ϕ 1 pvq, ¨¨¨, ϕ p pvqu form a basis of V and thus: g ˚Ωg ,gV pϕ 1 , . . . , ϕ p q " Ω g ,gV pgϕ 1 , . . . , gϕ p q " gv ^pgϕ 1 qpgvq ^¨¨¨^pgϕ p qpgvq }gv} p`1 

P F ta d Γ `1u pR d q such that T ξ 1 ρ pxq `ξ1 ρ pBΓq ˘" hompξ 1 ρ pxq, x d Γ `1 ρ {ξ 1 ρ pxqq. (6.1)
Consider the ρ-equivariant measurable map

ζ ρ : ξ 1 ρ pBΓq Ñ F ta1,a d Γ `1 u pR d q defined by ζ ρ pξ 1 ρ pxqq " pξ 1 ρ pxq, x d Γ `1 ρ q. (6.2)
We can then define a volume form on ξ 1 ρ pBΓq via ξ 1 ρ pxq Þ Ñ Ω ζρpξ 1 ρ pxqq . This form is defined Lebesgue almost everywhere and thus defines a Lebesgue measure on ξ 1 ρ pBΓq, which we will denote by ν ρ . Lemma 6.3 implies directly that the push-forward pζ ρ q ˚νρ is the desired measure.

6.3.

When BΓ is a circle. Recall from the introduction that we say that ρ is weakly irreducible if the vector space span `ξ1 ρ pBΓq ˘is the whole space. Lemma 6.5. Under assumption 6.1 together with weakly irreducibility of ρ and d Γ " 1, one has that ρ is µ ϕ -irreducible for any pρpΓq, ϕq-Patterson-Sullivan measure on F ta1,a2u pR d q whose projection is absolutely continuous with ν ρ .

Proof. If this were not the case, there would exist pW 0 , P 0 q P F ta d´2 ,a d´1 u pR d q such that AnnpW 0 , P 0 q would have full µ ϕ -mass; as ρ is projective Anosov we can furthermore assume that P 0 " ξ d´1 ρ pxq for some x P BΓ and thus the condition ξ 1 ρ pyq Ă P 0 only occurs for y " x.

Hence, since the projection of µ ϕ is absolutely continuous w.r.t. to ν ρ one has that for µ ϕ -almost every ξ 1 ρ pxq P ξ 1 ρ pBΓq the vector space x 2 ρ from subsection 6.2 intersects W 0 .

Let us choose a scalar product τ on R d , and the induced distance function of PpR d q. Let us denote by rW 0 s the quotient vector space R d {W 0 , it is a 2-dimensional vector space and every line R W 0 defines a line r ' W 0 s in rW 0 s. Moreover, for every δ ą 0 the double quotient projection π : P PpR d q : > τ p , W 0 q ą δ ( Ñ P `rW 0 s ˘, defined by πp q " " r ' W 0 s ‰ , is Lipschitz. We denote by U δ Ă ξ 1 ρ pBΓq the relative open subset defined by U δ " t P ξ 1 ρ pBΓq : > τ p , W 0 q ą δu and consider the Lipschitz map π|U δ : U δ Ñ PprW 0 sq. Since, by assumption, for µ ϕ -almost every ξ 1 ρ pxq P ξ 1 ρ pBΓq the plane x 2 ρ intersects W 0 , one concludes from equation (6.1) that π|U δ has zero derivative ν ρ -almost everywhere.

Since Lipschitz maps are absolutely continuous, and in particular satisfy the fundamental theorem of calculus, we deduce that π|ξ 1 ρ pBΓq is constant. This implies that ξ 1 ρ pBΓq Ă W 0 ' ξ 1 ρ pxq, for any x P BΓ, which contradicts the weak irreducibility assumption.

We can now prove Theorem A when d Γ " 1: Corollary 6.6. Let Γ be a word-hyperbolic group such that BΓ is homeomorphic to a circle. Let ρ : Γ Ñ PGL d pRq be a weakly irreducible a 1 -Anosov representation such that ξ 1 ρ pBΓq is a Lipschitz curve. Then

a 1 P Q ρpΓq .
Proof. Note that a 1 " J u 1 is the first unstable Jacobian. Since ξ 1 ρ pBΓq is a Lipschitz circle, it has Hausdorff dimension 1 and thus Corollary 1.9 implies that h a1 ρ ě 1. On the other hand, Lemma 6.4 provides a pρpΓq, J u 1 q-Patterson-Sullivan measure µ J u 1 on F ta1,a2u pV R q that projects to the Lebesgue measure on ξ 1 ρ pBΓq. Since ρ is weakly irreducible, Lemma 6.5 implies that it is µ J u 1 -irreducible, thus Theorem 5.14 applies to give a 1 " J u 1 P D ρpΓq , this is to say h ρ pa 1 q ď 1 which concludes the proof.

Before proceeding to arbitrary d Γ let us record a direct consequence of Corollary 6.6. Let us say that ρ is coherent if the first root arising in span `ξ1 ρ pBΓq ˘is a 1 . Corollary 6.7. Let Γ be a word-hyperbolic group such that BΓ is homeomorphic to a circle. Let ρ : Γ Ñ G K be an a-Anosov representation and assume there exists proximal, real representation Λ : G K Ñ PGLpV R q with first root a, such that Λ ˝ρ is coherent, then a P Q ρpΓq .

6.4.

When BΓ has arbitrary dimension. Recall that a subgroup Γ Ă PGLpV K q is strongly irreducible if any finite index subgroup acts irreducibly. It is well known that this is equivalent to the fact that the connected component of the identity of the Zariski closure of Γ acts irreducibly on K d . We will need the following lemma (that does not require assumption 6.1).

Lemma 6.8. Let η : Γ Ñ PGL d pRq be a strongly irreducible a 1 -Anosov representation. Assume that there exists p P 1, d ´1 and a measurable η-equivariant section ζ : BΓ Ñ F ta1,apu pR d q. Then η is µ ϕ -irreducible for any pρpΓq, ϕq-Patterson-Sullivan measure on F θ pK d q.

Proof. Otherwise we would be able to find a subspace W 0 P F ta d´p u pR d q such that for almost every5 ξ 1 ρ pxq P ξ 1 ρ pBΓq one has ζpxq p X W 0 ‰ t0u. Since ζ is η-equivariant, we would find a p-dimensional subspace V such that for every γ P Γ,

ηpγqV X W 0 ‰ t0u.
This implies that for every g in the Zariski closure of ηpΓq it holds that dim gV X W 0 ě 1. The contradiction comes from Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]Proposition 10.3] stating that the identity component of such a Lie group cannot act irreducibly.

We can now prove Theorem A for arbitrary d Γ . Corollary 6.9. Under assumption 6.1 together with strong irreducibility of ρ one has

J u d Γ P Q ρ pΓq. Proof. Since ξ 1
ρ pBΓq is a Lipschitz sphere, it has Hausdorff dimension d Γ and thus Corollary 1.9 implies that h ρ pJ u d Γ q ě 1. Lemma 6.4 guarantees the existence of a pρpΓq, J u d Γ q-Patterson-Sullivan measure. Moreover, the equivariant map from equation (6.2) allows us to apply Lemma 6.8 and thus we are in the hypothesis of Theorem 5.14, consequently h ρ pJ u d Γ q ď 1, which concludes the proof.

7. p1, 1, pq-hyperconvex representations and a C 1 -dichotomy for surface groups

In this section we will consider projective Anosov representations whose image of the boundary map is a C 1 submanifold. In the second part of the section we will prove Corollary 1.8 providing a a C 1 -dichotomy for surface groups. Hyperconvex representations were introduced by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] for surface groups and further studied by Zhang-Zimmer [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF] when the boundary of Γ is a topologically a sphere and by P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] for arbitrary hyperbolic groups. In both [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Proposition 7.4] and [45, Theorem 1.1] one finds the following result. Theorem 7.3 (P.-S.-W. and Zhang-Zimmer). Assume that BΓ is topologically a sphere of dimension p ´1 and let ρ : Γ Ñ PGL d pRq be a p1, 1, pq-hyperconvex representation. Then ξ 1 ρ pBΓq is a C 1 -sphere. Theorem A then gives: Corollary 7.4. Assume that BΓ is topologically a sphere of dimension p ´1 and let ρ : Γ Ñ PSL d pRq be strongly irreducible and p1, 1, pq-hyperconvex. Then h ρ pJ u p q " 1. Remark 7.5. This generalizes Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Corollary 7.1]. Observe however that, since the limit set ξ 1 pBΓq is a C 1 -submanifold of PpR d q, the arguments of [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF] adapt directly to give a version of Corollary 7.4 without requiring strong irreducibility.

Glorieux-Monclair-Tholozan [START_REF] Glorieux | Hausdorff dimension of limit sets for projective Anosov groups[END_REF] recently showed the following. Theorem 7.6 (Glorieux-Monclair-Tholozan [START_REF] Glorieux | Hausdorff dimension of limit sets for projective Anosov groups[END_REF]). Let ρ : Γ Ñ PGL d pRq be an a 1 -Anosov representation that preserves a propery convex domain, then

2h ρ pω 1 `ωd´1 q ď dim Hff `pξ 1 , ξ d´1 qpBΓq ˘,
where pξ 1 , ξ d´1 q : BΓ Ñ PpR d q ˆP`p R d q ˚˘.

As an application of Corollary 7.4 we show that, for p1, 1, pq-hyperconvex representations with p ă d ´1 such bound can never be acheived (note that we do not require the representation to preserve a convex set): Proposition 7.7. Assume that BΓ is topologically a sphere of dimension p ´1 and let ρ : Γ Ñ PGL d pRq be strongly irreducible and p1, 1, pq-hyperconvex. If p ă d ´1, then 2h ρ pω 1 `ωd´1 q ă p1 ´εqpp ´1q, where ε ą 0 only depends on the ta 1 , a p u-Anosov constants of ρ.

Proof. Since p ă d ´1 the functional φ P E φ " ω p ´ω1 p ´1 ´ωd´1 ´ω1 d ´2
is non-zero, moreover observe that, for every v P E `one has

φpvq ě ˆd ´p ´1 d ´2 ˙ap pvq.
Since ρ is a p -Anosov, the last computation implies that ker φ X L ρpΓq " t0u this is to say that φ P pL ρpΓq q ˚, in particular φ has a well defined entropy h ρ pφq P p0, 8q. Moreover,

h ρ ˆp ´1 d ´2 ppd ´1qω 1 ´ωd´1 q ˙" h ρ `Ju p´1 `pp ´1qφ ˘(7.1) ď h ρ pφq h ρ pφq `p ´1 , (7.2) 
where the equality comes from the equality between the corresponding linear forms and the inequality follows from Lemma 5.6 together with Corollary 7.4 stating that h ρ pJ u p´1 q " 1. Finally, observe that

pp ´1q 2 pω 1 ´ωd´1 q " 1 2 ´p ´1 d ´2 ppd ´1qω 1 ´ωd´1 q `p ´1 d ´2 ppd ´1qω d´1 ´ω1 q " 1 2 `Ju p´1 `pp ´1qφ ``J u p´1 `pp ´1qφ ˘˝i ˘,
where i : E Ñ E is the opposition involution. Together with equation 7.1 and Lemma 5.6, this yields

2 pp ´1q h ρ pω 1 ´ωd´1 q ď 2 h ρ `Ju p´1 `pp ´1qφ ˘hρ `pJ u p´1 `pp ´1qφq ˝i hρ `Ju p´1 `pp ´1qφ ˘`h ρ `pJ u p´1 `pp ´1qφq ˝i ď h ρ `Ju p´1 `pp ´1qφ ď h ρ pφq h ρ pφq `p ´1 ă 1, since entropy is i-invariant.
To conclude the proof we observe that the functional φ belongs to the Anosov-Levi space of every ta 1 , a p u-Anosov representation, its entropy thus varies continuously (Theorem 5.12) and hence

η Þ Ñ h η pφq h η pφq `p ´1
is bounded away from 1 on compact subsets of X ta1,apu `Γ, PGL d pRq ˘.

C 1 -dychotomy. Now we prove Corollary 1.8. As we will later see (Section 9 and Section 10) there are many projective Anosov representations of surface groups where the image of the boundary map is Lipschitz. However, when we embed the surface group into PSL 2 pRq and look small deformations of representations

Γ Ñ PSL 2 pRq Ñ PSL d pRq,
where the PSL 2 pRq representation satisfies additional proximality assumptions, then the image of the boundary map is never Lipschitz. We restate the dichotomy for the reader's convenience.

Corollary 7.8. Let Λ : PSL 2 pRq Ñ PSL d pRq be a (possibly reducible) proximal representation such that ^2Λ is also proximal. Let S be a closed connected surface of genus ě 2 and let ρ 0 : π 1 S Ñ PSL 2 pRq be discrete and faithful. Then we have the following dichotomy: i) If the top two weights spaces of Λ belong to the same irreducible factor, then for every small deformation ρ :

π 1 S Ñ PSL d pRq of Λρ 0 the curve ξ 1 ρ pBπ 1 Sq is C 1 .
ii) Otherwise, for every weakly irreducible small deformation ρ : π 1 S Ñ PSL d pRq of Λρ 0 the curve ξ 1 ρ pBπ 1 Sq is not Lipschitz. Proof. By the proximality assumptions on Λ, the representation

ρ :" Λρ 0 : π 1 S Ñ PSL d pRq is ta 1 , a 2 u-Anosov.
Furthermore, if the first two weights of Λ belong to the same irreducible factor, the representation ρ is also p1, 1, 2q-hyperconvex, this is an open property in X `π1 S, PSL d pRq ˘(P.-S.-W [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]) and thus Theorem 7.3 implies that every small deformation of ρ has C 1 limit set.

If, instead, the two top weights of Λ were belonging to different irreducible factors, then it follows from the representation theory of SLp2, Rq that h ρ pa 1 q " h ρ pJ u 1 q " 2. Note that the entropy if J u 1 is continuous on X ta1,a2u `π1 S, PSL d pRq ˘(Theorem 5.12), in particular there exists a neighborhood U of ρ such that h η pJ u 1 q ą 1 for every η P U. Theorem A implies that no weakly irreducible representation in U can have Lipschitz limit set.

Along the same lines we can deduce that some natural Anosov representations of hyperbolic lattices do not have Lipschitz boundary maps: Corollary 7.9. Let Γ ă POp1, nq be a lattice, n ě 3 and ρ 1 : Γ Ñ POp1, mq strictly dominated by the lattice embedding ρ 0 . Then for any Zariski dense small deformation of ρ 0 ' ρ n´1 8. H p,q convex-cocompact representations Generalizing work of Mess [START_REF] Mess | Lorentz spacetimes of constant curvature[END_REF] and Barbot-Mérigot [START_REF] Barbot | Anosov Ads representations are quasi-Fuchsian[END_REF], Danciger-Guéritaud-Kassel [START_REF] Danciger | Convex cocompactness in pseudo-Riemannian hyperbolic spaces[END_REF] introduced a class of representations called H p,q -convex cocompact. These form another interesting class of representations with Lipschitz boundary map where Theorem A apply.

Let d " p `q with p, q ě 1 and let Q be a symmetric bilinear form on R d of signature pp, qq. The subspace of PpR d q consisting on negative definite lines is called the pseudo-Riemannian hyperbolic space and denoted by H p,q´1 " t P PpR d q : Q| ´t0u ă 0u.

The cone of isotropic lines is usually denoted by BH p,q´1 .

Instead of the original definition of convex-cocompactness, we recall the characterization given by [START_REF] Danciger | Convex cocompactness in pseudo-Riemannian hyperbolic spaces[END_REF]Theorem 1.11]. Definition 8.1. An a 1 -Anosov representation ρ : Γ Ñ POpp, qq is H p,q´1 -convex cocompact if for every pairwise distinct triple of points x, y, z P BΓ, the restriction Q| ξ 1 ρ pxq'ξ 1 ρ pyq'ξ 1 ρ pzq has signature p2, 1q. When Γ 0 is a cocompact lattice in SOpp, 1q, H p,1 -convex cocompact representations of Γ 0 are usually referred to as AdS-quasi-Fuchsian groups. Barbot [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF] proved that these groups form connected components of the character variety X `Γ0 , SOpp, 2q ˘only consisting of Anosov representations. In [START_REF] Glorieux | Regularity of limit sets of AdS quasi-Fuchsian groups[END_REF] Glorieux-Monclair prove that the limit set of an AdS-quasi-Fuchsian group is never a C 1 -submanifold, except for Fuchsian groups.

The following is well known and easy to verify, see for example Glorieux-Monclair [20, Proposition 5.2]. Proposition 8.2. Assume that BΓ is homeomorphic to a p ´1-dimensional sphere. If ρ : Γ Ñ POpp, qq is H p,q -convex cocompact, then ξ 1 ρ pBΓq is a Lipschitz submanifold of BH p,q´1 .

Proof. The space BH p,q´1 admits a twofold cover that splits as the product S p´1 Ŝq´1

. It is furthermore immediate to verify that, since for every pairwise distinct triple px, y, zq P BΓ, Q| ξ 1 ρ pxq'ξ 1 ρ pyq'ξ 1 ρ pzq has signature p2, 1q, each one of the two lifts of ξ 1 ρ pBΓq to S p´1 ˆSq´1 is the graph of a 1-Lipschitz function f : S p´1 Ñ S q´1 , and, as such, is a Lipschitz submanifold of BH p,q´1 .

Theorem A then yields: Corollary 8.3. Assume that BΓ is homeomorphic to a p ´1-dimensional sphere and let ρ : Γ Ñ POpp, qq be H p,q´1 -convex cocompact, then -if p " 2 and ρ is weakly irreducible then h ρ pJ u 1 q " 1, -if p ě 3 and ρ is strongly irreducible then h ρ pJ u p´1 q " 1. One concludes the following upper bound for the entropy of the spectral radius inspired by Glorieux-Monclair [START_REF] Glorieux | Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry[END_REF].

Corollary 8.4. Assume that BΓ is homeomorphic to a p ´1-dimensional sphere and let ρ : Γ Ñ POpp, qq be H p,q´1 -convex cocompact. Then -if p " 2 and ρ is weakly irreducible then h ρ pω 1 q ď 1, -for p ě 3 and ρ strongly irreducible, h ρ pω 1 q ď p ´1.

Proof. Assume first p ď q and note that for every g P POpp, qq one has ω p ´ω1 pλpgqq " λ 2 pgq `¨¨¨`λ p pgq ě 0.

By definition, J u p´1 " pω 1 ´ωp and thus h ρ pω 1 q p ´1 " h ρ `pp ´1qω 1 ˘ď h ρ pJ u p´1 q " 1, by Corollary 8.3. The only difference in the case q ă p is that J u p´1 " pω 1 ´ωq , but the same argument applies verbatim.

The entropy for the first fundamental weight has a particular meaning for projective Anosov representations into POpp, qq, notably for q ě 2. Fix o P H p,q´1 and consider S o " tW ă R d : o Ă W, dim W " q and Q|W is negative definiteu. This is a totally geodesic embedding of the symmetric space X p,q´1 of POpp, q ´1q in the symmetric space X p,q .

Given a projective Anosov representation ρ : Γ Ñ POpp, qq one defines the open subset of H p,q´1 Ω ρ " to P H p,q´1 : Qpo, ξ 1 ρ pxqq ‰ 0 @x P BΓu. Carvajales [START_REF] Carvajales | Counting problems for special-orthogonal Anosov representations[END_REF] shows that, assuming Ω ρ ‰ H, for every o P Ω ρ one has lim tÑ8 log #tγ P Γ : d Xp,q pS o , ρpγqS o qu t " h ρ pω 1 q and provides an asymptotic for this counting function ([12, Theorem A]). When ρ is moreover H p,q´1 -convex-cocompact, Glorieux-Monclair [20, Section 1.2] introduce a pseudo-Riemannian critical exponent δ ρ , and show, in particular, that δ ρ ď p ´1

([20, Theorem 1.2]). Carvajales proves [12, Remarks 6.9 and 7.15] that δ ρ " h ρ pω 1 q so Corollary 8.4 provides a different proof of [START_REF] Glorieux | Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry[END_REF]Theorem 1.2] when Γ is assumed to have boundary homeomorphic to a p ´1-dimensional sphere. We finish the section with a direct application of Theorem 5.4 and Corollary 8.3 allowing us to get a bound for the Riemannian critical exponent. We use freely the notation from Remark 5.5.

Consider a representation Λ : POpp, 1q Ñ POpp, qq such that its imagie stabilizes a p `1-dimensional subspace V of R d where Q|V has signature pp, 1q. Endow the symmetric space X p,q with a POpp, qq-invariant Riemannian metric such that the totally geodesic copy of H p in X p,q induced be Λ has constant curvature ´1. In particular, if ι : Γ Ñ POpp, 1q is the lattice embedding, h X Λ˝ι " p ´1. We show that this is an upper bound for any strongly irreducible, H p,q´1 -convex-cocompact representation: Proposition 8.5. Assume that BΓ is homeomorphic to a p ´1-dimensional sphere and let ρ : Γ Ñ POpp, qq be strongly irreducible and H p,q´1 -convex-cocompact and, then h X ρ ď p ´1.

Proof. In view of Theorem 5.4 (or more precisely Remark 5.5), it suffices to recall that D ρpΓq is convex (Lemma 5.3) and that, by Corollary 8.3, J u p´1 P Q ρpΓq . See Potrie-S. [35, Section 1.1] for more details.

Maximal Representations

An important class of representations that are in general only Anosov with respect to one maximal parabolic subgroup, but admit boundary maps with Lipschitz image are maximal representations into Hermitian Lie groups. In this case the Lipschitz property for the image of the boundary map is a consequence of a positivity/causality property of the boundary map. We first describe the causal structure on the Shilov boundary of a Hermitian symmetric space of tube type, introduce the notion of a positive curve and show that the image of any positive curve (that is not necessarily equivariant with respect to a representation) is a Lipschitz submanifold. We then show how this applies to maximal representations and allows us to prove Theorem 9.8, the main result of this section. We also deduce consequences for the orbit growth rate on the symmetric space. 9.1. Causal structure and positive curves. Let G R be a simple Hermitian Lie group of tube type. Examples to keep in mind are the symplectic group G R " Spp2n, Rq or the orthogonal group G R " SO 0 p2, nq. The Shilov boundary Š of the bounded domain realization of the symmetric space associated to G R is a flag variety G R { P , where P is a maximal parabolic subgroup determined by a specific simple root tǎu. In the two cases that serve as our main examples, G R " Spp2n, Rq and G R " SO 0 p2, nq, the parabolic subgroup P in question is, respectively, the stabilizer of a Lagrangian subspace L P L pR 2n q and the stabilizer of an isotropic line l P Is 1 pR 2,n q, so that ǎ " a n , resp. ǎ " a 1 .

In general, for a simple Hermitian Lie group of rank n, there is a special set of n strongly orthogonal roots b 1 , ¨¨¨b n of the complexification g C , see [29, p.582-583]. The set of strongly orthogonal roots give rise to a (holomorphic) embedding of a maximal polydisk. If the symmetric space is of tube type, the simple root ǎ is the smallest strongly orthogonal root ǎ " b n . All the other strongly orthogonal roots are of the form b i " b n `ϕ, where ϕ P E ˚is non-negative on the Weyl-chamber. We record the following for later use: For Hermitian groups of tube type, the Shilov boundary carries a natural causal structure: for every p P Š there is an open convex acute cone C p Ă T p Š which we now define.

Recall that G R { P can be identified as the space of parabolic subgroups of G R that are conjugate to P . Let us fix a point p " P P Š, which one should think of as a point at infinity. Then at any point p " P P Š that is transverse to p, i.e. such that the parabolic groups P and P are opposite, the tangent space T p Š is identified with the Lie algebra ň of the unipotent radical of P , and the cone C p is an open convex acute cone Č Ă ň invariant under the action of the connected component of P X P .

In the case of Spp2n, Rq this is the cone of positive definite symmetric matrices, and in the case of SO 0 p2, nq it is the cone of vectors with positive first entry, that are positive for the induced conformal class of Lorentzian inner products on T P Is 1 pR 2,n q.

This invariant cone Č Ă ň in fact also gives rise to the notion of maximal triples in Š via the exponential map. A triple pP, Q, P q is said to be maximal if there exists an s P Č such that Q " exp s ¨P . Extending this by the action of G leads to a notion of maximal triples in Š, which actually coincides exactly with those triples which have maximal (generalized) Maslov index as introduced by Clerc-Ørsted [START_REF] Clerc | The Maslov index revisited[END_REF]. following we will not need the definition of a tight homomorphism, and therefore refer the interested reader to [START_REF] Burger | Tight homomorphisms and Hermitian symmetric spaces[END_REF]Definition 1] for it.

The following lemma will then be useful: 

i q Ă E G .
As ι is tight, and G is classical, the classification of Hamlet-Pozzetti [START_REF] Hamlet | Classification of tight homomorphisms[END_REF] applies and gives that we have an orthogonal decomposition E G " B 1 ' ¨¨¨' B k so that π| À E i is a direct sum of maps π i : E i Ñ B i ; furthermore, there are only few possibilities for the linear map π i : if H i has rank greater than one, then B i " E mi i for some m i and π i is a diagonal inclusion; instead, if E i is one dimensional, or equivalently H i -PSL 2 pRq, then π i is induced from a direct sum of non-trivial irreducible representations (of varying degrees). It is easy to check that the subspace B i is then the span of the real vectors in p associated to the strongly orthogonal roots that do not vanish on πpE i q. Setting b i " min j,bj | E i ‰0 b j , we have b i | πpEiq " ǎHi . And hence, with Lemma 9.1, we have ǎG " min i pǎ Hi q.

We can now prove the following: Proof. If G " G 1 ˆ¨¨¨ˆG n then Š " Š1 ˆ¨¨¨ˆŠ n , and therefore θ " tǎ G1 , ¨¨¨ǎ Gn u (see Burger-Iozzi-W. [11, Lemma 3.2 (1)]). Furthermore ρ : Γ Ñ G is maximal if and only if all ρ i : Γ Ñ G i are maximal (Burger-Iozzi-W. [10, Lemma 6.1 (3)]). Therefore we can restrict to the case that G is simple. Since every maximal representation factors through a representation into the normalizer of a maximal tube type subgroup H ă G (Burger-Iozzi-W. [10, Theorem 5 (3)]), which is simple, has the same rank as G, and is such that ǎG " ǎH , we can restrict to the tube type case as the limit set in ŠG is contained in ŠH and coincides with the limit set in ŠH . The maximal tube type domains are always classical Hermitian symmetric spaces, except for the one exceptional Hermitian symmetric space of tube type.

If now ρ is not Zariski dense, then the Zariski closure is reductive and of tube type, so it is of the form H 1 ˆ¨¨¨ˆH n and the representations into H i are Zariski dense and maximal. Therefore we have h ρ pǎ Hi q " 1 for all i. As the inclusion H 1 ˆ¨¨¨ˆH n Ñ G is tight, the result follows from Lemma 9.7 and Lemma 5.1. 9.3. Application to the Riemannian critical exponent. Any simple Hermitian Lie group G admits a diagonal embedding ι ∆ : SLp2, Rq Ñ G, which is equivariant with the inclusion of a diagonal disk in a maximal polydisk. We say that a representation ρ : Γ Ñ G is diagonal-Fuchsian if it has the form ρ " ι ∆ ˝ρ0 where ρ 0 : Γ Ñ SLp2, Rq is the lift of the holonomy of a hyperbolization.

Let K ∆ ă G be the centralizer of the image of ι ∆ , which is compact. Then a diagonal Fuchsian representation ρ can be twisted by a representation χ : Γ Ñ K ∆ . We call the corresponding representation ρ χ : Γ Ñ G a twisted diagonal representation. Observe that the Riemannian critical exponent h X is constant on twisted diagonal representations (the exact value h X diag depends on the choice of the normalization of the Riemannian metric) Proposition 9.9. Let Γ be the fundamental group of a closed surface and let ρ : Γ Ñ G be a maximal representation, then h X ρ ď h X diag . Proof. Let b 1 , ¨¨¨b n be the set of strongly orthogonal roots for G C . It is immediate to verify that the limit cone L ρ0pΓq of a representation ρ 0 in the Fuchsian locus is concentrated in the span of the vertex of the Weyl chamber is ř n i"1 b i , where b ˚is the basis of E dual to tb 1 ¨¨¨b n u. We know from Corollary 9.6 that, for every ρ, the growth rate h ρ pǎq " 1. Thus, if we denote by pE `q˚t he cone of functionals that are non-negative on the Weyl chamber, we get that ǎ`pE `q˚Ă D ρpΓq , and in particular all the strongly orthogonal roots are in D ρpΓq . A simple computation shows that the affine simplex determined by the strongly orthogonal roots meets the ray R ř n i"1 b i orthogonally in a point (it is just the diagonal in a positive quadrant meeting the span of the basis vectors), whose norm has to compute the Riemannian orbit growth rate of any representation ρ 0 in the Fuchsian locus: Q ρ0pΓq is the affine hyperplane orthogonal to R ř n i"1 b i that contains ǎ. Remark 5.5 concludes the proof. Remark 9.10. Note that when G is Spp4, Rq, or more generally SO ˝p2, nq, it follows from Collier-Tholozan-Toulisse [START_REF] Collier | The geometry of maximal representations of surface groups into SO(2,n)[END_REF] that the bound is furthermore rigid: the equality is strict unless ρ is equal to ρ 0 up to a character in the compact centralizer of its image.

Note that for maximal representations into Spp2n, Rq n ě 3, every connected component of the space of maximal representations contains a twisted diagonal representation. However for Spp4, Rq there are exceptional components, discovered by Gothen, where every representation is Zariski dense (see Bradlow-Garcia-Prada-Gothen [START_REF] Bradlow | Deformations of maximal representations in Spp4[END_REF] and Guichard-W. [START_REF] Guichard | Topological invariants of Anosov reprepsentations[END_REF]). In these components it is easy to verify that the bound we provide is sharp, despite not being acheived.

In the special case of the Hitchin component of Spp2n, Rq, the bound of Proposition 9.9 is never attained, as the irreducible representations provide a better bound that is furthermore rigid (Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]).

θ-positive representations

Throughout this section we will write G " SOpp, qq with p ă q. We consider the subset θ " ta 1 , . . . , a p´1 u of the simple roots discussed in Example 4.6 and denote by P θ the corresponding parabolic group, by L θ its Levi factor and by U θ its unipotent radical.

The group G admits a θ-positive structure as defined by Guichard-W. [START_REF] Guichard | Positivity and higher Teichmüller theory[END_REF]. This means that for every b P θ there exists an L 0 θ -invariant sharp convex cone c b in u b " ÿ aPΣ θ , a"b mod SpanpΠ´θq g a .

Here Σ θ " Σ `z SpanpΠ´θq. For b P ta 1 , . . . , a p´2 u, the space u b is one dimensional and the sharp convex cone c b " R `Ă R consists of the positive elements, while u ap´1 " R q´p`2 endowed with a form q J of signature p1, q ´p `1q preserved by the action of L 0 θ " R p´2 ˆSO 0 p1, q ´p `1q. The cone c ap´1 consists precisely of the positive vectors for q J whose first entry is positive.

Following [27, §4.3] we denote by W pθq the subgroup of the Weyl group W generated by the reflections tσ i u p´2

i"1 together with the longest element σ p´1 of the Weyl group W ap´1,ap of the subroot system generated by the last two simple roots. W pθq is, in our case, a Weyl group of type B p´1 . We denote by w 0 θ the longest element of W pθq, and choose a reduced expression w 0 θ " σ i1 . . . σ i l . Of course every reflection σ i appears at least once among the σ i k . We consider the map

F σi 1 ...σi l : c 0 ai 1 ˆ. . . ˆc0 ai l Ñ U θ pv 1 , . . . , v l q Þ Ñ exppv 1 q . . . exppv l q
The θ-positive semigroup U θ is defined as the image of the map F σi 1 ...σi l , and doesn't depend on the choice of the reduced expression [START_REF] Guichard | Positivity and higher Teichmüller theory[END_REF]Theorem 4.5].

A θ-positive structure on G gives rise to the notion of a positive triple in G{P θ . A pairwise transverse triple pF 1 , F 2 , F 3 q P pG{P θ q 3 such that StabpF 3 q " P θ is θpositive if F 2 " u ¨F1 for some u P U θ [START_REF] Guichard | Positivity and higher Teichmüller theory[END_REF]Definition 4.6], and more generally a triple is θ-positive if it lies in the G-orbit of a θ-positive triple. Let now Γ g be the fundamental group of a hyperbolic surface. A representation ρ : Γ g Ñ G is θ-positive if there exists a ρ-equivariant map BΓ g Ñ G{P θ sending positive triples to θ-positive triples [START_REF] Guichard | Positivity and higher Teichmüller theory[END_REF]Definition 5.3]. Guichard-Labourie-W. show that every θ-positive representation is necessarily θ-Anosov [27, Conjecture 5.4], but since the proof did not yet appear in print, in this section we will freely add this last assumption, and only discuss θ-positive Anosov representations.

Theorem 10.1. Let ρ : Γ Ñ SOpp, qq be θ-positive and θ-Anosov. For every 1 ď k ď p ´2 the representation ^kρ is p1, 1, 2q-hyperconvex.

Proof. We denote by ξ : BΓ g Ñ G{P θ the θ-positive continuous equivariant boundary map, and by ξ i : BΓ g Ñ Is i pR p,q q the induced maps. By assumption, ξpyq " s ¨ξpxq for some element s in the positive semigroup of the unipotent radical of the stabilizer of ξpzq. In turn s " exppv 1 q . . . exppv l q with v t P c 0 ai t (recall that i t P t1, . . . , p ´1u.

We set d " p `q. It follows from [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Proposition 8.11] that, in order to check that ^kρ is p1, 1, 2q-hyperconvex, it is enough to verify that the sum ξ k ρ pxq ``ξ k ρ pyq X ξ d´k`1 ρ pzq ˘`ξ d´k´1 ρ pzq is direct, or, equivalently that the sum ξ k ρ pxq `s ¨`ξ k ρ pxq X ξ d´k`1 ρ pzq ˘`ξ d´k´1 ρ pzq is direct (recall that s belongs to the stabilizer of ξ ρ pzq). Without loss of generality we can assume that the form Q defining the group SOpp, qq is represented by

Q " ¨0 0 K 0 J 0 p´1q p K 0 0

'

We denote by ξ Z : BΓztzu Ñ I Z the composition of the map ξ p´2,p´1 and the projection to the second factor in the product decomposition. The form Q induces a form of signature p2, q ´p `2q on Z K p´2 {Z p´2 , which gives rise to the notion of positive curves (as introduced in Section 9). We claim that ξ Z is a positive curve. This amounts to showing that, if px, y, zq P BΓ is positively oriented, then ξ Z pyq " s Z ξ Z pxq for some positive element s Z in the unipotent radical of the stabilizer of rZ p´1 s P Is 1 pZ K p´2 {Z p´2 q. Since the representation ρ is θ-positive, we know that ξpyq " s ¨ξpxq for some element in the positive semigroup U θ , and, as in the proof of Proposition 10.1 we can write s " exppv 1 q . . . exppv l q with v t P c 0 ai t . Observe that, for every v t P c 0 βi t , exppv t q induces an element exppv t q Z in the unipotent radical of the stabilizer of rZ p´1 s P Is 1 pZ K p´2 {Z p´2 q, and the element exppv t q Z is trivial unless β it " a p´1 , in which case exppv t q Z belongs to the positive semigroup of the unipotent radical of the stabilizer of rZ p´1 s. As at least one of the v t in the decomposition of s belongs to such subgroup, we deduce that ξ Z is positive, as we claimed. It follows from Proposition 9.3 that ξ Z pBΓztzuq is a Lipschitz submanifold of Is 1 pZ K p´2 {Z p´2 q. As we know from Proposition 10.1 that ξ p´2 is a C 1 -curve, we deduce that the curve ξ p´2,p´1 is Lipschitz, being the image of a monotone map between a C 1submanifold and a Lipschitz submanifold. This concludes the proof. Proof. Recall that, in the case of θ-positive representations in POpp, qq, the Levi-Anosov subspace is E θ :" kerpa p q. In particular, for every k ď p ´2 we have that a k belongs to the dual of E θ , and belongs to the boundary of D ρpΓq,θ by Corollary 10.2. Furthermore ε p´1 " a p´1 `ap belongs to D ρpΓq,θ being the sum of a linear form with entropy one (the form a p´1 has entropy one by Proposition 10.3) and a linear form positive on the Weyl chamber (the root a p ). In particular the form corresponding to the barycenter of the affine simplex they determine in E θ belongs to D ρpΓq,θ .

Theorem 10.5. Let Γ be the fundamental group of a surface and let ρ : Γ Ñ POpp, qq be θ-positive Anosov. Then h X ρ ď h X ρ0 for any pp, p ´1q-Fuchsian representation ρ 0 .

If equality is achieved at a totally reducible representation η then η splits as W ' V where (i) W has signature pp, p ´1q and η|W has Zariski closure the irreducible POp2, 1q in POpp, p ´1q (ii) η|V lies in a compact group.

Proof. The inequality follows from Lemma 10.4, together with convexity of D ρpΓq,θ established by Theorem 5.12.

Assume now that η is a totally reducible representation such that equality holds. We can assume that p ě 3, as the result for p " 2 was proven by Collier-Tholozan-Toulisse [START_REF] Collier | The geometry of maximal representations of surface groups into SO(2,n)[END_REF]Theorem 4].

Let G " ηpΓq Z be its Zariski closure. By definition, G is a real reductive group. We consider G as an abstract group, denote by Λ : G Ñ SOpp, qq the inclusion representation, and by φ : g Ñ sopp, qq the associated Lie algebra morphism. Denote by a G a Cartan subspace of g. Since h X η attains it maximal value, Theorem 5.12 forces the Quint indicator set Q ηpΓq,θ to be the affine hyperplane of pE θ q ˚spanned by ∆. The strict convexity guaranteed by Theorem 5.12 implies that G has real rank at most 2. Moreover we have that φpa G q " xp2pp ´1q, 2pp ´2q, . . . , 2, 0q, p0, . . . , 0, 1qy.

Denote by T " xξ 1 η pBΓqy the vector space spanned by the projective limit curve of η. Since η is totally reducible, the action of ηpΓq, and hence that of G, on T is irreducible.

Fix then a Weyl chamber a G and let χ P a G be the highest weight of φpgq|T. Since η is a 1 -Anosov, the attracting eigenvector of every element in ηpΓq, and hence of every purely loxodromic element of G, belongs to V . We therefore conclude that for every a P a G χpaq " λ 1 `φpaq ˘.

We denote by L G η Ă a G Benoist's limit cone of ηpΓq in G. As the representation η is a 2 -Anosov, and thus L G η avoids the only wall not ortogonal to the kernel of a 1 , there exists a linear form µ P a G such that for every a P L G η one has µpaq " a 1 `λ`φ paq ˘˘.

Furthermore, as η is p1, 1, 2q-hyperconvex, for every x P BΓ the 2-dimensional space ξ a2 pxq lies in T , and therefore pχ ´µqpaq " λ 2 pφpaqq, which implies that µ is a simple root, and χ " pp ´1qµ.

For a weight ψ of the representation φpgq|T or of an irreducible factor of φpgq|T K , denote by V ψ the associated weight space. We obtain from the description of φpa G q that the weight spaces V χ´iµ for i P 0, 2p´2 are also 1-dimensional and contained in T. The weight space decomposition of T has thus the form

T " 2p´2 à i"0 V χ´iµ ' V 0 ' V q ' V ´q ,
where V 0 consists on vectors in the kernel of φpa G q (except V χ´pp´1qµ ) and V q corresponds to the eigenvalue ε p `λ`φ paq ˘˘. Here, V 0 as well as V q and V ´q could be instead contained in T K , and therefore not appear in the decomposition.

Let now W denote the Weyl group of g. As the weight lattice of η|T is Winvariant, and there is no other weight of η|T at distance p ´1 from the origin, we deduce that W is reducible, and g splits as g 1 `g2 . If µ is the root associated to g 1 we deduce from the fact that V χ´µ and thus g µ is one dimensional that g 1 " slp2, Rq. As the action of g 1 and g 2 commute, and the highest weight space for the restricted action of g 1 is one dimensional, we furthermore deduce that g 2 acts trivially on T . In particular T is an irreducible slp2, Rq module of dimension 2p ´1 and the signature of T K of the pp, qq-quadratic form preserved by sopp, qq

Corollary 1 . 9 .

 19 be a projective Anosov representation, then dim Hff `ξpBΓq ˘ď h Aff ρ . Theorem B gives relations between the Hausdorff dimension of the limit set of a projective Anosov representation and the orbit growth rate with respect to explicit linear functionals on the Weyl chamber. Recall that we denote by h ρ pJ u p´1 q the critical exponent of the Dirichlet series A. Theorem B provides directly the following corollary: Let ρ : Γ Ñ PGL d pRq be projective Anosov and assume furthermore that dim Hff pξpBΓqq ě p ´1. Then dim Hff pξpBΓqq ď ph ρ pJ u p q. Observe that J u 1 " a 1 , and thus, since dim Hff pξpBΓqq ě 0 we obtain as consequence Glorieux-Monclair-Tholozan[22, Theorem 4.1] and P.-S.-W. [36, Proposition 4.1].

8 pγqFigure 1 .

 81 Figure 1. The coarse cone type at infinity, the black broken lines are pc0, c1q-quasigeodesics. All endpoints of geodesic rays from γ ´1 intersecting the ball Bc 1 peq clearly belong to C c 0 ,c 1 8 pγq

Lemma 3 . 7 .

 37 Let E be an ellipsoid with axis of size 1 ě β 2 ě . . . ě β d . For every p P 2, d , E can be covered by 2 2p ˆβ2 ¨¨¨β p´1 β p´2 p ˙dK balls of radius ? dβ p .

Lemma 4 . 8 (

 48 Quint [40, Lemmas 6.1 and 6.2]). The map p θ ˝bΠ factors trough a map b θ : G K ˆFθ pG K q Ñ E θ . The map b θ verifies the cocycle relation: for every g, h P G K and x P F θ,K pG K q one has b θ pgh, xq " b θ pg, hxq `bθ ph, xq.

8 .

 8 The PSL d pKq case. Given a good norm τ on K d , and considering the exterior power representations of PSL d pKq, one sees that Lemma 4.9 provides the following computation for the Iwasawa cocycle b : PSL d pKq ˆFpK d q Ñ E associated to a maximal compact group stabilizing τ. For p P 1, d and given g P PSL d pKq, x P FpK d q one has ω p pbpg, xqq " log }gv 1 ^¨¨¨^gv p } }v 1 ^¨¨¨^v p } (4.6)

  [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF] Ψ Γ : E `Ñ R `Y t´8u is defined as follows. Given a norm } } on E and an open cone C Ă E `let h } } C be the critical exponent of the Dirichlet series s Þ Ñ ÿ gPΓ:apgqPC e ´s}apgq} and define Ψ Γ : E `Ñ t´8u Y r0, 8q by

  and thus it is a convex set. Moreover, for any 1-positively-homogenous function Θ : E `Ñ R the critical exponent h Γ pΘq of the Dirichlet series s Þ Ñ ÿ gPΓ e ´sΘ `apgq can be computed as h Γ pΘq " sup vPE `ΨΓ pvq Θpvq .

5 . 2 .

 52 dg ˚µ dµ pxq " e ´ϕ`b θ pg ´1,xq ˘. Anosov representations with values in G K . Let Γ be a discrete group and fix θ Ă Π. Definition 5.8. A representation ρ : Γ Ñ G K is θ-Anosov if there exist constants c ě 0 and µ ą 0 such that for every γ P Γ and a P θ one has a ´a`ρ pγq ˘¯ě µ|γ| ´c.

Lemma 5 .

 5 15 now yields for every t ě 0 8 ą µ ϕ ´π´1 a

7. 1 .

 1 (1,1,p)-hyperconvex representations. Definition 7.1. A ta 1 , a p u-Anosov representation ρ : Γ Ñ PGL d pRq is p1, 1, pqhyperconvex if, for every pairwise distinct x, y, z P BΓ, the sum ξ 1 pxq `ξ1 pyq `ξd´p pzq is direct. Example 7.2. Examples of Zariski dense hyperconvex representations can be obtained by deforming S k ˝ι, where S k denotes the k-th symmetric power and ι : Γ Ñ POp1, pq is the inclusion of a co-compact lattice, see P.-S.-W. [36, Corollary 7.6].

1 , the limit set ξ 1 ρ

 11 pBΓq is not Lipschitz. Examples of lattices Γ admitting such representations were constructed by Danciger-Gueritaud-Kassel [15, Proposition 1.8].

Lemma 9 . 1 .

 91 Let a P E `then ǎpaq " min i"1,...,n b i paq.

Theorem 9 . 8 .

 98 Let G be a Hermitian semi-simple Lie group such that all factors of G that are of tube type are classical. Let θ Ă ∆ be the subset of simple roots associated to the Shilov boundary of G. Then for every maximal representation ρ : Γ Ñ G one has θ Ă Q ρpΓq .

10. 1 .

 1 The critical exponent on the symmetric space is rigid. Let ι 2p´1 : POp1, 2q Ñ POpp, p ´1q Ñ POpp, qq be the composition of the the irreducible representation of dimension 2p ´1 with the standard embedding of POpp, p ´1q Ñ POpp, qq. We call any representation ρ : Γ Ñ POpp, qq, which is the composition of a Fuchsion representation with ι 2p´1 , a pp, p ´1q-Fuchsian representation.Lemma 10.4. Let ρ : Γ Ñ POpp, qq be θ-positive Anosov. The barycenter of the affine simplex in E θ determined by ta 1 , . . . , a p´2 , ε p´1 u belongs to D ρpΓq,θ .

  Definition 4.1. Let θ Λ be the set of simple roots a P Π such that χ Λ ´a is still a weight of Λ.Remark 4.2. The subset θ Λ is the subset of simple roots such that the following holds: Consider a P Σ `, n P g ´a and v P χ Λ , then φ Λ pnqv " 0 if and only if a P xΠ ´θΛ y.

Definition 4.3. We denote by } } Λ a good norm on V invariant under ΛK and such that ΛA K consists on semi-homotecies, if K is Archimedean the existence of such a norm is classical, if K is non-Archimedean then this is the content of Quint

[START_REF] Quint | Cônes limites de sous-groupes discrets des groupes réductifs sur un corps local[END_REF] Théorème 6.1]

.

  P p `1, d ´1 , ε d pπ θ paqq " a d . E `´t0u ě a p | E `´t0u .Example 4.6. Consider the group SOpp, qq of transformations in PSL p`q

	¨¨¨`a p p ´1	"	ω p ´ω1 p ´1 paq for every i P 2, p ,
	ε i pπ θ paqq " ´1 paq for every i One has then that a p`1 `¨¨¨`a d´1 d ´p ´1 " ω d´1 ´ωp d ´p a θ p " ω p ´ω1 p ´1 ´ωd´1 ´ωp d ´p ´1
	and that a θ p |		

  Lemma 9.7. Let G be a classical simple Hermitian Lie group of tube type and consider a tight embedding ι : H " H 1 ˆ¨¨¨ˆH n Ñ G. If we denote by ι ˚: E H Ñ E Denote by π : h 1 ' ¨¨¨' h n Ñ g the associated Lie algebra homomorphism. Let E i be a Cartan subspace of H i and E G a Cartan subspace of G such that πpE

	G
	the induced map, then
	ǎG ˝ι˚" min i ǎHi .
	Proof.

Recall that for K non-Archimedean a decomposition V " V 1 ' ¨¨¨' V k is ortogonal if, for every v i P V i , it holds } ř v i } " max i }v i }.

i.e. a rational map between algebraic varieties.

This is the negative of the defined in S.[START_REF] Sambarino | The orbital counting problem for hyperconvex representations[END_REF].

with respect to the pushed forward measure π˚µ ϕ , where π : F ta 1 ,apu pR d q Ñ PpR d q consist con forgetting the p-th coordinate,
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Definition 9.2. Let Š be the Shilov boundary of a Hermitian symmetric space of tube type. A curve ξ : S 1 Ñ Š is positive if the image of any positively oriented triple is a maximal triple. Proposition 9.3. Let ξ : S 1 Ñ Š be a positive curve. Then ξpS 1 q is a Lipschitz submanifold of Š.

Proof. Note that whenever we pick two points p 1 " P 1 , p 2 " P 2 on the image of ξ, the image ξpS 1 q can be covered by the two charts consisting of parabolic subgroups that are transverse to p 1 respectively p 2 .

In any of these charts the inverse image of ξ, under the exponential map

gives a map ξ : R Ñ n i such that for every t 1 ă t 2 we have ξpt 2 q ´ξpt 1 q is contained in the open convex acute cone Č, it then follows (see for example Burger-Iozzi-Labourie-W. [START_REF] Burger | Maximal representations of surface groups: Symplectic Anosov structures[END_REF]Lemma 8.10]) that the restriction of ξ to any bounded interval has finite length. As a result ξpS 1 q Ă Š is rectifiable. It is thus possible to reparametrize S 1 so that ξ is a Lipschitz map.

Remark 9.4. Note that we did not assume that the positive map is equivariant with respect to a representation. This will be important in Section 10, where we will apply Proposition 9.3 in this generality. 9.2. Maximal representations. Let now G denote an Hermitian semisimple Lie group and let Γ denote the fundamental group of a closed hyperbolic surface S. We consider representations ρ : Γ Ñ G that are maximal, i.e. they maximize the Toledo invariant, whose definition was recalled in the introduction. Important for us is that they can be characterized in terms of boundary maps by the following theorem.

Theorem 9.5 (Burger-Iozzi-W. [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF]Theorem 8]). A representation ρ : Γ Ñ G is maximal if and only if there exists a continuous, ρ-equivariant, positive map φ : BΓ Ñ Š.

In order to apply Corollary 6.7 we need to verify some weak irreducibility assumption. Let us first treat the case when the Zariski closure of ρpΓq is simple.

Corollary 9.6. Let G be a simple Hermitian Lie group of tube type and let ǎ be the root associated the Shilov boundary of G.

Proof. Follows from Corollary 6.7 and Proposition 9.3 by considering the representation Λ ǎ from Proposition 4.4.

In the remainder of this section we show how the case of maximal representations with semi-simple target group that are not necessarily Zariski-dense, can be reduced to Corollary 9.6. To this aim, we will use a result from Burger-Iozzi-W. [START_REF] Burger | Tight homomorphisms and Hermitian symmetric spaces[END_REF] describing the Zariski closure H of a maximal representation: H splits as H 1 ˆ¨¨¨ˆH n , each factor is Hermitian, and the inclusion in H Ñ G is tight. In the with

'

We can furthermore assume that ξ l pzq " xe 1 , . . . , e l y and ξ l pxq " xe d , . . . , e d´l`1 y, so that ξ k pxq X ξ d´k`1 pzq " e d´k`1 . In order to check that the representation is p1, 1, 2q-hyperconvex, we only have to verify that, given s as above, writing s ëd´k`1 " ř α i e i , the coefficient α d´k never vanishes. But we claim that such coefficient is just ř it"k v t ą 0. Indeed, by construction, if v t P c 0 am with m P t1, . . . , p ´2u, then exppv t q P SOpp, qq differs from the identity only in the positions pt, t`1q and pd´t, d´t`1q where it is equal to v t (cfr. [27, §4.5]), while if v t P c 0 ap´1 we have exppv t q "

The result is then immediate.

In particular we deduce from [36, Proposition 7.4] the following Corollary 10.2. Let ρ : Γ Ñ SOpp, qq be θ-positive Anosov. For every 1 ď k ď p´2 the image of ξ k ρ pBΓq is a C 1 submanifold of Is k pR p,q q. We now turn to the proof of the last statement in Theorem 1.3. Instead of directly verifying that the map ξ p´1 ρ has Lipschitz image, we will study properties of the map ξ θ0 ρ : BΓ g Ñ G{P θ0 where θ 0 " ta p´2 , a p´1 u.

The flag manifold G{P θ0 consists of nested pairs of isotropic subspaces of dimension p ´2 and p ´1.

Proposition 10.3. Let ρ : Γ Ñ SOpp, qq be θ-positive Anosov. The image of the map ξ θ0 ρ : BΓ g Ñ G{P θ0 is a Lipschitz submanifold of G{P θ0 .

Proof. We fix a point z P BΓ and we assume without loss of generality that ξ k ρ pzq " xe 1 , . . . , e k y. We denote by A Ă G{P θ0 the set of points transverse to ξ p´2,p´1 ρ pzq. We will show that the image of ξ θ0 ρ | BΓztzu is a Lipschitz submanifold of A. Denote by A p´2 Ă G{P ap´2 the set of isotropic subspaces of dimension p ´2 transverse to ξ p´2 ρ pzq " xe 1 , . . . , e p´2 y, by Z p´1 the pp ´1q-isotropic subspace Z p´1 :" ξ p´1 ρ pzq " xe 1 , . . . , e p´1 y, and by Z K p´1 its orthogonal with respect to the form Q defining SOpp, qq. Observe that we have a smooth map

p´2 sq whose image is the product of A p´2 with the set I Z of isotropic lines transverse to the image of Z K p´1 . Indeed for every pair pY p´2 , vq P A p´2 ˆIZ , the subspace v `Zp´2 has dimension p ´1 and, dim `pv `Zp´2 q X Y K p´2 ˘" 1 as Y K p´2 and Z p´2 are transverse. We then have Y p´1 " Y p´2 `ppv `Zp´2 q X Y p´2 q. is thus either negative or p1, q ´pq. In the first case we conclude that φpgq|T K is compact. Which is the desired result.

In order to conclude the proof we need to exclude the second case. We know from Theorem 10.1 that for every 1 ď k ď p ´2 and for every distinct x, y, z P BΓ the sum ξ k pxq ``ξ k pyq X ξ d´k`1 pzq ˘`ξ d´k´1 pzq is direct. With an inductive argument we deduce that for every 1 ď k ď p ´2, and for every γ P Γ the k-th eigenline belongs to T , and therefore the Anosov map ξ would be the boundary of a Fuchsian representation composed with an embedding of POp1, 2q Ñ POpp ´1, pq Ñ POpp, qq. However, such an embedding can never be positive because it has non-compact centralizer.