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CONFORMALITY FOR A ROBUST CLASS OF NON-CONFORMAL ATTRACTORS

In this paper we investigate the Hausdorff dimension of limit sets of Anosov representations. In this context we revisit and extend the framework of hyperconvex representations and establish a convergence property for them, analogue to a differentiability property. As an application of this convergence, we prove that the Hausdorff dimension of the limit set of a hyperconvex representation is equal to a suitably chosen critical exponent.

Introduction

In his seminal paper, Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF] describes the Hausdorff dimension of the limit set L Γ , of a discrete group Γ acting on the real hyperbolic n-space, in terms of the Dirichlet series s Þ Ñ ÿ γPΓ e ´sdpo,γoq .

More precisely, the critical exponent of such a series is This is related to understanding the Hausdorff dimension of a hyperbolic set in dynamical terms. Indeed, the non-wandering set of the geodesic flow of ΓzH n is, by definition, a maximal isolated compact hyperbolic set, h Γ is its topological entropy and Sullivan's result can be interpreted in terms of the Ledrappier-Young formula [START_REF] Ledrappier | The metric entropy of diffeomorphisms: Part I: Characterization of measures satisfying Pesin's entropy formula[END_REF].

h Γ " inf
Describing the Hausdorff dimension of a hyperbolic repeller as a dynamical quantity is today well understood in the conformal setting, i.e. when the derivative of the dynamics, restricted to the unstable distribution, acts as a conformal map (see Chen-Pesin's survey [START_REF] Chen | Dimension of non-conformal repellers: a survey[END_REF] and references therein). Analogously, Sullivan's result has been generalized to convex-cocompact groups of a CAT(-1)-space X (see for example Bourdon [START_REF] Bourdon | Structure conforme au bord et flot géodésique d'un CATp´1q-espace[END_REF] and Yue [START_REF] Yue | The ergodic theory of discrete isometry groups on manifolds of variable negative curvature[END_REF]). The metric on the visual boundary BX used to compute the Hausdorff dimension is the visual metric, for which the action of Isom X is conformal (i.e. sends balls to balls).

However, other natural metrics on BX appear in very common situations: if X is a rank 1 symmetric space of non-compact type, then its visual boundary carries the structure of a differentiable manifold and thus one would also like to understand the Hausdorff dimension of limit sets for a (any) Riemannian metric on BX. Unless X is the real hyperbolic n-dimensional space, the Riemannian structure behaves differently from the visual structure: the action of Isom X is no longer conformal.

The dynamical characterization of Hausdorff dimension in a non-conformal setting is still not completely understood. We refer the reader again to Chen-Pesin's survey [START_REF] Chen | Dimension of non-conformal repellers: a survey[END_REF]. Let us also note that only very recently Bárány-Hochman-Rapaport [START_REF] Bárány | Hausdorff dimension of planar self-affine sets and measures[END_REF] provided a complete answer for Iterated-Function-Systems on the plane. On the discrete groups side, Dufloux [START_REF] Dufloux | Hausdorff dimension of limit sets[END_REF] has studied a class of Schottky subgroups of isometries of the complex hyperbolic n-space, that he calls well positioned, and proves the analogue of Sullivan's result for the Hausdorff dimension of the limit set with respect to any Riemannian metric.

1.1. This paper. In this paper we are interested in describing the Hausdorff dimension of the limit set of discrete subgroups of a semi-simple Lie group G, for a Riemannian structure on the flag spaces (or boundaries) of G. The groups we will consider, called Anosov representations, are in many ways similar to convex cocompact subgroups of SOp1, nq, but do not act conformally on the boundaries of G.

Anosov representations where introduced by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] for fundamental groups of negatively curved closed manifolds and the definition was extended by Guichard-W. [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF] to any hyperbolic group. Such representations provide the appropriate generalization of the class of convex co-compact subgroups in the context of Lie groups of higher rank [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF][START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF][START_REF] Kapovich | Morse actions of discrete groups on symmetric space[END_REF].

We will not use the original definition but follow a more recent approach, developed by Kapovich-Leeb-Porti [START_REF] Kapovich | Morse actions of discrete groups on symmetric space[END_REF], Géritaud-Guichard-Kassel-W. [START_REF] Guéritaud | Anosov representations and proper actions[END_REF] and in particular Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF], that provides a simplified definition and gives better quantitative control of Anosov representations.

Let K " R or C, consider an inner (or Hermitian if K " C) product in K d and, for g P GL d pKq, denote by g Þ Ñ g ˚the corresponding adjoint operator. The singular values of g, i.e. the square root of the modulus of the eigenvalues of gg Let Γ be a finitely generated discrete group, consider a finite symmetric generating set S and denote by | | the associated word metric on Γ. Given p P 1, d ´1 denote by G p pK d q the Grassmannian of p-dimensional subspaces of K d . For a homomorphism ρ : Γ Ñ PGL d pKq, the following are equivalent: i) There exist positive constants c, µ such that for all γ P Γ one has σ p`1 σ p `ρpγq ˘ď ce ´µ|γ| ,

ii) The group Γ is word-hyperbolic and there exist ρ-equivariant maps pξ p , ξ d´p q : BΓ Ñ G p pK d q ˆGd´p pK d q such that for every x ‰ y P BΓ one has ξ p pxq ' ξ d´p pyq " K d , and a suitable associated flow is contracting. If either condition is satisfied we will say that ρ is an ta p u-Anosov representation 1 . For such a representation, the critical exponent h ap ρ of the Dirichlet series Φ ap ρ psq "

ÿ γPΓ ˆσp`1 σ p `ρpγq ˘˙s (1) 
is well defined. By definition, the series is convergent for every s ą h ap ρ and divergent for every 0 ă s ă h ap ρ . If ρ is furthermore ta p`1 u-Anosov then h ap ρ is analytic with respect to ρ, and agrees with the entropy of a suitably defined flow (see for example Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] and Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Corollary 4.9]). But in general little is known about h ap ρ without this extra assumption. We will mainly focus on ta 1 u-Anosov representations. The chosen inner product on K d induces a metric on PpK d q, we will denote by HffpAq the Hausdorff dimension of a subset A Ă PpK d q for this metric. As a first result we obtain the following, independently obtained by Glorieux-Monclair-Tholozan [START_REF] Glorieux | Hausdorff dimension of limit set for projective anosov groups[END_REF].

Proposition (Proposition 4.1). Let ρ : Γ Ñ PGL d pKq be ta 1 u-Anosov. Then Hff `ξ1 pBΓq ˘ď h a1 ρ . In order to discuss situations in which equality holds, we introduce the notion of locally conformal points of ρ (Definition 5.5), these are points of BΓ designed to detect some asymptotic conformality of the non-conformal action of ρpΓq when restricted to the limit set ξ 1 pBΓq. Using Patterson's construction we then obtain a (not necessarily quasi-invariant) measure µ a1 ρ on BΓ. Following Sullivan, we then prove the following.

Theorem (Theorem 5.14). If the set of locally conformal points of ρ has positive µ a1 ρ -measure, then Hff `ξ1 pBΓq ˘" h a1 ρ .

Interestingly, for a rich class of Anosov representations, a 3-point transversality condition, inspired by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF], forces asymptotic conformality: 1 The implication ii)ñi) comes from Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] and Guichard-W. [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF]. The implication i)ñii) is more recent and due to Kapovich-Leeb-Porti [START_REF] Kapovich | Morse actions of discrete groups on symmetric space[END_REF], see also Guéritaud-Guichard-Kassel-W. [START_REF] Guéritaud | Anosov representations and proper actions[END_REF] and Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] for different approaches. In the language of Bochi-Potrie-S. [4, Section 3.1] a representation verifying condition i) is called p-dominated.

Definition. Consider p, q, r P 1, d ´1 such that p `q ď r. A ta p , a q , a r u-Anosov representation ρ : Γ Ñ PGL d pKq is called pp, q, rq-hyperconvex if for every triple of pairwise distinct points x, y, z P BΓ one has `ξp pxq ' ξ q pyq ˘X ξ d´r pzq " t0u.

(Note that p and q are not required to be distinct.)

The main result of this paper is the following.

Theorem A (Corollary 6.9 and Corollary 7.3). Let ρ be p1, 1, 2q-hyperconvex. Then h a1

ρ " Hff `ξ1 pBΓq ˘ď Hff `PpK 2 q ˘.

The aforementioned analyticity result for h ap ρ , together with Theorem A, has the following consequence: Corollary 1.1. Let tρ u : Γ Ñ PGL d pKqu uPD be an analytic family of p1, 1, 2qhyperconvex representations, then u Þ Ñ Hff `ξ1 u pBΓq ˘is analytic. In fact Theorem A holds in greater generality. We can replace 2 1 s by any p P 2, d ´1 if we additionally require that for every γ P Γ one has σ 2 `ρpγq ˘" σ p `ρpγq ˘, see Corollary 6.10 and Corollary 7.3. This extra condition on the singular values should be interpreted as a restriction on the Zariski closure of the representation (see subsection 8.1 for situations such as PSpp1, nq and PUp1, nq, and subsection 8.2 for the group PSOpp, qq).

A key ingredient for the proof of Theorem A is the following convergence property for hyperconvex representations, from the inequality readily follows.

Theorem B (Theorem 7.1). Let ρ be pp, q, rq-hyperconvex, then for every pw, yq P B p2q Γ one has lim pw,yqÑpx,xq d `ξp pwq ' ξ q pyq, ξ r pxq ˘" 0.

We further investigate how vast the class of hyperconvex representations is. On the one hand one has the following remarks that provide many examples by the represent and deform method (see subsection 7.2):

-if ρ : Γ Ñ PGL d pRq is hyperconvex then, by complexifiyng, one obtains a hyperconvex representation over C : this is direct from the definition; -the space of pp, q, rq-hyperconvex representations is open in hompΓ, PGL d pKqq (Proposition 6.2). On the other hand there are some 'verifiable' restrictions imposed by the hyperconvexity condition. For example, a p1, 1, pq-hyperconvex representation of Γ induces a continuous injective map BΓ ´tpointu Ñ PpK p q, (see Corollary 6.6), and there might be topological obstructions for the existence of such a map. More interesting restrictions arise when K " R and BΓ is a manifold: Corollary (Proposition 7.4). Let Γ be such that BΓ is homeomorphic to a pp ´1qdimensional sphere. If ρ : Γ Ñ PGL d pRq is p1, 1, pq-hyperconvex then ξ 1 pBΓq is a C 1 sphere.

Using openness of hyperconvexity we find new explicit examples of Zariski dense groups with C 1 limit set.

Corollary (Corollary 7.7). There exist Zariski dense subgroups Γ ă PGL dpd`1q pRq whose limit set is a C 1 sphere of dimension d ´1.

Sharper results of similar nature were obtained by Zhang-Zimmer [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF].

We now turn to the special situation when BΓ is a circle. Then Theorem A gives the following computation of h a1 ρ :

Corollary. Assume BΓ is homeomorphic to a circle, if ρ : Γ Ñ PGL d pRq is p1, 1, 2q- hyperconvex then h a1 ρ " 1.
This implies Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Theorem B] and further generalizes it to the Hitchin component of PSOpp, pq. The proof of Potrie-S. [35, Theorem A] applies then verbatim also to the Hitchin component of PSOpp, pq and we thus obtain a rigid inequality for the critical exponent in the symmetric space of PSOpp, pq. We refer the reader to Sections 9.2 and 9.3 for more details on Hitchin representations.

While the property of having constant h a1 ρ was expected to be a rare phenomenon, peculiar to Hitchin components, or possibly higher rank Teichmüller theories, we provide, in Section 6.3, many more examples of representations of fundamental groups of surfaces for which Theorem A applies. Interestingly enough, when BΓ is a circle (and K " R), p1, 1, 2q-hyperconexity is not only a local condition, but it can be pushed far away. We say that an ta 1 u-Anosov representation is weakly irreducible if ξ 1 pBΓq is not contained in a proper subspace of PpR d q.

Proposition (Proposition 9.3). Assume that BΓ is homeomorphic to a circle. Then the space of real weakly irreducible p1, 1, 2q-hyperconvex representations of Γ is closed among real weakly irreducible ta 1 , a 2 u-Anosov representations.

Throughout the paper we allow K to be a local field (not necessarilly Archimedean, as we required in this introduction). Originally Anosov representations were only defined over Archimedean fields as it is possible to show that if Γ admits a Anosov representation ρ : Γ Ñ PSL d pKq for non-Archimedean K, then Γ is virtually free. The main result of our paper, however, associates to such an action an interesting geometric quantity, the Hausdorff dimension of the limit set, which we are able to relate to a dynamical data, the orbit growth rate. We find this very interesting, and this justifies the extra work needed to develop the theory in this more general setting.

The main results go through in this generality, except the analyticity of Hausdorff dimension: the key step is to show that for a ta 1 u-Anosov representation its entropy, defined by lim sup tÑ8 1 t log #tγ P Γ : log σ 1 `ρpγq ˘ď tu is analytic with ρ. We don't know if this is true, but one can use the thermodynamical formalism to prove that the Hausdorff dimension depends continuously on the representation (and is actually as regular as the map ρ Þ Ñ ξ ρ is).

Outline of the paper. The preliminaries of the paper, collected in Section 2 come from three different areas: quantitative linear algebra, dynamics and geometric group theory. In § 2.1 we recall relations between the singular values of an element in PGL d pKq and metric properties of its action on Grassmannian manifolds, in the general context of a local field K. In § 2.2 we discuss the dynamical backgrounds and indicate how to extend Bochi-Gourmelon's theorem as well as the theory of dominated splittings to general local fields. § 2.3 collects the facts about hyperbolic groups and cone types that we will need in the paper. Section 3 concerns Anosov representations: we extend to the non-Archimedean setup the definition and the results we will need, particularly concerning the definition and properties of the equivariant boundary maps. Our discussion follows the lines of Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF].

In Section 4 we prove that for any Anosov representation the Hausdorff dimension of the limit curve provides a lower bound for the critical exponent for the first root. In Section 5 we give a condition guaranteeing that such bound is optimal, namely the abundance of locally conformal points with respect to a suitable measure.

Section 6 concerns the notion of pp, q, rq-hyperconvexity, an open condition (Proposition 6.2) that guarantees abundance of locally conformal points: this is the content of Proposition 6.7, the main technical result of the paper. Using the theory of SL 2 representations we provide in § 6.3 many examples of hyperconvex representations of fundamental groups of surfaces and hyperbolic three manifolds.

In Section 7 we discuss another interesting consequence of hyperconvexity: such property guarantees a weak differentiability property for the limit set (Theorem 7.1) which allows us, on the one hand, to obtain good bounds on the Hausdorff dimension (Proposition 7.3), and on the other to provide examples of Zariski dense subgroups whose limit set in the projective space is a C 1 manifold: we obtain these through the represent and deform method explained, in a concrete example, in Proposition 7. [START_REF] Bourdon | Structure conforme au bord et flot géodésique d'un CATp´1q-espace[END_REF].

In Section 8 we discuss in detail two families of representations for which all our results apply: on the one hand we detail the geometric meaning of our notions in the case of convex cocompact subgroups of rank one groups, rediscovering and generalizing results of Dufloux ( § 8.1), on the other we give a concrete criterion that guarantees hyperconvexity for subgroups of SOpp, qq and provide examples of groups that satisfy it ( § 8.2).

The last section of the paper (Section 9) concerns representations of fundamental groups of hyperbolic surfaces (or more generally compact hyperbolic orbifolds). For these we show that hyperconvexity is also a closed condition (Proposition 9.3), and discuss a new proof and generalization of a result of Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF].

Preliminaries

In the paper we will need preliminaries from three different sources: quantitative linear algebra, dynamics and particularly the work of Bochi-Gourmelon [START_REF] Bochi | Some characterizations of domination[END_REF] and Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] on dominated sequences, and algebraic and metric properties of hyperbolic groups. We recall the results we need here.

2.1. Quantitative linear algebra. As anticipated at the end of the introduction, in the paper we will be dealing with representations of finitely generated groups on finite dimensional vector spaces over local fields. We recall here some quantitative results we will need. More details on algebraic groups over local fields can be found in Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF].

2.1.1. Angles and distances on Grassmannians. We denote by K a local field, and by | | : K Ñ R `its absolute value. Recall that if K is R or C then | | is the usual modulus, if, instead, K is non-Archimedean, we require that |ω| " 1 q where ω denotes the uniformizing element, namely a generator of the maximal ideal of the valuation ring O, and q is the cardinality of the residue field O{ωO (this is finite because K is, by assumption, local).

Given a finite dimensional vector space V over K, we denote by } } : V Ñ R à good norm: for an Archimedean field K this means that } } is induced from an Hermitian product, if K is non-Archimedean this means that there exists a basis te 1 , . . . , e n u such that } ř a i e i } " maxt|a i |u. In this second case we say that a decomposition

V " V 1 ' V 2 is orthogonal if }v 1 `v2 } " maxt}v 1 }, }v 2 }u for all v 1 P V 1 and v 2 P V 2 .
In general, since K is locally compact, any two norms on V are equivalent.

The choice of a good norm } } on V induces a good norm on every exterior power of V (this is discussed in Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF]). This allows to generalize the notion of angle to the non-Archimedean setting: for v, w P V , we define >pv, wq to be the unique number in r0, πs such that sin >pv, wq " }v ^w} }v}}w} .

Observe that the angle crucially depends on the choice of the norm. Following Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] we define the angle of two subspaces P, Q ă K d as >pP, Qq " min vPP ˆmin wPQ ˆ>pv, wq, where P ˆ" P zt0u, Q ˆ" Qzt0u.

The sine of the angle gives a distance, that we sometimes denote by d, on the projective space PpV q, and more generally on every Grassmannian G k pV q: we set for P, Q P G k pV q dpP, Qq :" max vPP ˆmin wPQ ˆsin >pv, wq " min vPP ˆmax wPQ ˆsin >pv, wq, this corresponds to the Hausdorff distance of PpP q, PpQq regarded as subsets of PpV q with the aforementioned distance. Observe that dpP, Qq ě sin >pP, Qq and the latter inequality is, apart from very special cases, strict.

More generally we extend the distance to subspaces of possibly different dimension: for P P G k pV q, Q P G l pV q, k ď l we set dpP, Qq :" max Such distance vanishes if and only if P Ă Q.

Singular values.

Assume now that K is commutative. Given a K-norm on V we say that g P GLpV, Kq is a semi-homothecy if there exists a g-invariant Korthogonal decomposition V " V 1 ' ¨¨¨' V k and σ 1 , ¨¨¨, σ k P R `such that for every i P 1, k and every v i P V i one has

}gv i } " σ i }v i }.
The numbers σ i are called the ratios of the semi-homothecy g.

Consider a maximal abelian subgroup of diagonalizable matrices A Ă GLpV, Kq, let K Ă GLpV, Kq be a compact subgroup such that if N GL pAq is the normalizer of A in GLpV, Kq then N GL pAq " pN GL pAq X KqA. Following Quint [START_REF] Quint | Cônes limites de sous-groupes discrets des groupes réductifs sur un corps local[END_REF]Théorème 6.1] there exists a K-norm } } on V such that -} } is preserved by K, -A acts on pV, } }q by semi-homothecies with respect to a common K-orthogonal decomposition of V in one dimensional subspaces.

Whenever such a norm is fixed, for every g P GLpV q we denote the norm and its co-norm by }g} :" max

vPV ˆ}gv} }v} mpgq " inf vPV ˆ}gv} }v} .
Let d " dim V . Keeping notation from Quint [START_REF] Quint | Cônes limites de sous-groupes discrets des groupes réductifs sur un corps local[END_REF], we denote by E :" R d a real vector space with a restricted root system of GLpV q, and by

E `" tx " px 1 , . . . , x d q P R d | x 1 ě . . . ě x d u
a Weyl chamber of E. We will denote by a i P E ˚the simple roots of E, so that

a i pxq " x i ´xi`1 P R.
The choice of an ordering pe 1 , . . . , e d q of the joint eigenlines of A (the eigenlines are uniquely determined Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF]Lemma II.1.3]) induces a map ν : A Ñ E given by νpaq :" plog σ 1 paq, . . . , log σ d paqq, where σ 1 paq, ¨¨¨, σ d paq are the semi-homotecy ratios in the basis te 1 , . . . , e d u. We set A `:" ν ´1pE `q, so that A `consists of those elements a P A whose corresponding semi-homothecy ratios satisfy σ 1 paq ě ¨¨¨ě σ d paq.

With respect to the basis te 1 , . . . , e d u, when K is non-Archimedean, it holds that K " GLpd, Oq, and the map ν extends to the Cartan projection, still denoted ν from the whole GLpV, Kq: indeed GLpV, Kq " KA `K , and, given a 1 , a 2 P A `, the element a 1 belongs to Ka 2 K if and only if νpa 1 q " νpa 2 q. In particular we can set νpgq " νpa g q for any element a g P A such that there exist k g , l g P K with g " k g a g l g (Bruhat-Tits [8, Section 3.3]).

For every g P GLpV, Kq, we choose a Cartan decomposition g " k g a g l g as above and define, for p P 1, d ´1 , u p pgq " k g ¨ep P V.

If K is Archimedean, the set tu p pgq : p P 1, d ´1 u is an arbitrary orthogonal choice of axes (ordered in decreasing length) of the ellipsoid tAv : }v} " 1u. Note that for every v that lies in the span of g ´1u p pgq one has }gv} " σ p pgq}v}. With a slight abuse of notation we will often also denote by u p pgq the corresponding point in PV .

We furthermore denote by U p pgq the Cartan attractor of g: U p pgq " u 1 pgq ' ¨¨¨' u p pgq " k g ¨pe 1 ' ¨¨¨' e p q.

Definition 2.1. An element g P GLpV, Kq is said to have a gap of index p if σ p pgq ą σ p`1 pgq. In that case, if K is Archimedean, the p-dimensional space U p pgq is independent of the Cartan decomposition of g.

Note that if g has a gap of index p, then the decomposition

U d´p pg ´1q ' g ´1pU p pgqq
is orthogonal: this is clear when K is Archimedean (see Remark 2.4 for the general case)

Remark 2.2. If K is not Archimedean, the components k g , l g in the Cartan decomposition are not uniquely determined even if g has gaps of every index; in particular the spaces U p pgq always depend on the choice of the Cartan decomposition. For example take d " 2; if |a| ą |b| we have

ˆa 0 0 b ˙" ˆ1 0 b{a 1 ˙ˆa 0 0 b ˙ˆ1 0 ´1 1 ȧnd both `1 0 b{a 1 ˘and `1 0 ´1 1 ˘belong to K " GLp2, Oq.
In this example it is easy to verify that the set of possible Cartan attractors U 1 pgq coincides with the ball of center e 1 and radius |b{a|. Note that, since K is non-Archimedean, any point in this ball is a center. 2.1.3. Quantitative results. Many of the auxiliary technical results in [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] rely on the min-max characterization of singular values of linear maps from R d to R d . This characterization in fact generalizes to any local field if one replaces the singular values with the semi-homothecy ratios: σ p pAq " max P PGppV q mpA| P q σ p`1 pAq " min

QPG d´p pV q }A| Q }.
Therefore the quantitative linear algebraic facts collected in [4, Appendix 3] carry through. We now state the ones that we will use in the following. Given a subspace P P G p pV q we denote by P K a chosen orthogonal complement of P ; this always exists, but is not unique if K is non-Archimedean. Suppose that P , W P G p pV q satisfy dpP, W q ă 1. Then W X P K " t0u, and so there exists a unique linear map L W,P : P Ñ P K such that W " v `LW,P pvq

: v P P ( . (4) 
The association L W,P Þ Ñ W provides an affine chart for G p pV q. The next lemma states that this chart is 1-Lipschitz, and it is 4-biLipschitz on a sufficiently small neighbourhood of P :

Lemma 2.7 ([4, Lemma A.11]). Let P , P 1 , P 2 P G p pV q, with dpP i , P q ă 1, then dpP 1 , P 2 q ď }L P1,P ´LP2,P } for all choices of P K . If moreover dpP i , P q ă 1{ ? 2 then }L P1,P ´LP2,P } ď 4dpP 1 , P 2 q .

Proof. The proof of [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF]Lemma A.11] smartly combines the triangular inequality for the distance d and the characterization dpP 1 , P 2 q " max wPP 1 min vPP 2 }v ´w} }w} .

Since both hold when V is a vector space over a local field K, the proof generalizes without modifications. In case K is non-Archimedean, one could also deduce the better estimate }L P1,P ´LP2,P } ď 2dpP 1 , P 2 q.

The next lemma is a variation of [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF]Lemma A.10]. In [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] there is an assumption on dpP i , P q depending on g that we replace here with the contraction assumption dpgP i , gP q ă 1{ ? 2. Despite the proof is very similar to [4, Lemma A.10], we include it for completeness: Lemma 2.8. Let V be a d-dimensional K-vector space, and g P GLpV q. Choose P P G p pV q and Q P G d´p pV q such that the pairs pP, Qq and pgP, gQq are orthogonal. Then for every P i P G p pV q, (i " 1, 2) with P i X Q " t0u and dpgP i , gP q ă 1{ ? 2, it holds

dpgP 1 , gP 2 q ě mpg| Q q 4}g| P } dpP 1 , P 2 q . ( 5 
)
Proof of Lemma 2.8. Using the same notation as in (4), for each i " 1, 2, we consider the linear map L i " L Pi,P : P Ñ P K and M i " L gPi,gP : gP Ñ gP K ; these are well defined since P i X Q " t0u. Clearly the two maps are related by L i " pg ´1| gQ q ˝Mi ˝pg| P q. As a consequence,

}L 1 ´L2 } " › › pg ´1| gQ q ˝pM 1 ´M2 q ˝pg| P q › › ď }g| P } mpg| Q q }M 1 ´M2 } .
Lemma 2.7 gives: }L 1 ´L2 } ě dpP 1 , P 2 q .

Since by assumption dpgP i , gP q ă 1{ ? 2, Lemma 2.7 implies:

}M 1 ´M2 } ď 4dpgP 1 , gP 2 q .
Putting these three estimates together, we get

dpgP 1 , gP 2 q ě 1 4 }M 1 ´M2 } ě 1 4 mpg| Q q }g| P } }L 1 ´L2 } ě 1 4 mpg| Q q }g| P } dpP 1 , P 2 q.
The following corollary of Lemma 2.8 will be useful in Section 5.2:

Corollary 2.9. Let V be a K-vector space, W ă V a subspace of dimension 2, and g P GLpV q. Denote by σ i pg| W q the semi-homothecy ratios of g : W Ñ gW where the norm on W (resp. gW ) is induced by the norm on V . For every P i P PW with P i X U d´1 pg ´1q " t0u, and dpgP i , u 1 pg| W qq ă 1{ ? 2 it holds

dpgP 1 , gP 2 q ě σ 2 pg| W q 4}g| W } dpP 1 , P 2 q .
Proof. This follows directly from Lemma 2.8 once we choose P " u 2 pg ´1| gL q, Q " u 1 pg ´1| gL q.

Another useful corollary of Lemma 2.8 is the following.

Corollary 2.10. Given α ą 0, there exist positive δ and b with the following properties. Let V be a d-dimensional K-vector space, and g P GLpV q. Suppose that P P G p pV q and Q P G d´p pV q satisfy mint>pP, Qq, >pgP, gQqu ě α .

Then for every P i P G p pV q, (i " 1, 2) with P i X Q " t0u such that dpgP i , gP q ă δ one has

dpgP 1 , gP 2 q ě b mpg| Q q }g| P } dpP 1 , P 2 q . (7) 
Proof. Since all good norms are equivalent, the general case follows from Lemma 2.8 by considering two norms, one for which P and Q orthogonal and one that makes gP and gQ orthogonal, the operator norm and m are to be computed using both these norms.

Along the same lines we get a bound on how elements g P GLpV q contract on open sets in Grassmannians: Corollary 2.11. Let g P GLpV, Kq have a gap of index p. Then, for every α ą 0 there is b such that for all P 1 , P 2 P G p pV q with >pP i , g ´1U d´p pg ´1qq ą α we have:

dpgpP 1 q, gpP 2 qq ď b σ p`1 σ p pgq dpP 1 , P 2 q .
Proof. If we assume that dpP i , U p pgqq ě 1{ ? 2 the result follows readily from Lemma 2.7 by considering the linear maps L i :" L Pi,Uppgq and M i :" L gPi,gUppgq . As above L i " pg ´1| U d´p pg ´1 q q ˝Mi ˝pg| Uppgq q. In this case the result follows as mpg| Uppgq q " σ p pgq, and mpg ´1| U d´p pg ´1q q " 1{σ p`1 pgq. The general statement follows by comparison of different norms.

2.2. Dynamical background. We now turn to the dynamical preliminaries. The goal of this section is to extend the results of Bochi-Gurmelon [START_REF] Bochi | Some characterizations of domination[END_REF] and Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] to the non-Archimedean setting.

2.2.1. Dominated splittings and Bochi-Gurmelon's Theorem. In this section we recall the definition of dominated splittings and review its connection with cone fields.

Let X be a compact metric space equipped with a continuous homeomorphism ϑ : X Ñ X. Let V be a finite dimensional K-vector space and let ψ 0 : X Ñ GLpV, Kq be continuous. We will denote by ψ : X ˆV Ñ X ˆV the induced cocycle defined by ψ x pvq " ψpx, vq " pϑpxq, ψ 0 pxqvq. Definition 2.12. Consider a good norm } } on V. Let Λ Ă X be a ϑ-invariant subset, then we say that ψ|Λ has a dominated splitting if the trivial bundle Λ ˆV splits as a Whitney sum of two ψ-invariant sub-bundles V " E ' F with the following extra condition: there exist positive µ and c such that for every n positive, x P Λ, u P E x and w P F x one has }ψ n

x u} }ψ n

x w} ď ce ´µn }u} }w} .

In this situation we say moreover that F (resp. E) is the unstable (resp. stable) bundle and that F dominates E.

Note that this condition is independent of the chosen norm. The dominated splitting of ψ|Λ is unique provided its index, i.e. dim K F, is fixed and it extends to the closure Λ of Λ (see Crovisier-Potrie [12, Proposition 2.2 and 2.5] whose proof works verbatim in our setting). Furthermore: Proposition 2.13 ([12]). Suppose a linear flow ψ has dominated splittings

E 1 'F 1 and E 2 ' F 2 of index p 1 ď p 2 . Then E 2 Ď E 1 and F 1 Ď F 2 .
In the case when K " R Bochi-Gourmelon [3, Theorem A] gave the following criterion for dominated splittings to exist; their the proof generalizes to every local field K, as Oseledets theorem holds in this generality: Theorem 2.14 (Bochi-Gourmelon [START_REF] Bochi | Some characterizations of domination[END_REF]). Let X be a compact metric space, V a K-vector space and ψ : X ˆV Ñ X ˆV a linear cocycle. Then the linear flow ψ has a dominated splitting E ' F with dim F " p if and only if there exist c ą 0, µ ą 0 such that for every x P X and n ě 0 we have σ p`1 σ p pψ n x q ă ce ´µn .

Moreover, the bundles2 are given by:

F x " lim nÑ`8 U p `ψn ϑ ´n pxq ˘and E x " lim nÑ`8 U d´p `ψ´n ϑ n pxq ˘,
and these limits are uniform.

Proof. Bochi-Gourmelon's proof is based on the one hand on some angle estimates building upon the min-max characterization of singular values of matrices in GL d pRq, and on the other hand on the multiplicative ergodic theorem (Oseledets theorem). The former hold verbatim in the general local field setting once the singular values are replaced by the semi-homothecy ratios as defined in Section 2.1.2, the required multiplicative ergodic theorem was established (following Oseledets original proof) by Margulis [34, Theorem V.2.1], the integrability of ψ follows from its continuity and the compactness of the base X. With these ingredients at hand, the sketch of the proof explained in [4, Section A.4] applies verbatim.

The existence of a dominated splitting can be furthermore characterized in terms of cone fields; this will be crucial to prove openness of Anosov representations in Section 3.1 (note that the non-Archimedean case has not yet been established). Given a decomposition V " V 1 ' V 2 and a positive a, then the subset defined by

tv P V : a}v 1 } ě }v 2 }u is called a a-cone (of dimension dim V 1 ) on V.
A cone field on Λ Ă X is a continuous choice x Þ Ñ C apxq,x of a apxq-cone on V (of fixed dimension) for each x P Λ. Cone fields can be used to characterize dominated splittings.

Proposition 2.15 (See Sambarino [40, Proposition 2.2]). Let Λ Ă X be ϑ-invariant.
The cocycle ψ| Λ has a dominated splitting of index i if and only if there exists a map a : Λ Ñ R `bounded away from 0 and 8, a cone field C apxq,x on Λ of dimension i, a number 0 ă λ ă 1 and a positive integer n 0 such that for every x P Λ the closure of ψ n0

x pC apxq,x q is contained in C λapϑ n pxqq,ϑ n pxq . 2.2.2. Dominated sequences. Bochi-Potrie-S. [4, Section 2] applied Bochi-Gourmelon's Theorem 2.14 to the compact space of dominated sequences of matrices, and got useful implications on the relative position of the axes of the ellipsoid associated to the products of such sequences: we recall now the relevant definitions and results from [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] where these were first established.

Given C ą 1, define the following compact set:

DpCq :" g P GLpV, Kq, }g} ď C, }g ´1} ď C ( .
If I is a (possibly infinite) interval in Z, the set DpCq I is endowed with the product topology, turning it into a compact metric space. Let p P 1, d ´1 , µ ą 0, c ą 0. For each interval I Ă Z, we denote by DpC, p, c, µ, Iq the set of sequences of matrices pg n q P DpCq I such that for all m, n P I with m ě n we have σ p`1 σ p pg m ¨¨¨g n`1 g n q ď ce ´µpm´n`1q .

Definition 2.16. An element of GLpV, Kq I is a dominated sequence if it belongs to DpC, p, c, µ, Iq for some C, p, c, and µ.

Consider the map shift : DpCq Z Ñ DpCq Z defined by shiftppg n q 8 ´8q " pg n`1 q 8 ´8 and let ψ 0 : DpCq Z Ñ GLpV, Kq be ψ 0 ppg n qq " g 0 . The subsets DpC, p, c, µ, Zq are shift-invariant and automatically verify the hypothesis of Theorem 2.14.

Proposition 2.17 (Bochi-Potrie-S. [4, Proposition 2.4]). For each sequence x " pg n q P DpC, p, µ, c, Zq, the limits:

F x :" lim nÑ`8 U p `g´1 g ´2 ¨¨¨g ´n˘, E x :" lim nÑ`8 U d´p `g´1 0 ¨¨¨g ´1 n´2 g ´1 n´1 ˘,
exist and are uniform over DpC, p, µ, c, Zq. Moreover, F dominates E and E ' F is a dominated splitting for the linear cocycle over the shift defined above.

By a compactness argument, the proposition above ensures transversality for Cartan attractors and repellers computed in finite, but sufficiently long, sequences of matrices: Lemma 2.18 (Bochi-Potrie-S. [4, Lemma 2.5]). Given C ą 1, µ ą 0, and c ą 0, there exist L P N and δ ą 0 with the following properties. Suppose that I Ă Z is an interval and tg i u iPI is an element of DpC, p, c, µ, Iq. If n ă k ă m all belong to I and mintk ´n, m ´ku ą L then:

> `Up pg k´1 ¨¨¨g n`1 g n q, U d´p pg ´1 k g ´1 k`1 ¨¨¨g ´1 m´1 ˘ą δ .
2.3. Hyperbolic groups. The last source of preliminaries comes from geometric group theory. Here we recall basic facts about hyperbolic groups and cone types.

Let Γ be a finitely generated group. We fix a finite symmetric generating set S and denote by | | the associated word length: for γ P Γ ´teu we denote by |γ| the least number of elements of S needed to write γ as a word on S, and define the induced distance d Γ pγ, ηq " |γ ´1η|. A geodesic segment on Γ is a sequence tα i u k 0 of elements in Γ such that d Γ pα i , α j q " |i ´j|.

In the paper we will be only interested in word-hyperbolic groups, namely such that the metric space pΓ, | |q is Gromov hyperbolic. Following the footprints of [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF], our analysis will be based on the study of cone types, and natural objects associated to them.

Cone types.

In the paper we follow Cannon's original definition of cone types, which is more convenient for our geometric purposes, but the reader should be warned that the definition used in [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] is slightly different Definition 2.19. The cone type of γ P Γ is defined by

Cpγq " tη P Γ : |γη| " |η| `|γ|u. Notice that if η P Cpγq then d Γ pγ ´1, ηq " |γη| " |η| `|γ| " |η| `|γ ´1| " d Γ pe, ηq `dΓ pe, γ ´1q,
i.e. there exists a geodesic segment through e with endpoints γ ´1 and η. Reciprocally, the endpoint of a geodesic segment starting at γ ´1 and passing through e necessarily belongs to Cpγq.

A fundamental result of Cannon is that, provided Γ is hyperbolic, there are only finitely many cone types (see for example p. 455] or Coornaert-Delzant-Papadopoulos [11, p. 145]). Given a cone type C and a P S X C, one easily checks that for every γ P Γ with Cpγq " C one gets aCpγaq Ă Cpγq. Furthermore it is easy to verify that in such case the cone type Cpγaq doesn't depend on γ (see for example [START_REF] Coornaert | Géométrie et théorie des groupes: Les groupes hyperboliques de Gromov[END_REF]Lemma 4.3]), and, with a slight abuse of notation we will denote such cone type a ¨C.

The geodesic automaton of Γ (this also depends on S) is the labelled graph G defined as follows:

' the vertices are the cone types of Γ; ' there is an edge

C 1 a Ý Ñ C 2 from vertex C 1 to vertex C 2 ,
labelled by a generator a P S, iff a P C 1 and C 2 " a ¨C1 . Since Γ is hyperbolic there are only finitely many cone types and thus the geodesic automaton has a finite number of vertices.

Let us explain the relation with geodesics. Consider a geodesic segment pγ 0 , γ 1 , . . . , γ ℓ q that is, a sequence of elements of Γ such that dpγ n , γ m q " |n ´m|, and assume that γ 0 " id. Then, there are a 0 , . . . a ℓ´1 in a generating set S such that γ n " a 0 a 1 ¨¨¨a n´1 . Note that for each n, the following is an edge of the geodesic automaton graph G:

Cpγ n q an Ý Ý Ñ Cpγ n`1 q. Thus we obtain a (finite) walk on G starting from the vertex Cpidq. Conversely, for each such walk we may associate a geodesic segment starting at the identity.

Let us define also the recurrent geodesic automaton as the maximal recurrent subgraph G ˚of G; its vertices are called recurrent cone types.

Let Λ Γ be the subset of all bi-infinite labelled sequences of G ˚. It is a closed shift-invariant subset of pG ˚qZ and the induced dynamical system shift : Λ Γ Ñ Λ Γ is a sofic shift (as in Lind-Marcus [START_REF] Lind | An introduction to symbolic dynamics and coding[END_REF]).

The following concept will be useful in Section 5.

Definition 2.20. Given an integer k we say that two cone types C 1 , C 2 are k-nested if there is a path of length k in the geodesic automaton from C 1 to C 2 . In this case there is an element β P Γ with |β| " k and such that βC 2 Ă C 1 .

Since Γ is hyperbolic, there are only finitely many cone types, therefore, for every k, there are only finitely many k-nested pairs of elements (however, as soon as Γ is non-elementary, the number of k-nested pairs grows exponentially with k). The following is clear from the definitions: Lemma 2.21. If tα i u Ă Γ is a geodesic, then the pair pCpα i q, Cpα i`k qq is k-nested.

Coverings of the Gromov boundary.

Recall that, as Γ is Gromov hyperbolic, its boundary BΓ, consisting of equivalence classes of geodesic rays, is well defined up to homeomorphism. We associate to every cone type C which is not the cone type of the identity a subset of BΓ, the cone type at infinity, by considering limit points of geodesic rays starting on e and totally contained in C : C 8 " trpα i qs|pα i q geodesic ray , α 0 " e, α i P Cu.

It follows from the discussion in the previous paragraph that every point in BΓ is contained in at least one of the sets C 8 . As there are only finitely many cone types, we obtain a finite covering of BΓ by considering U " tC 8 pγqu. Starting from this covering we will construct new coverings that will serve as our Sullivan shadows: Proof. We have to check that every point x P BΓ is covered, but this is evident since considering a geodesic ray pα i q 8 0 in Γ starting from e converging to x, one has that for all i, x P α i C 8 pα i q, see Figure 2.

γ e Γ

Anosov representations

Anosov representations from fundamental groups of negatively curved closed manifolds to PGLpd, Rq were introduced by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] and generalized by Guichard-W. [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF] to any hyperbolic group. In this section we will generalize to non-Archimedean local fields the work of [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF], which provides a simplified definition 3 . 

A ta 1 u-Anosov representations will be called projective Anosov.

One has the following direct remark.

Remark 3.2 (Bochi-Potrie-S.). Let ρ : Γ Ñ PGL d pKq be ta p u-Anosov. Given a geodesic tα i u iPZ let us denote by α i " α ´1 i`1 α i P S Γ , then we have

`ρpα i q ˘iPZ P DpC, p, c, µ, Zq
where c, µ come from equation ( 8) and C " maxt}ρpaq} : a P S Γ u. Note also that `ρpα i q ˘iPZ P DpC, d ´p, c, µ, Zq, and thus Theorem 2.14 provides the following splittings of K d E p pρpαiqq ' F d´p pρpαiqq and E d´p pρpαiqq ' F p pρpαiqq , with the obvious inclusions according to dimension. By domination, these four bundles vary continuously5 in DpC, p, c, µ, Zq X DpC, d ´p, c, µ, Zq. Finally, Proposition 2.17 yields, for k P tp, d ´pu and m ě 0

U k pρpα m qq " U k pα ´1 0 ¨¨¨α ´1 m q Ñ E k pρpαiqq and U k pρpα ´mqq " U k pα ´1 ¨¨¨α ´mq Ñ F k pρpαiqq as m Ñ 8.
Using dominated splittings it is possible to deduce strong angle estimates between Cartan attractors along geodesic rays through the origin; for example the next result is a direct consequence of Lemma 2.18. Proposition 3.3 (Bochi-Potrie-S.). Let ρ : Γ Ñ PGL d pKq be a ta p u-Anosov representation. Then there exists δ ą 0 and L P N such that for every geodesic segment

pα i q k 0 in Γ through e with |α 0 |, |α k | ě L one has > ´Up `ρpα k q ˘, U d´p `ρpα 0 q ˘¯ą δ.
Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] applied the theory of dominated splittings to the sofic shift Λ Γ Ñ Λ Γ induced by the recurrent geodesic automaton (see Section 2. Proof. A representation ρ : Γ Ñ PGL d pKq induces a linear cocycle A ρ over Λ Γ , which admits a dominated splitting if and only if the representation ρ is ta p u-Anosov. Observe that the cocycle A ρ varies continuously with the representation, since it only depends on the value of ρ on a generating set of Γ. Since, by Proposition 2.15, having a dominated splitting is an open condition on the space of cocycles, the result follows.

Boundary maps.

From now on we will assume that Γ is a word hyperbolic group. This is not a restriction: Kapovich-Leeb-Porti proved that the only groups admitting Anosov representations are hyperbolic [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF]Theorem 6.15] (cfr. also Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] for a different proof in the Archimedean case). We can thus talk freely about the Gromov boundary BΓ.

An important property of ta p u-Anosov representations is that they admit equivariant boundary maps: Proof. The proof in [4, Proposition 4.9] works without modification in our context: despite U p pρpγ n qq is not uniquely defined, Lemma 2.3 (2) guarantees that, for every choice of U p pρpγ n qq, the sequence tU p pρpγ n qqu is Cauchy, and therefore has a limit; furthermore, since any pair of geodesic rays defining x is at bounded distance, Lemma 2.3 (2) shows that the limit doesn't depend on the chosen sequence, and the maps are continuous. The equivariance follows from Lemma 2.3 (3).

The uniformity of the limits in Proposition 3.5 can be quantified explicitly (cfr. [4, Lemma 4.7]). This will be useful in the proof of Theorem 7.1: Lemma 3.6. Let ρ : Γ Ñ PGL d pKq be ta p u-Anosov. Then there exist constants C, µ such that, for every α P Γ and every x P αC 8 pαq, dpξ p pxq, U p pρpαqqq ď Ce ´µ|α| .

In particular, given ε ą 0 there exists L P N such that

ď γ:|γ|ěL U p `ρpγq ˘Ă N ε pξ p ρ pBΓqq.
Proof. If x P αC 8 pαq there exists a geodesic ray pα i q iPN through α with endpoint

x. In particular we get

dpU p `ρpαq ˘, ξ p ρ pxqq ď ÿ iě|α| dpU p `ρpα i q ˘, U p `ρpα i`1 q ˘q ď c ÿ iě|α| e ´µi .
Here the first inequality is a consequence of the triangular inequality, the second follows from Lemma 2.3 (2).

The second statement follows since, as Γ is word hyperbolic, there is a constant D such that, for every γ P Γ we can choose a geodesic ray pα i q iPN , and k P N such that dpγ, α k q ď D. This implies that γ " α k h with |h| ď D. Let x be the endpoint of the geodesic pα i q iPN . Then dpU p `ρpγq ˘, ξ p ρ pxqq ď dpU p `ρpα k hq ˘, U p `ρpα k q ˘q `dpU p pρpα i qq, ξ p pxqqq.

Bochi-Potrie-S. [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] observed that the boundary map has an explicit characterization in term of the linear cocycle A ρ over the sofic shift Λ Γ (described in the proof of Proposition 3.4). Recall from Definition 2.12 that whenever a cocycle

A ρ : Λ Γ ˆKd Ñ Λ Γ
ˆKd has a dominated splitting we denote by E (resp. F ) the stable (resp. unstable) bundle. Proposition 3.7 ( [4, Proposition 5.2]). Let ρ : Γ Ñ PGL d pKq be ta p u-Anosov. Let x, y P BΓ and pα i q 8

´8 P Λ Γ a geodesic from y to x. Then one has ξ p pxq " E p pρpαiqq and ξ d´p pyq " F d´p pρpαiqq . As a corollary we can follow [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] and generalize to the non-Archimedean case the following important fact originally proved by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] and Guichard-W. [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF].

Corollary 3.8. Let ρ : Γ Ñ PGL d pKq be ta p u-Anosov. The boundary maps ξ p : BΓ Ñ G p pK d q, ξ d´p : BΓ Ñ G d´p pK d q vary continuously with the representation.

Proof. This follows at once from the arguments in the proof of Propositions 3.4 and 3.7, as splittings vary continuously with the cocycles by Proposition 2.15 (this is a standard argument, see [START_REF] Bochi | Anosov Representations and dominated splittings[END_REF]Theorem A.15] for a proof).

The boundary map, which is unique, gives a realization of the boundary BΓ in G p pK d q, a space where the dynamics is governed by ratios of semi-homothecy ratios of elements in the projective linear group. To stress this fact and the dependence on ρ we introduce the following notation, which will be heavily used in the rest of the paper: if ρ : Γ Ñ GL d pKq is a ta p u-Anosov representation with equivariant boundary map ξ p , and x P BΓ, we will write x p ρ :" ξ p pxq. We noticed that this notation improves readability of many formulas and conveniently stresses the dependence of ξ on ρ.

3.3. Geometric estimates. We conclude the section on Anosov representations by collecting a number of geometric lemmas that will be useful later on. The first result provides the quantification we will need of the following geometric principle: endpoints of a geodesics through the origin are uniformly far in the visual boundary, the same holds for their image under the boundary map associated to an Anosov representation. Lemma 3.9. Let ρ : Γ Ñ PGL d pKq be ta p u-Anosov representation. Then there exists ν ą 0, depending only on ρ such that: if tα i u iPZ Ă Γ is a geodesic through id with endpoints x, z P BΓ, then for all i P Z one has

>pρ `α´1 i ˘xp ρ , ρ `α´1 i ˘zd´p ρ q ą ν.
Proof. Recall that we denote by DpC, d ´p, c, µ, Zq the compact, shift invariant space of dominated sequences (cfr. Definition 2.16). The bundle DpC, d ṕ, c, µ, Zq ˆKd admits a dominated splitting E p ' F d´p and, by compactness, we get ν " inf tgiuPDpC,d´p,c,µ,Zq >pE p pgiq , F d´p pgiq q ą 0.

Remark 3.2 implies that, since ρ is ta p u-Anosov, pρpα ´1 i`1 α i qq iPZ P DpC, d ṕ, c, µ, Zq, furthermore one directly computes that

ψ n ppρpα ´1 i`1 α i qq iPZ , vq " ppρpα ´1 i`1 α i qq i´nPZ , ρ `α´1
n ˘vq. As we know from Proposition 2.17 that

x p ρ " lim iÑ8 U p pρpα i qq " E p pρpαqiq and z d´p ρ " lim iÑ8
U d´p pρpα ´iqq " F d´p pρpαqiq , we deduce that for all i P Z one has

>pρ `α´1 i ˘xp ρ , ρ `α´1 i ˘zd´p ρ q ą ν.
The next lemma will be crucial in Section 6. It quantifies how the inverse of elements in a geodesic expand the distances exponentially in neighbourhoods of their Cartan attractors; this should be compared with [4, Corollary A.14]: Lemma 3.10. Let ρ : Γ Ñ PGL d pKq be ta p u-Anosov. There exist positive constants c, µ, δ depending only on ρ, and L P N such that, for every geodesic ray tα i u iPN Ă Γ, with α 0 " id and endpoint x, every i ě L, and every z, w P BΓ satisfying z p ρ , w p ρ P B δ px p ρ q, and ρpα ´1 i qtz p ρ , w p ρ u Ă B δ pρpα ´1 i qx p ρ q, we have dpρpα ´1 i qw p ρ , ρpα ´1 i qz p ρ q ě ce µi dpw p ρ , z p ρ q. Proof. We complete the ray tα i u iPN to a biinfinite geodesic tα i u iPZ with second endpoint y. The sequence s " tρpα ´1 i`1 α i qu iPZ belongs to DpC, p, c, µ, Zq. It follows from Propositions 2.17 and 3.5 that the sequence s has the dominated splitting E ' F where F s " x p ρ and E s " y d´p ρ . So there exist constants µ, c 1 such that

mpρpα ´1 i q| y d´p ρ q }ρpα ´1 i q| x p ρ } ě c 1 e µi .
Since, by Lemma 3.9, the angles >px p ρ , y d´p ρ q and >pρpα ´1 i qx p ρ , ρpα ´1 i qy d´p ρ q are bounded below by a uniform constant ν, we can apply Corollary 2.10 with P " x p ρ , Q " y d´p ρ and g " ρpα i q ´1 and get

dpρpα ´1 i qw p ρ , ρpα ´1 i qz p ρ q ě b mpρpα ´1 i q| y d´p ρ q }ρpα ´1 i q| x p ρ } dpw p ρ , z p ρ q.
4. An upper bound on the Hausdorff dimension of the limit set

In this section we will prove the following upper bound, this result is independently obtained by Glorieux-Monclair-Tholozan [START_REF] Glorieux | Hausdorff dimension of limit set for projective anosov groups[END_REF] for Archimedean K. Recall from the introduction that if ρ : Γ Ñ PGL d pKq is projective Anosov then h a1 ρ is the critical exponent of the Dirchlet series

s Þ Ñ ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘˙s .
We denote by HffpAq the Hausdorff dimension of a subset A Ă PpK d q for the metric induced by a good norm on K d .

Proposition 4.1. Let ρ : Γ Ñ PGL d pKq be ta 1 u-Anosov, then Hffpξ 1 pBΓqq ď h a1 ρ . Recall that for a metric space pΛ, dq and for s ą 0 its s-capacity is defined as

H s pΛq " inf ε # ÿ UPU diam U s : U is a covering of Λ with sup UPU diam U ă ε + (9) 
and that HffpΛq " infts : H s pΛq " 0u " supts : H s pΛq " 8u.

In order to prove Proposition 4.1 we will analyze the image, under the bounary map ξ 1 of the covering U T described in subsection 2.3.3, whose elements consist of images of cone types at infinity under sufficiently big group elements. The following crucial lemma will allow us to show that the images of the boundaries of cone types transform as expected under group elements: In particular sup UPUT diam U is arbitrarily small as T Ñ 8. Hence,

H s `ξ1 pBΓq ˘ď inf T ÿ UPUT `diam ξ 1 pU q ˘s ď ˆ2 δ ˙s inf T ÿ γ:|γ|ěT ˆσ2 σ 1 `ρpγq ˘˙s .
By definition, if s ą h a1 ρ then the Dirichlet series Φ a1 ρ psq is convergent (recall eq. ( 1)). Hence, for every s ą h a1 ρ one has lim

T Ñ8 ÿ γ:|γ|ěT ˆσ2 σ 1
`ρpγq ˘˙s " 0, which implies that the s-capacity H s pξ 1 pBΓqq vanishes and thus Hffpξ 1 pBΓqq ď h a1 ρ .

Local conformality and Hausdorff dimension

The goal of this section is to find a class of representations for which the equality in Proposition 4.1 holds. This happens in three steps.

-In Section 5.1 we study the thickened cone types X 8 pαq, these are a thickening, in PpK d q, of the image by ξ 1 of C 8 pαq for a given α, and define the locally conformal points.

-In Section 5.2 we prove that if x is a locally conformal point, then there is a geodesic ray α i Ñ x such that the sets ρpα i qX 8 pα i q behave coarsely like balls around x; the harder inequality is the lower containment, which is achieved in Corollary 5.10. -In Section 5.3 we define a measure that behaves like an Ahlfors regular measure for the sets αX 8 pαq. Putting this together with the previous section, arguments coming from Sullivan's original paper allow us to conclude the desired equality, provided we can guarantee existence of many locally conformal points, this is the purpose of Section 5.4.

5.1.

Thickened cone types at infinity and locally conformal points. Let ρ : Γ Ñ PGL d pKq be projective Anosov, it follows from Proposition 3.3 that there is a positive lower bound on the distance of Cartan attractors and repellers of geodesic rays through the origin. Such number will play an important role in our study:

Definition 5.1. Let ρ : Γ Ñ PGL d pKq be projective Anosov, and let L be fixed and big enough. The least angle δ ρ is

δ ρ " inf sin ´>´U 1 `ρpα k q ˘, U d´1 `ρpα ´mq
˘where pα i q iPZ ranges among biinfinite geodesics through the origin, and k, m ą L.

We consider coverings of ξpBΓq obtained by translating thickened cone types at infinity: X 8 pαq :" N δρ{2 pξ 1 pC 8 pαqqq X ξ 1 pBΓq. By construction the sets X 8 pαq are coarsely balls of ξ 1 pBΓq centered at points in ξ 1 pC 8 pαqq: Remark 5.2. For every α in Γ, and every x P C 8 pαq, the thickened cone type at infinity X 8 pαq contains a ball centered at the point x 1 ρ of uniform radius: Bpx 1 ρ , δ ρ {2q X ξ 1 pBΓq Ă X 8 pαq Thanks to Proposition 3.3 we can control how thickened cone types shrink under the action of group elements: Lemma 5.3. Let ρ : Γ Ñ PGL d pKq be projective Anosov. Then there exist K, L such that, for every geodesic ray pα i q 8

i"0 , for every i ą L, and every z 1 ρ , w

1 ρ P X 8 pα i q, dpα i z 1 ρ , α i w 1 ρ q ď K σ 2 σ 1 pρpα i qq dpz 1 ρ , w 1 ρ q.
Proof. As ρ is projective Anosov we have dpz 1 ρ , U d´1 pρpα i q ´1qq ą δ ρ {2 (Lemma 4.2). The result is then a direct consequence of Corollary 2.11.

Corollary 5.4. If ρ : Γ Ñ PGL d pKq is projective Anosov, and x P α i C 8 pα i q, then

ρpα i qX 8 pα i q Ă B ˆx1 ρ , K σ 2 σ 1 pρpα i qq ˙X ξpBΓq.
In particular, if tα i u 8 1 is a geodesic ray with endpoint x, the sets ρpαqX 8 pαq form a fundamental system of open neighbourhoods of x in ξpBΓq (cfr. Figure 3). Definition 5.5 gives conditions guaranteeing that the sets ρpαqX 8 pαq are coarsely balls whose sizes we can precisely estimate. Given g P GL d pKq we denote by 1 ď p 1 pgq ă . . . ă p kpgq pgq ă d the indices of the gaps of g (as in Definition 2.1). Definition 5.5. Let ρ : Γ Ñ PGL d pKq be projective Anosov. We say that x P BΓ is a pε, Lq-locally conformal point for ρ if there exists a geodesic ray tα i u 8 0 in Γ based at the identity and with endpoint x such that the following conditions hold:

(i) for all big enough i one has p 2 pα i q " p 2 does not depend on i, (ii) for every i ą L, and for every z P pξ 1 ρ q ´1`X Note that, in general, the index p 2 might depend on the point x and we do not require that the representation ρ is ta p2 u-Anosov. In the special case when ρ is ta 1 , a 2 u-Anosov, the condition piq is automatically satisfied with p 2 " 2, but piiq can only hold if the dimension of BΓ is very small (cfr. Corollary 6.6).

8 pα i q ˘one has sin ´>`z 1 ρ ' ρpα ´1 i qx 1 ρ , U d´p2 `ρpα ´1 i q ˘˘¯ą ε. U d´p2 `ρpα ´1 i q z1 ρ ρ `α´1 i ˘x1 ρ ξpBΓq
Remark 5.6. A generic element g P PGLpV q has p 2 pgq " 2. Nevertheless there are many interesting geometric situations in which condition piq holds for p 2 ą 2. For example if g is a generic element in SOpm, nq, we have that Λ m g P SLpV q has p 2 pΛ m gq " n ´m `1, so one can enforce p 2 ą 2 by considering representations in smaller subgroups. In Section 8.1 we will describe another interesting class of examples.

Neighborhoods of locally conformal points that are coarsely balls.

We will now show that if x is a locally conformal point for ρ, and α i Ñ x is a geodesic ray, then the sets ρpα i qX 8 pα i q are coarsely balls centered at x 1 ρ of radius σ 2 {σ 1 pρpα i qq for the distance on ξ 1 ρ pBΓq induced by d, this will be achieved in Corollary 5.10, and motivated the terminology locally conformal. Proposition 5.7. Let ρ : Γ Ñ PGL d pKq be projective Anosov. There exist L such that, for every pε, Lq-locally conformal point x, there exists a geodesic ray tα i u 8 0 from the identity with endpoint x, such that for every i ą L and every z P X 8 pα i q it holds ε 4

σ 2 σ 1 `ρpα i q ˘¨d `z1 ρ , pα ´1 i xq 1 ρ ˘ď d `pα i zq 1 ρ , x 1 ρ ˘.
Proof. Let W i :" z 1 ρ ' `α´1 i x ˘1 ρ . As x is pε, Lq-locally conformal, for every i ą L, we have dpW i , U d´p2 pρpα ´1 i qqq ą ε. From Lemma 2.5 one concludes that > ´ρpα i qW i , U p2 `ρpα i q ˘¯Ñ 0 as i Ñ 8 at a speed only depending on ε and the Anosov constants of ρ, and thus, possibly increasing L, one concludes that for every i ą L it holds

σ 2 σ 1 `ρpα i q| Wi ˘ě ε σ p2 σ 1 `ρpα i q ˘" ε σ 2 σ 1 `ρpα i q ˘.
Here the last equality is due to the fact that p 2 is the first gap for ρpα i q and thus σ p2 `ρpα i q ˘" σ 2 `ρpα i q ˘. Furthermore ρ `α´1 i ˘u2 `ρpα i q| Wi ˘P W i X U d´1 `ρpα ´1 i q ˘, and then, since ρ is projective Anosov and z 1 ρ P X 8 pαq, we have d `z1 ρ , ρ `α´1 i ˘u2 `ρpα i q| Wi ˘˘ą δ ρ {2, where δ ρ is the constant from Definition 5.1. This implies that we can find L depending on ρ and ε only such that for every i ą L

d ´ρpα i qz 1 ρ , U 1 `ρpα i q| Wi ˘¯ă d ´ρpα i qz 1 ρ , U 1 `ρpα i q ˘¯`d ´U1 `ρpα i q ˘, U 1 `ρpα i q| Wi ˘¯ă 1{ ? 2,
since both quantities converge to 0 as i Ñ 8 at a speed only depending on the Anosov constants of ρ. The proposition then follows from Corollary 2.9.

Recall from Definition 2.20 that we say that a pair of cone types pCpα 1 q, Cpα 2 qq of Γ are k-nested if there exists a path in the geodesic automaton of lenght k between Cpα 1 q and Cpα 2 q. In this case we say that β P Γ is a nesting word if β labels one such path. Lemma 5.8. For every L big enough (depending only on ρ) there exists a constant c (depending on ρ and L) such that for every L-nested pair pCpα 1 q, Cpα 2 qq and any nesting word β it holds (i) ρpβqX 8 pα 2 q Ă X 8 pα 1 q (ii) for every z 1 ρ P ξpβC 8 pα 2 qq and every w 1 ρ P X 8 pα 1 qzρpβqX 8 pα 2 q, it holds dpz 1 ρ , w 1 ρ q ą c. Proof.

(i) By definition of δ ρ and X 8 pα 2 q, whenever |β| ě L and β is a nesting word, then dpx, U d´1 `ρpβ ´1q ˘q ě δ ρ {2 for every point x in X 8 pα 2 q. Here L is as in Definition 5.1. Up to possibly enlarging L we can assume, by Corollary 2.11, that ρpβq contracts distances on X 8 pα 2 q so that ρpβqX 8 pα 2 q Ď N δρ{2 pρpβqξ 1 ρ pC 8 pα 2 qqq X ξpBΓq Ď X 8 pα 1 q. (ii) Since, by construction, X 8 pα 2 q contains the intersection of ξ 1 ρ pBΓq with a ball around any point z 1 ρ P ξ 1 ρ pC 8 pα 2 qq of radius δ ρ {2, the set ρpβqX 8 pα 2 q contains the intersection of ξ 1 ρ pBΓq with the ball around any point z 

`ρpβq ˘

Combining Proposition 5.7 and Lemma 5.8 we obtain:

Proposition 5.9. There exists c 1 depending only on ρ such that, if L is as in Lemma 5.8 and tα i u Ă Γ is a geodesic ray with endpoint x, for every y with y 1 ρ P ρpα n qX 8 pα n qzρpα n`L qX 8 pα n`L q, it holds

dpy 1 ρ , x 1 ρ q ě c 1 σ 2 σ 1 `ρpα n`L q ˘.
Proof. It follows from Lemma 2.21 that for every n, L the pair pC 8 pα n q, C 8 pα n`L qq is L-nested. Furthermore, up to choosing L large enough, we can apply Lemma 5.8 to the pair pC 8 pα n q, C 8 pα n`L qq. If we denote by z :" α ´1 n x and w :" α ´1 n y we deduce that dpz 1 ρ , w 1 ρ q ą c. Proposition 5.7 implies then that

dpy 1 ρ , x 1 ρ q ě cε 4 σ 2 σ 1 pα n q ě c 1 σ 2 σ 1 pα n`L q
Where in the last inequality we used as L is fixed the homothecy ratio gap of α n is uniformly comparable to the one of α n`L .

As a corollary of Proposition 5.7 we can finally get the main result of the section (cfr. Figure 3): Corollary 5.10. Let ρ : Γ Ñ PGL d pKq be a projective Anosov; then for every locally conformal point x P BΓ there exists a geodesic ray α i Ñ x with

B ˆx1

ρ , c 1 σ 2 σ 1 `ρpα i q ˘˙X ξpBΓq Ă ρpα i qX 8 pα i q.

Proof. This follows from the above proposition by observing that the sets ρpα i qX 8 pα i q form a fundamental system of neighborhoods of x 1 ρ in ξpBΓq. 5.3. A regular measure for conformal points. The goal of this section is to construct, following Patterson's original idea, a measure, supported on ξ 1 ρ pBΓq, for which we can get good estimates on the measure of the cone types. This will be used in Section 5.4 to obtain the desired lower bound on the Hausdorff dimension of the limit set 6 .

Let ρ : Γ Ñ PGL d pKq be a projective Anosov representation. Recall from the introduction that we have defined Φ a1 ρ psq "

ÿ γPΓ ˆσ2 σ 1
`ρpγq ˘˙s .

We can assume that Φ a1 ρ ph a1 ρ q " 8 : otherwise, as it is standard in Patterson-Sullivan theory, we would carry out the same construction with the aid of the modified Poincaré series Φ a1 ρ psq "

ÿ γPΓ f ´a1 `ρpγq ˘¯ˆσ 2 σ 1 pρpγqq ˙ha 1 ρ ,
6 See Remark 5.15 for a comparison with the work of Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF] where f psq is the function constructed (for example) in Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemma 8.5].

We will therefore assume from now on that the Poincaré series diverges at its critical exponent; for every s ą h a1 ρ , we define

µ s ρ " 1 Φ a1 ρ psq ÿ γPΓ ˆσ2 σ 1 `ρpγq ˘˙s δ U1pρpγqq .
Recall from Section 2.1 that, for every element γ P Γ we chose a Cartan decomposition of ρpγq and therefore a 1-dimensional subspace U 1 `ρpγq ˘. One easily checks that for every s ą h a1 ρ the functional f Þ Ñ ş f dµ s ρ is continuous on CpPpK d q, Rq with the uniform topology and hence one can take a weak* accumulation point of µ s ρ , as s Ñ h a1 ρ , in the space of Radon probability measures on PpK d q. We will denote such Radon measure by µ a1 ρ , (note that we do not show, nor require, that µ a1 ρ is the only accumulation point of µ s ρ ).

Lemma 5.11. For any η P Γ the (signed) measure εpη, sq :" η ˚µs ρ ´1 Φ a1 ρ psq

ÿ γPΓ ˆσ2 σ 1 pρpγqq ˙s δ U1pρpηγqq
weakly* converges to zero as s Ñ h a1 ρ .

Proof. Indeed by definition

η ˚µs ρ " 1 Φ a1 ρ psq ÿ γPΓ ˆσ2 σ 1 pρpγqq ˙s δ ρpηqU1pρpγqq .
Furthermore, Lemma 2.3 (3) implies that

dpρpηqU 1 pρpγqq, U 1 pρpηγqqq ď }η}}η ´1} σ 2 σ 1 ρpγq.
In order to show that εpη, sq converges to zero, it is enough to show that for every continuous function f : PpV q Ñ R the integral of f on εpη, sq tends to zero as s converges to h a1 ρ . However every such function f is uniformly continuous, and therefore for every ε we can find δ such that |f pxq ´f pyq| ă ε{2 if dpx, yq ă δ. It is then enough to choose s close enough to h a1 ρ so that the mass of µ s ρ of the elements γ such that σ 1 {σ 2 pγq ă }η}}η ´1}{δ is smaller than ε 2}f } .

One has the following proposition (compare with Sullivan's shadow Lemma [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF]).

Proposition 5.12. Let ρ : Γ Ñ PGL d pKq be a projective Anosov representation, then for all η P Γ one has

ˆσd σ 1 pρpηqq ˙ha 1 ρ ď µ a1 ρ pρpηqX 8 pηqq µ a1 ρ pX 8 pηqq ď 4 δ 2 ρ ˆσ2 σ 1 pρpηqq ˙ha 1 ρ .
Recall that there are finitely many cone types, so the number µ a1 ρ pX 8 pηqq is an irrelevant constant.

Proof. Consider s ą h σ ρ , η P Γ and a continuous function f : PpK d q Ñ R. One has

µ s ρ pf ˝ρpηq ´1q " 1 Φ a1 ρ psq ÿ γPΓ ˆσ2 σ 1 pρpγqq ˙s f `ρpη ´1qU 1 pρpγqq " εpη ´1, sqpf q `1 Φ ρ a 1 psq ÿ γPΓ ˆσ2 σ 1 pρpηγqq ˙s f pU 1 pρpγqqq (11) 
" εpη ´1, sqpf q `1 Φ a1 ρ psq

ÿ γPΓ ˆσ2 σ 1 pρpηγqq σ 1 σ 2 pρpγqq ˙s ˆσ2 σ 1 pρpγqq ˙s f pU 1 pρpγqqq,
where εpη ´1, sq is the term estimated in Lemma 5.11, so that εpη ´1, sqpf q converges to zero when s Ñ h a1 ρ . Assume that the support of f contains X 8 pηq in its interior and s is close enough to h a1 ρ so that Φ a1 ρ psq is arbitrary large. Then only the tail of the sum involved in µ s ρ pf ˝ρpηq ´1q is relevant, this is to say: -only γ's for which |γ| is large matter, -since we are integrating f, U 1 pρpγqq has to be near to X 8 pηq, so that there is a geodesic segment from η ´1 to γ passing through the identity.

This, together with Proposition 3.3, implies that such γ's one has sin `>pU 1 pρpγqq, U d´1 pρpηqqq ˘ą ε f , for some ε f depending on the support of f. Note that ε f approaches δ ρ {2 (recall Definition 5.1) as supp f Ñ X 8 pηq. Choosing a sequence s k Ñ h a1 ρ such that µ s k ρ Ñ µ a1 ρ one has, using Lemma 2.6 and equation [START_REF] Coornaert | Géométrie et théorie des groupes: Les groupes hyperboliques de Gromov[END_REF], that, for any such f µ a1 ρ pf ˝ρpηq ´1q " lim

s k Ñh σ ρ µ s k ρ pf ˝ρpηq ´1q ď 4 δ 2 ρ ˆσ2 σ 1 pρpηqq ˙ha 1 ρ µ a1 ρ pf q.
By continuity of f Þ Ñ µ a1 ρ pf q, one concludes the desired upper bound. The lower bound follows similarly.

Since cone types shrink to any given point of BΓ one has the following consequences of Proposition 5.12.

Corollary 5.13. The measure µ a1 ρ has total support and no atoms. Proof. If α i is a geodesic ray converging to x then ρpα i qX 8 pα i q is a family of open neighborhoods decreasing to x, and since ρ is projective Anosov one has pσ 2 {σ 1 qpρpα i qq Ñ 0 as i Ñ 8. As µ a1 ρ is a Radon measure we have on the one hand

µ a1 ρ ptxuq " inftµ a1 ρ pρpα i qX 8 pα i qqu ď 4 δ 2 ρ ˆσ2 σ 1 pρpηqq ˙ha 1 ρ ,
on the other hand for every open set A intersecting ξpBΓq we can find α such that ρpα i qX 8 pα i q is contained in A, and thus µ a1 ρ pAq ě µ a1 ρ pρpα i qX 8 pα i qqq ě ˆσd σ 1 pρpηqq ˙ha 1 ρ .

When conformal points are abundant. Denote by

LCpρq " tx P BΓ : x is locally conformal for ρu.

We can now prove the following.

Theorem 5.14. Let ρ : Γ Ñ PGL d pKq be a projective Anosov representation. If µ a1 ρ pLCpρqq ą 0, then Hffpξ 1 ρ pBΓqq " h a1 ρ . Proof. As we already established in Proposition 4.1, Hffpξ 1 ρ pBΓqq ď h a1 ρ , so we only need to show the reverse inequality. The proof will follow the main ideas in Sullivan's original work [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF], using Corollary 5.10 and Proposition 5.12 as key replacement for the conformality of a Kleinian group action on its boundary, and Sullivan's shadow lemma.

Given x P LCpρq and a geodesic ray tα i u on Γ converging to x, Corollary 5.10 implies that for all i ě N 0 pxq the set ρpα i qX 8 pα i q is coarsely (with constants independent of x) a ball of radius r i pxq " σ 2 σ 1 `ρpα i q ȃbout

x 1 ρ (for the induced metric on ξ 1 ρ pBΓq). Proposition 5.12 then states that for all i ě N 0 pxq

µ a1 ρ `Bpx, r i pxqq ˘ď cr i pxq h a 1 ρ . (12) 
Observe that we can extend equation ( 12) for any 0 ă r ď r N0 pxq, up to possibly worsening the constant c: Since ρ is projective Anosov, the word length of γ P Γ is coarsely log σ 2 {σ 1 pρpγqq, thus r i pxq{r i`1 pxq ď K ρ for some constant K ρ only depending on ρ; given r it suffices to consider r i`1 pxq ď r ď r i pxq and thus

µ a1 ρ pBpx, rqq ď c ´ri pxq r i`1 pxq ¯ha 1 ρ r i`1 pxq h a 1 ρ ď L ρ r h a 1 ρ .
Furthermore, there exists ε such that the set X ε " tx P LCpρq : r N0 pxq ě εu has positive µ a1 ρ -mass: this follows from the general fact that countable union of sets with measure 0 has measure 0, since we assumed µ a1 ρ pLCpρqq ą 0, The remainder arguments are verbatim as in Haïssinsky [START_REF] Haïssinsky | Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités[END_REF]Théorème F.4]. We include them for completeness: as X ε is a subset of ξpBΓq, it is enough to verify that HffpξpX ε qq ě h a1 ρ ; we will show that, denoting by σ :" h a1 ρ , we have H σ pX ε q ą 0. Indeed let us denote by d :"

µ a 1 ρ pXεq 2Lρ
. By definition of σ-capacity we can find an open covering B " tBpx i , r i qu of X ε consisting of balls of radius r i ă ε and such that ÿ r σ i ď H σ pX ε q `d. Recall from (9) at the beginning of Section 4 that we denote by H σ pX ε q the σcapacity of the set X ε . On the other hand we have

µ a1 ρ pX ε q ď µ a1 ρ ´ď i Bpx i , r i q ¯ď ÿ i µ a1 ρ `Bpx i , r i q ˘ď ÿ i L ρ r σ i .
This shows that H s pX ε q is positive, and concludes the proof.

Remark 5.15. Patterson-Sullivan measures in a setup close to ours were extensively studied by Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]. For our geometric applications it is crucial to have an Ahlfors regular measure of exponent h a1 ρ . Let us denote by G the Zariski closure of ρpΓq, assume that G is reductive (despite this is not always the case in the examples we have in mind), and let F G denote the full flag space associated to G. Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Theorem 8.4] provides a quasi-invariant measure µ on F G called a pρpΓq, h a1 ρ a 1 q-Patterson-Sullivan, with the desired transformation rule, as long as a tecnical condition is satisfied, namely that the form h a1 ρ a 1 is tangent to the growth indicator function ψ ρpΓq . In order to guarantee that this is the case we would have to further assume that the representation ρ is ta p u-Anosov, and that p 2 pρpγqq " p for every γ P Γ. The measure µ could then be pushed forward via the projection F G Ñ PpK d q and the fact that ρ is ta 1 , a p u-Anosov would imply that the new measure on PpK d q would still be quasi-invariant. However deducing the analogue of Proposition 5.12 in that setting would require some work as our representations are, in most interesting cases, not Zariski dense.

pp, q, rq-hyperconvexity

In this section we introduce pp, q, rq-hyperconvex representations, establish geometric properties and provide the link with local conformality. 6.1. Hyperconvex representations. The following definition is inspired from Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] for surface groups. Let Γ be a word-hyperbolic group and denote by B p3q Γ " tpx, y, zq P pBΓq 3 : pairwise distinctu. Definition 6.1. Consider p, q, r P 1, d ´1 such that p `q ď d. We say that a representation ρ : Γ Ñ PGL d pKq is pp, q, rq-hyperconvex if it is ta p , a q , a r u-Anosov and for every triple px, y, zq P B p3q Γ one has px p ρ ' y q ρ q X z d´r ρ " t0u.

Note that, since p `q ă d and the representation is ta p , a q u-Anosov, the sum x p ρ `yq ρ is necessarily direct. Hence, hyperconvexity implies that p `q ď r. We will observe in Corollary 6.6 that ρ can only be pp, q, rq-hyperconvex if r ´p ´q ě dimpBΓq ´1. Note that we do not require p and q to be different. Proposition 6.2. The space of pp, q, rq-hyperconvex representations is open in hompΓ, PGL d pKqq.

Proof. The proof follows the same lines as Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]Proposition 8.2]. Since the action of Γ on B p3q Γ is properly discontinuous and co-compact, given a triple px, y, zq P B p3q Γ there exists γ P Γ such that the the points γx, γy and γz are pairwise far apart. Considering a pp, q, rq-hyperconvex representation ρ, one concludes that the angles between any pair of the spaces pγxq p ρ , pγyq q ρ and pγzq d´r ρ are bounded away from zero. Corollary 3.8 states that the Anosov condition is open and that equivariant maps vary continuously with the representation, hence, since the map B p2q Γ Ñ G p`q pK d q pa, bq Þ Ñ a p ρ ' b q ρ is continuous away from the diagonal the result follows.

Since hyperconvexity is an open property, one can provide interesting examples of hyperconvex representations by looking at representations of the form

Γ Ñ G Ñ GL d pKq,
where the first arrow is convex co-compact (see Section 7.2) furthermore hyperconvexity behaves well with field extensions: Lemma 6.3. Let K Ă F be a field extension, if ρ : Γ Ñ PGL d pKq is pp, q, rqhyperconvex then so is ρ : Γ Ñ PGL d pFq.

We conclude the subsection providing obstructions to the existence of p1, 1, rqhyperconvex representations. A useful tool for this is the stereographic projection: Definition 6.4. Let ρ : Γ Ñ PGL d pKq be ta 1 , a r u-Anosov. Given z P BΓ, the stereographic projection defined by z (and ρ) is the continuous map π z,ρ : BΓ ´tzu Ñ PpK d {z d´r ρ q defined as follows: since ρ is ta 1 u-Anosov, for every point x P BΓ different from z, the vector space x 1 ρ ' z d´r ρ has dimension d ´r `1 and projects to a line in the quotient space K d {z d´r ρ ; we define π z,ρ pxq P PpK d {z d´r ρ q to be the projectivisation of this line.

The following is immediate from the definitions: Lemma 6.5. If the representation ρ is p1, 1, rq-hyperconvex then for every z P BΓ the map π z,ρ is continuous and injective.

Proof. The stereographic projection π z,ρ is the composition of the boundary map ξ 1 : BΓztzu Ñ PpK d q with the projection PpK d zz d´r ρ q Ñ PpK d {z d´r ρ q, which is algebraic outside the pd ´rq-dimensional subspace z d´r ρ ; it is well defined as ρ is a 1 -Anosov, and is therefore continuous. Injectivity follows directly from the definition of hyperconvexity. Corollary 6.6. If there is no continuous injective map BΓ ´tzu Ñ PpK r q, then there is no p1, 1, rq-hyperconvex representation ρ : Γ Ñ PGL d pKq.

6.2.

From hyperconvexity to local conformality. We now find a link between hyperconvexity and local conformality. The following statement is the main technical result of Section 6, and will be crucial in the proof of Theorem 7.1.

Recall from Section 5.1 that we defined, for every projective Anosov representation ρ : Γ Ñ PGL d pKq, the thickened cone type at infinity X 8 pαq as the intersection of the δ ρ {2-neighbourhood of ξ 1 ρ pC 8 pαqq with the image of the boundary map. In a similar way, if ρ is ta p u-Anosov, we set X p 8 pαq :" N δp,ρ{2 ξ p ρ `C8 pαq ˘X ξ p ρ pBΓq, where δ p,ρ is the number δ from Proposition 3.3. Proposition 6.7. Let ρ : Γ Ñ PGL d pKq be pp, q, rq-hyperconvex. Then there exist constants L, ε such that for every α P Γ with |α| ą L, for every x P C 8 pαq and every y P pξ q ρ q ´1X q 8 pαq, it holds sin > ´xp ρ ' y q ρ , U d´r `ρpα ´1q ˘¯ą ε.

Observe that the conclusion of the proposition is the second condition required for a locally conformal point (Definition 5.5).

Before proving the Proposition let us fix a distance d on BΓ inducing its topology and for ν ą 0 define a triple of points x, y, z P BΓ is ν-separated, if all distances dpx, yq, dpy, zq and dpx, zq are bounded below by ν. The following lemma follows from the convergence property of hyperbolic groups, see for example Tukia [START_REF] Tukia | Convergence groups and Gromov's hyperbolic spaces[END_REF]. Lemma 6.8. Let pα i q iPZ be a bi-infinite geodesic through e P Γ with α i Ñ x and α ´i Ñ z say, as i Ñ `8. Then the function y Þ Ñ dpα ´1 i y, α ´1 i zq converges to 0 uniformly on compact sets of BΓ ´txu is i Ñ `8. Consequently, for fixed ν, the positive integers n such that the triple α ´1 n x, α ´1 n y, α ´1 n z is ν-separated is bounded above uniformly on compact sets of BΓ ´txu. Finally, there exists ν 0 ą 0 such that for every 0 ă ε ă ν 0 and y P BΓ ´txu with dpx, yq ă ε there exists n P N such that α ´1 n x, α ´1 n y, α ´1 n z are ν 0 -separated.

Proof. Let us give an idea of the proof in our situation, i.e. assuming that Γ admits a projective Anosov representation ρ. We focus on finding ν 0 and n P N so that the last sentence of the statement holds.

Consider the distance d induced by our chosen distance on PpK d q through the boundary map ξ 1 ρ . The fact that there is a lower bound on the values dpα ´1 n x, α ´1 n zq for all n follows from Lemma 3.9, and the fact that we can find a suitable n, such that both dpα ´1 n z, α ´1 n yq ą ν 0 and dpα ´1 n x, α ´1 n yq ą ν 0 is a consequence of Lemma 3.10 combined with the fact that the action of the images of the generators on PpK d q is uniformly Lipschitz.

Proof of Proposition 6.7. Since the representation ρ : Γ Ñ PGL d pKq is pp, q, rqhyperconvex we can find ε 0 such that if s, w, t P BΓ are ν 0 -separated one has sin >ps p ρ ' t q ρ , w d´r ρ q ą ε 0 : [START_REF] Danciger | Affine actions with hitchin linear part[END_REF] this is guaranteed since the set of ν 0 -separated triples is precompact as the group is hyperbolic.

Let us first show that if y is close enough to x (depending on ε 0 , as well as the representation ρ), we can find ε 1 , L 1 for which Equation ( 13) holds.

In order to do so, observe that, since the group is hyperbolic, and thus the conetype graph is finite, there exists K smaller than the diameter of the cone-type graph such that, if x P C 8 pαq, there exists a bi-infinite geodesic pα i q iPZ passing through the identity, and an integer M such that dpα ´M , α ´1q ă K; of course in this case ||α| ´M | ă K. We denote by z be the second endpoint of such geodesic. By Lemma 6.8 we can choose N P N such that α ´1 N x, α ´1 N y, α ´1 N z are ν 0 -separated. The size of N measures how close y is to x. Using the triangular inequality we get sin > `xp ρ ' y q ρ , U d´r pρpα ´1qq ˘ě sin > `Ur pρpα N qq, U d´r pρpα ´M qq d´U d´r `ρpα ´M q ˘, U d´r `ρ`α ´1˘˘¯´d ´ρpα N q `pα ´1 N xq p ρ ' pα ´1 N yq q ρ ˘, U r `ρpα N q ˘¯. The first term of the expression is bigger than δ r,ρ provided |α| is big enough, by Lemma 3.3. The second term is smaller than δ r,ρ {3 if |α| is big enough by Lemma 2.3 (2): indeed α ´1 " α ´M a for some a P Γ with |a| ă K. We chose L 1 so that these two conditions are satisfied. In order to prove our claim it is enough to verify that we can find N 0 big enough, depending on the representation only, such that for every N ě N 0 , it holds

dpρpα N qppα ´1 N xq p ' pα ´1 N yq q , U r pρpα N qqq ă δ ρ {3.
Since z ‰ x are fixed, the subspaces z d´r ρ and x r ρ have a positive angle and thus, since U r pρpα N qq Ñ x r ρ as N Ñ 8 uniformly in N , the angle between z d´r ρ and U r pρpα N qq is bounded below for all positive big enough N depending only on the representation ρ. Using Lemma 2.5 we deduce that

d ´Ud´r `ρpα ´1 N q ˘, ρpα ´1 N qz d´r ρ ¯ď σ d´r`1 σ d´r pρpα ´1 N qq 1 sin >pz d´r ρ , U r pρpα N qqq . (15) 
Since the representation is ta d´r u-Anosov, `pσ d´r`1 q{pσ d´r q ˘pρpα ´1 N qq is smaller than ε 0 {2 for big enough positive N. By hyperconvexity (equation ( 14)) we know that `α´1 N x ˘p ρ ' `α´1 N y ˘q ρ has a definite angle with `α´1 N z ˘d´r ρ , consequently, by equation [START_REF] Dufloux | Dimension de Hausdorff des ensembles limites[END_REF] we deduce that

> ´`α ´1 N x ˘p ρ ' `α´1
N y ˘q ρ , U d´r `ρpα ´1 N q ˘¯ą ε 0 {2. Thus, by Lemma 2.5

d ´ρpα N q `pα ´1 N xq p ρ ' pα ´1 N yq q ρ ˘, U r `ρpα N q ˘¯ă σ r`1 σ r `ρpα N q ˘2 ε 0 .
This concludes the first step, we can chose ε 1 " δ r,ρ {3. We are thus left to verify that, up to possibly shrinking ε 1 and enlarging L 1 , Equation ( 13) is also verified in the case n for which α ´1 n px, y, zq is ν 0 -far and smaller than a fixed N. Observe that, since the group Γ is finitely generated and N is fixed, we can find C, depending on ρ, such that dpα ´1 n x, α ´1 n yq ď C n dpx, yq, and therefore we can find ν 1 depending on N only such that dpy, xq ą ν 1 . Since furthermore y q ρ P X q ρ pαq, and thus we have a lower bound on dpy, zq, we deduce, up to further shrinking ν 1 , that the triple px, y, zq is ν 1 -far. The same argument as above let us deduce that there exists ε 2 such that sin >px p ρ ' y q ρ , z d´r ρ q ą ε 2 .

It is then enough to chose L 2 big enough so that dpz d´r ρ , U d´r `ρpα ´1q ˘˘ă ε 2 {2. The Proposition holds with L " maxtL 1 , L 2 u and ε " mintε 1 , ε 2 u. Proposition 6.7 combined with Theorem 5.14 yields the following Hausdorff dimension computations. Corollary 6.9. Let ρ : Γ Ñ PGL d pKq be p1, 1, 2q-hyperconvex, then Hffpξ 1 pBΓqq " h a1 ρ .

Corollary 6.10. Let ρ : Γ Ñ PGL d pKq be p1, 1, rq-hyperconvex. Assume moreover that for every γ P Γ one has σ 2 `ρpγq ˘" σ r `ρpγq ˘, then every point of BΓ is locally conformal for ρ and thus h a1 ρ " Hff `ξ1 pBΓq ˘.

6.3. Examples: (ir)reducible SL 2 .
The easiest examples of hyperconvex representations are induced from representations of SL 2 pKq (see for example Humphreys's book [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF] for standard basic facts on the representation theory of SL 2 ). Recall that for every d P N ´t0, 1u there is a (unique up to conjugation) irreducible representation ι d : SL 2 pKq Ñ SL d pKq. This representation is given by the action of SL 2 pKq on the symmetric powers S d´1 pK 2 q, which can be identified with the space of homogenous polynomials on two variables of degree d ´1 with coefficients in K. If we denote by E SL2pKq the weight space, the representation ι d has highest weight χ ι d P E SL2pKq given by χ ι d pxq " pd ´1qx.

Let FpS d´1 pK 2 qq denote the full flag space associated to SLpS d´1 pK 2 qq. The Veronese map ζ : PpK 2 q Ñ FpS d´1 pK 2 qq is defined by

ζpxq " tζ k pxqu d´1 k"1
where ζ k pℓq is the k-dimensional vector subspace of S d´1 pK 2 q consisting of polynomials that have x d´k as a factor. It is easy to check that ζ is ι d -equivariant and the image of an attractor in PpK 2 q is an attractor in FpS d´1 pK 2 qq. Remark 6.11. Note that for every pair of distinct points x ‰ y in PpK 2 q the flags ζpxq and ζpyq are in general position, i.e. for every k P 1, d ´1 , it holds ζ k pxq X ζ d´k pyq " t0u.

Moreover, using the transitivity of the SL 2 pKq-action on transverse pairs, it is easy to check the following: Proposition 6.12. Let ζ " tζ i u d´1 i"1 be the Veronese embedding of PpK 2 q into FpS d´1 pK 2 qq, then for every triple p`q `r " d and pairwise distinct x, y, z P PpK 2 q one has ζ p pxq ' ζ q pyq ' ζ r pzq " K d . Corollary 6.13. For every convex cocompact 7 subgroup Γ ă SL 2 pKq, the representation ι d | Γ : Γ Ñ SL d pKq is pp, q, rq-hyperconvex for every pp, q, rq such that r ě p `q. The same holds for small deformations.

We can obtain many more examples of hyperconvex representations by considering direct sums of irreducible representations. A representation π : SL 2 pKq Ñ SLpV, Kq decomposes in irreducible modules

π " k à 1 ι di ,
where we have ordered d 1 ě ¨¨¨ě d k . The highest weight χ π P E SL2pKq is χ π pxq " pd 1 ´1qx. Let us denote by χ p2q π ě ¨¨¨ě χ pdim V q π the remaining weights in decreasing order. 7 For non-Archimedean fields K, in analogy with the Archimedean case, we say that a representation is convex cocompact if it is Anosov, as in Definition 3.1.

Definition 6.14.

Given k P 2, dim V , we say that π is k-coherent if χ pkq π ą d 2 ´1, equivalently if d 1 ą d 2 `2pk ´1q.
Observe that a representation π is k-coherent if and only if the representation has a gap of index k and the top k eigenspaces are eigenlines of a diagonalizable element in πpSL 2 pKqq and belong to the top irreducible factor. An important example of 2-coherent representations are exterior powers: Example 6.15. For every p P 1, d ´1 the representation

^pι d : SL 2 pKq Ñ SLp^pK d q is 2-coherent.
Proof. Considering a diagonalizable element in SL 2 pKq one explicitly checks that the top 3 weights of ^pι d are -

χ ^pι d " d ´1 `. . . `d `1 ´2p " ppd ´pq, -χ p2q ^pι d " χ ^pι d ´2, -χ p3q ^pι d " χ p4q ^pι d " χ ^pι d ´4.
Definition 6.14 guarantees some hyperconvexity: Proposition 6.16. Let ρ : Γ Ñ SL 2 pKq be convex co-compact. If π : SL 2 pKq Ñ SLpV, Kq is k-coherent, then π˝ρ is pp, q, kq-hyperconvex for every p, q with p`q ď k.

Proof. Since χ pkq ą d 2 ´1 one has that χ pkq ą χ pk`1q and thus π ˝ρ is ta k u-Anosov. Coherence implies thus that χ plq ą χ pl`1q for every l P 1, k and thus π ˝ρ is also ta p , a q u-Anosov since both p and q are smaller than k. The remainder of the statement follows from Lemma 6.12: if N denotes the dimension of V , ζ p d1 : BΓ Ñ G p pS d´1 pK 2 qq Ă G p pV q is the ι d -equivariant map induced by ζ, and ξ l π : BΓ Ñ G l pV q denotes the boundary map associated to π, we have, for every l ď k, that ξ l π " ζ l d1 and

ξ N ´l π " ζ d1´l d1 ' k à i"2 S di´1 pK 2 q.
In particular Proposition 6.16 can be used to construct example of representations of Kleinian groups satisfying the assumptions of Theorem 5.14.

Differentiability properties

7.1. Convergence on pairs and bounds on the Hausdorff dimension. The following result, which follows from Proposition 6.7 is inspired by Guichard [START_REF] Guichard | Composantes de Hitchin et représentations hyperconvexes de groupes de surface[END_REF]Proposition 21], however, Guichard's proof relies heavily on the fact that BΓ is a circle, and that the representation is pp, q, rq-hyperconvex for every triple p, q, r with p `q " r. Theorem 7.1. Let ρ : Γ Ñ PGL d pKq be pp, q, rq-hyperconvex then for every pw, yq P B p2q Γ one has lim pw,yqÑpx,xq dpw p ρ ' y q ρ , x r ρ q " 0.

More precisely there exist constants C, µ such that, if tα i u is a geodesic ray with endpoint x, for every w, y P α i C 8 pα i q it holds dpw p ρ ' y q ρ , x r ρ q ď Ce ´µi . Proof. The first claim is a direct consequence of the second, as the sets α i C 8 pα i q form a fundamental system of neighbourhoods of the point x.

As the representation ρ is pp, q, rq-hyperconvex, and w, y P α i C 8 pα i q, we deduce from Proposition 6.7 that sin >ppα ´1 i wq p ρ ' pα ´1 i yq q ρ , U d´r pρpα ´1 i qqq ą ε. In particular Lemma 2.5 implies

dpw p ρ ' y q ρ , U r pα i qq ď σ r`1 σ r pρpα i qq 1 ε ď C 1 ε e ´µ1i .
Where C 1 , µ 1 are the constants provided by the fact that ρ is ta r u-Anosov. The result now follows, via triangular inequality, from Lemma 3.6, which guarantees that dpx r ρ , U r pα i qq ď C 2 e ´µ2i .

The following easy converse is useful for applications:

Proposition 7.2. Consider p, q, r P 1, d ´1 with p `q ď r. If ρ : Γ Ñ PGL d pKq is ta p , a q , a r u-Anosov and for every x P BΓ one has lim pw,yqÑpx,xq dpw p ρ ' y q ρ , x r ρ q " 0,

then ρ is pp, q, rq-hyperconvex.

Proof. Since ρ is ta p , a q u-Anosov and p `q ď r ď d ´1, for every pair of distinct points w, y the sum w p ρ `yq ρ is direct. Since ρ is ta r u-Anosov there is a lower bound on sin >px r ρ , z d´r ρ q if x, z are the endpoints of a geodesic through the origin. Combining this fact with [START_REF] Dufloux | Hausdorff dimension of limit sets[END_REF] we can find ε, δ such that px p ρ ' y q ρ q X z d´r " t0u for every triple with dpx, yq ă ε and dpx, zq ą δ ą ε. Any triple in B p3q Γ can be transformed in such a triple by an element of Γ and thus the claim follows.

Using the stereographic projection (see Definition 6.4) combined with Theorem 7.1 it is possible to deduce the following estimate on Hausdorff dimension:

Proposition 7.3. Let ρ : Γ Ñ PGL d pKq be p1, 1, rq-hyperconvex, then Hff `ξ1 pBΓq ˘ď Hff `PpK r q ˘.
Proof. We first claim that if ρ : Γ Ñ PGL d pKq is p1, 1, rq-hyperconvex, then for every x we can find a point z an open neighbourhood U x of x in ξ 1 pBΓq such that the stereographic projection π z,ρ is Lipschitz on U x . Indeed as ρ is ta r u-Anosov, we can choose z so that the subspaces x r ρ and z d´r ρ make a definite angle. The claim is then a consequence of Theorem 7.1: Indeed, it implies we can find an open neighbourhood U x of x such that for every pair w, y P U x the angle that w 1 ρ ' y 1 ρ makes with z d´r ρ is bigger than a fixed constant. This is enough to guarantee that the stereographic projection doesn't distort distances too much.

In particular, as Lipschitz maps preserve the Hausdorff dimension, it follows that HffpU x q ď Hff `PpK r q ˘. Since the Hausdorff dimension of a compact set is the maximum of the Hausdorff dimensions of the sets in a finite open cover, the result follows.

7.2. When BΓ is a manifold and K " R. A classical result of Benoist [START_REF] Benoist | Convexes divisibles I. In Algebraic groups and arithmetic[END_REF] states that if a word hyperbolic group of projective transformations divides a convex set, then the boundary of this set has to be C 1 . These, together with Hitchin representations, have become the paradigm of Zariski-dense projective Anosov representations whose limit set is a regular manifold. The purpose of this section is to provide new examples of such phenomena. Sharper results of similar nature have recently been obtained independently by Zhang-Zimmer [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF].

We begin by observing that Theorem 7.1 has the following interesting consequence.

Proposition 7.4. Let ρ : Γ Ñ PGL d pRq be a p1, 1, rq-hyperconvex representation and assume that BΓ is topologically a sphere of dimension r ´1, then ξ 1 ρ pBΓq is a C 1 manifold with T x 1 ρ ξ 1 ρ pBΓq " T x 1 ρ Ppx r ρ q.

Proof. Theorem 7.1 implies that the set ξ 1 ρ pBΓq is differentiable at x 1 ρ with tangent space T x 1 ρ Ppx r ρ q. The continuity of x Þ Ñ x r ρ completes the proof. Proposition 7.5. Let ρ : Γ Ñ PGL d`1 pRq be a p1, 1, dq-hyperconvex representation and assume that there exist c ą 0, µ ą 1 such that, for every γ P Γ,

σ 1 pρpγqqσ d pρpγqq σ 2 pρpγqq 2 ą ce µ|γ| . ( 17 
)
Then the composition

S k ˝ρ : Γ Ñ PGLpS k pR d`1 qq is p1, 1, dq-hyperconvex.
Proof. We endow S k pR d`1 q with the norm induced by our choice of norm on R d`1 . For this choice, and for every g P PGL d`1 pRq, the semi-homotecy ratios of S k g are just the products of k-tuples of semihomotecy ratios of g. Assumption [START_REF] Fock | Moduli spaces of local systems and higher teichmüller theory[END_REF] then gives that for all γ apart from possibly finitely many exceptions a 1 pνpS k ρpγqqq " a 1 pνpρpγqqq, a d pνpS k ρpγqqq " minta d pνpρpγqqq, log σ1pρpγqqσ d pρpγqq σ2pρpγqq 2 u Since ρ is ta 1 , a d u-Anosov, we deduce from Definition 3.1 that S k ρ is also ta 1 , a d u-Anosov.

Observe that the map S k is equivariant with respect to the map between the partial flags S k : tline Ă hyperplaneu Ñ tline Ă d-dimensional subspaceu defined by S k pl, Hq " pl dk , l dk´1 d Hyq. Here we denote by d the symmetric tensors.

It is immediate to verify that Assumption (17) also implies that S k ˝ξ sends attractors to attractors, therefore, by continuity of S k ˝ξ, we have, for every x P BΓ,

S k px 1 ρ , x d ρ q " px 1 S k ρ , x d S k ρ q.
Finally, the convergence property (Theorem 7.1) for ρ, together with the differentiability of S 2 : PpR d`1 q Ñ P `S2 pR d`1 q ˘implies that lim pw,yqÑpx,xq

> `w1 S 2 ρ ' y 1 S 2 ρ , x d S 2 ρ ˘" 0.
Proposition 7.2 yields the result.

As a direct corollary we get:

Corollary 7.6. If ρ : Γ Ñ PSOpd, 1q is cocompact, every small deformation

η : Γ Ñ PGLpS k pR d`1 qq of S k ρ is p1, 1, dq-hyperconvex.
Any such η will have a C 1 -sphere as limit set in PpS k pR d`1 qq.

Applying Johnson-Millson's [START_REF] Johnson | Deformation spaces associated to compact hyperbolic manifolds[END_REF] bending technique we obtain the announced Zariski dense subgroups whose limit set is a C 1 sphere: Corollary 7.7. There exists a Zariski dense subgroup Γ ă PGLpS 2 pR d`1 qq whose limit set is a C 1 sphere.

Proof. Let M be a d-dimensional closed hyperbolic manifold that has a totally geodesic, co-dimension one, closed submanifold N . The inclusion Γ " π 1 M Ă SOpd, 1q Ñ SL `S2 pR d`1 q ˘satisfies the hypothesis of Proposition 7.5. Without loss of generality we can assume that π 1 N Ă SOpd ´1, 1q. Observe that the centralizer of S 2 pSOpd ´1, 1qq Ă SL `S2 pR d`1 q ȋs non-trivial and strictly contains that of S 2 `SOpd, 1q ˘: as an S 2 `SOpd, 1q ˘module, S 2 pR d`1 q splits as a direct sum of an irreducible representation (usually denoted S r2s pR d,1 q) and a trivial representation, its centralizer is thus reduced to R ˚. The decomposition as a S 2 pSOpd´1, 1qq-module splits as the sum S r2s pR d´1,1 q'R d´1,1 'R 2 where the action on the second factor is the standard action, while the action on R 2 is trivial. In particular the centralizer of S 2 pSOpn ´1, 1qq is GLp2, Rq ˆR˚. By bending the representation along N with a nontrivial element in GLp2, Rq which doesn't leave invariant the factor R, we obtain the desired representation.

Examples of locally conformal representations

The purpose of this section is to discuss some of the many examples in which restricting the Zariski closure of a representation to a non-split real form of SL d pKq gives room for p1, 1, pq hyperconvex representations for which we can also guarantee that the second gap p 2 is strictly bigger than 2. 8.1. Hyperconvex representations in PUp1, dq and PSpp1, dq. The first interesting setting in which Theorem 5.14 applies for large classes of representations is given by considering representations in the rank one groups PUp1, dq or PSpp1, dq.

To unify the treatment we will write PO K p1, dq for either PUp1, dq if K " C or PSpp1, dq if K " H and regard PO K p1, dq as a subgroup of PGLpd `1, Kq.

Remark 8.1. Unfortunately, as H is non-commutative, we don't have the setup of Section 2.2.1 at our disposal (as the exterior algebra over a non-commutative field is not well defined), however the issue can be easily solved by considering SLpd `1, Hq as a subgroup of SLp2d `2, Cq. Given an element g P SLpd `1, Hq we denote by g C the corresponding element in SLp2d `2, Cq; it is then immediate to verify that we can choose a Cartan decomposition of g C so that, for every p, the subspace U 2p pg C q is a quaternionic vector space, and we thus set U p pgq :" U 2p pg C q. Similarly we say that a sequence pα i q iPZ in SLpd `1, Hq is p-dominated if pα C i q iPZ is 2p-dominated in SLp2d `2, Cq, and that a representation ρ : Γ Ñ SLpd `1, Hq is pp, q, rq-hyperconvex if the induced representation ρ : Γ Ñ SLp2d`2, Cq is p2p, 2q, 2rq-hyperconvex. With this at hand it is easy to verify that Theorem 5.14 holds for representations with values in SLpd `1, Hq.

Recall that PO K p1, dq has rank one, therefore we have at our disposal a good notion of convex co-compactness: a representation ρ : Γ Ñ PO K p1, dq is convex co-compact if and only if there is a convex ρpΓq-invariant subspace of H d K whose quotient is compact. The induced representation ρ : Γ Ñ PGLpd `1, Kq is ta 1 u-Anosov if and only if ρ is convex co-compact, see for example Guichard-W. [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF]Section 6.1].

Observe that PO K p1, dq preserves the closed codimension 1 submanifold BH d K Ă PpK d`1 q, furthermore one has the following. Lemma 8.2. For every g P PO K p1, dq, we have U 1 pgq P BH d K Ă PpK d`1 q and U d pgq " U 1 pgq K , where the orthogonal is defined with respect to the Hermitian form defining the group PO K p1, dq.

In particular, considering for every point x P BH d K the subspace x K Ă T x BH d K , one obtains a non-integrable distribution that has (real) codimension 1 if K " C and 3 if K " H. In the complex case this is the standard contact structure on the sphere. We will refer to this distribution also in the quaternionic case as the generalized contact distribution. Given a distinct pair x, y P BΓ we will denote by C x,y the intersection Ppxx, yyq X BH d K . Of course if K is C then C x,y is a circle, while if K " H it is a 3-sphere. In the complex case the sets C x,y are often referred to as chains, and their geometry was extensively studied by Cartan. The incidence geometry of chains (and of suitable generalizations) played an important role in Burger-Iozzi [START_REF] Burger | A measurable cartan theorem and applications to deformation rigidity in complex hyperbolic geometry[END_REF] and P. [START_REF] Pozzetti | Maximal representations of complex hyperbolic lattices into su(m, n)[END_REF].

With these definition at hand we can rephrase our main results in the rank 1 setting: Proposition 8.3. A convex cocompact action ρ : Γ Ñ PO K p1, dq is p1, 1, dqhyperconvex if and only if for every distinct pair x, y P BΓ, the chain C x 1 ρ ,y 1 ρ intersects ξpBΓq only in x 1 ρ , y 1 ρ . In this case LCpρq " ξpBΓq, and ξpBΓq is tangent to the generalized contact distribution.

Proof. The first statement follows directly from the definitions: for every triple x, y, z the sum x Similarly one can define well positioned Schottky subgroups of PSpp1, dq replacing chains with quaternionic three spheres (recall that in BH d H any pair of points uniquely determines a 3 sphere, the boundary of a totally geodesic copy of H 1 H ). We will denote also these subspaces of BH d H chains for notational ease. Arguments analogue to the ones presented in [START_REF] Dufloux | Hausdorff dimension of limit sets[END_REF]Section 7.2] imply that well positioned Schottky groups are hyperconvex representations: Proposition 8.6. Let ρ : Γ Ñ PO K p1, dq be a well positioned Schottky subgroup. Then ρ : Γ Ñ SL d`1 pKq is p1, 1, dq-hyperconvex. Furthermore LCpρq " ξpBΓq.

Proof. Observe that since PO K p1, dq is a rank one group, p 2 pαq doesn't depend on i. Furthermore, as soon as the sequence tα i u 8

i"1 forms a geodesic ray, the sequence is d dominated by a classical ping pong argument, and it follows from Lemma 8.2 that E ρ p2 pxq " x K Ă PpK d`1 q. In order to verify that every point x P BΓ is locally conformal, we need to check that there exists a constant c such that >pξpyq ' ξpzq, U 1 pρpα ´1qqq ą c for all y, z P X 8 pαq. Since Γ is a well positioned Schottky group, we can choose δ ρ as the smallest distance between two sets Bpwq. Let w α be the first letter of α. [START_REF] Tukia | Convergence groups and Gromov's hyperbolic spaces[END_REF]). Let ρ : Γ Ñ PO K p1, dq be a well positioned Schottky subgroup. Then Hffpξ 1 ρ pBΓqq " h a1 ρ . Proof. If K " C this follows directly from Theorem 5.14. For K " H it is enough to observe that in the construction of the measure µ a1 performed in Section 5.3 we never used the commutativity of the field K.

We conclude the discussion on convex cocompact subgroups of PO K p1, dq by showing that the set of p1, 1, dq-hyperconvex representations is, in general, not closed within the space of projective Anosov representations. We will prove in Proposition 9.3, that, instead, p1, 1, 2q-hyperconvex representations of fundamental groups of surfaces are closed in the space of Anosov representations. Denote by F 2 the free group on two generators. Proposition 8.8. There exists a continuous path of ta 1 u-Anosov representations ρ t : F 2 Ñ PUp1, dq such that ρ 0 is p1, 1, dq-hyperconvex and ρ 1 is not p1, 1, dqhyperconvex.

Proof. As PUp1, dq has rank 1, for every 4-tuple pa `, a ´, b `, b ´q of pairwise distinct points in BH d C we can find elements a, b P PUp1, dq with prescribed attractive and repulsive fixed points and with translation length big enough so that the group generated by a, b is free and convex cocompact on H d C : this follows from a classical ping pong argument. Furthermore, if pa t , a t , b t , b t q vary continuously in t we can also arrange for the elements a t , b t to vary continuously in t; in this way we can define a continuous path ρ t : F 2 Ñ PUp1, dq of ta 1 u-Anosov representation.

Our claim follows if we choose a 0 , b 0 contained in POp1, dq (so that the representation is p1, 1, dq-hyperconvex by Lemma 8.4), and pa 1 , a 1 , b 1 , b 1 q so that pa 1 , a 1 , b 1 q belong to a single chain, but b 1 doesn't. In this case the representation ρ 1 is clearly not p1, 1, dq-hyperconvex as the sum ξpa `q `ξpa ´q `ξpb `q is not direct.

8.2.

Locally conformal representations in SOpp, qq. We now turn our attention to the group SOpp, qq. Every semi-simple element g P SOpp, qq has |p ´q| eigenvalues equal to 1. In this subsection, considering suitable exterior representations of SOpp, qq we will produce examples of hyperconvex representations for which every point is locally conformal, and thus Corollary 6.10 applies. For these representations, the Hausdorff dimension of the limit set computes the critical exponent for the first simple root.

The following generalization of Labourie's property (H) [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]Section 7.1.4] guarantees that a suitable exterior power is hyperconvex: Proposition 8.9. Let ρ : Γ Ñ SOpp, qq be ta p´1 , a p u-Anosov (here p ď q). Then ^pρ : Γ Ñ PGLp^ppR p,q qq is ta 1 , a q´p`1 u-Anosov. It is p1, 1, q ´p `1q-hyperconvex if and only if for every x, y, z P BΓ pairwise distinct, the sum x p ρ `pz p ρ X y q`1 ρ q `yp ρ is direct. In this case every point in BΓ is locally conformal.

Proof. Observe that the singular values of an element g P SOpp, qq Ă SL p`q pRq have the form σ 1 pgq ě . . . σ p pgq ě 1 " . . . " 1 ě σ p pgq ´1 ě . . . σ 1 pgq ´1, where 1 has multiplicity at least q ´p (higher if σ p pgq " 1). If ρ : Γ Ñ SOpp, qq is ta p´1 , a p u-Anosov, then, for every γ with |γ| big enough, it holds σ p´1 pρpγqq ą σ p pρpγqq ą 1, hence in particular σ 1 p^pρpγqq " σ 1 pρpγqq . . . σ p pρpγqq, σ 2 p^pρpγqq " σ q´p`1 p^pρpγqq " σ 1 p^pρpγqq σ p pρpγqq and

σ q´p`2 p^pρpγqq " max " σ 1 p^pρpγqq σ p´1 pρpγqq , σ 1 p^pρpγqq σ p pρpγqq 2 * ,
which implies that ^pρ is ta 1 , a q´p`1 u-Anosov. Denote by F p´1,q pR p,q q the partial flag manifold consisting of pairs of pp ´1, qqdimensional isotropic subspaces and consider the map L : F p´1,p pR p,q q Ñ F 1,q´p`1 p^pR p,q q pP, Qq Þ Ñ p^ppQq, ^p´1 pP q ^QK q where the orthogonal is considered with respect to the bilinear form defining the group SOpp, qq. The map L is clearly equivariant with the homomorphism ^p : SOpp, qq Ñ SLp^ppR p,q qq; furthermore, if g P SOpp, qq is F p´1,q pR p,q q-proximal, namely g has an attractive fixedpoint g `in F p´1,q pR p,q q, then Lpg `q " p^pgq `.

Thus if pξ p´1 , ξ p q : BΓ Ñ F p´1,q pR p,q q denote the boundary maps associated to ρ : Γ Ñ SOpp, qq, the boundary maps associated to ^pρ have the form L ˝pξ p´1 , ξ p q.

Let N denote the dimension of ^ppR p,q q. In order to check if the representation ^pρ is p1, 1, q ´p `1q-hyperconvex, it is enough to verify that for every distinct triple x, y, z P BΓ, the subspace x 1 ^ρ `z1 ^ρ intersects transversely y N ´q`p´1 ^ρ , or, equivalently, the image of x 1 ^ρ `z1 ^ρ in ^pR p,q {y N ´q`p´1 ^ρ is two dimensional. Recall that if ρ : Γ Ñ SOpp, qq is a p -Anosov, then for every distinct pair px, yq P BΓ 2 it holds x p ρ ' y q ρ " R d , furthermore we can interpret any other point z p ρ as a linear map z p ρ : x p ρ Ñ y q ρ . With this notation the condition that the sum x p ρ `pz p ρ X y q`1 ρ q `yp ρ is direct is equivalent to requiring that z p ρ px p ρ X y q`1 ρ q X y p ρ " t0u. Let us then choose a basis tb 1 . . . b p u of x p ρ such that tb 1 , . . . b p´1 u forms a basis of x p´1 ρ and b p " x p ρ X y q`1 ρ , then we have that a basis of z p is given by c i " b i `zp ρ pb i q. Furthermore the only term of the explicit expression of c 1 ^. . . ^cp that might not belong to y N ´q`p´1 ^ρ is b 1 ^. . . ^bp´1 ^cp . This last vector doesn't belong to y N ´q`p´1 ^ρ `x1

^ρ if and only if z p ρ px p ρ X y q`1 ρ q X y p ρ " t0u. Proposition 8.10. Assume that there are convex cocompact representations ρ 1 : Γ Ñ SOp1, kq, ρ 2 : Γ Ñ SOp1, lq such that ρ 1 strictly dominates ρ 2 , namely there exists constants c, µ such that σ 1 pρ 1 pγqq ą cσ 1 pρ 2 pγqq µ . Then the representation ρ :" ρ 1 ' . . . ' ρ 1 ' ρ 2 : Γ Ñ SO `p, pp ´1qk `l `s˘s atisfies the hypothesis of Proposition 8.9.

Proof. The representation ρ is a p -Anosov as ρ 2 is convex cocompact, and is a p´1 -Anosov as ρ 1 strictly dominates ρ 2 . Explicitly writing down the boundary map ξ p associated to ρ in term of the boundary maps ξ 1

1 : Γ Ñ BH k R , ξ 1 2 : Γ Ñ BH l R associated to ρ 1 , ρ 2 one verifies that z p ρ px p ρ X y q`1 ρ q X y p ρ -z 1 ρ2 X y 1 ρ2
and the latter intersection is empty as the representation is Anosov.

Danciger-Gueritaud-Kassel [13, Proposition 1.8] gave an explicit construction of convex cocompact actions ρ 1 , ρ 2 on H8 R of the the group Γ generated by reflections in the faces of a 4-dimensional regular right-angled 120-cell, such that ρ 1 strictly dominates ρ 2 and therefore Proposition 8.10 applies. In this case the boundary BΓ is a 3 sphere. It is also easy to construct representations satisfying the assumption of Proposition 8.10 when the group Γ is free, and in this case it one can deform the representation ρ : F n Ñ SOpp, qq to obtain a Zariski dense representation whose image under ^p is locally conformal. We also expect that many more convex cocompact subgroups in rank one have the same property, and it is probably possible to give further examples of situations in which Proposition 8.9 applies for more complicated groups, as, for example, hyperbolic Coxeter groups.

The same argument as in the proof of Proposition 8.9 gives the following Proposition 8.11. Let ρ : Γ Ñ SL d pKq be ta p´1 , a p , a s u-Anosov. Assume that (i) there exist constants c, µ such that σ p´1 pρpγqqσ s pρpγqq σ p pρpγqqσ p`1 pρpγqq ą ce µ|γ| , (ii) for every x, y, z P BΓ pairwise distinct, the sum

x p ρ `pz p ρ X y d´p`1 ρ q `yd´s ρ is direct, then ^pρ is p1, 1, s ´p `1q-hyperconvex.
Observe that the first condition, which guarantees that the map L : F p´1,p,s pK d q Ñ F 1,s´p`1 p^pK d q pP, Q, Rq Þ Ñ p^ppQq, ^p´1 pP q ^Rq is proximal, is automatic if s " p `1.

Fundamental groups of surfaces

Let us denote by Γ S a word-hyperbolic group such that 8 BΓ S is homeomorphic to S 1 . One has the following direct consequence of Proposition 7.4 and Corollary 6.9.

Corollary 9.1. Let ρ : Γ S Ñ PGL d pRq be p1, 1, 2q-hyperconvex, then h a1 ρ " 1. 9.1. Weak irreducibility and closedness. A projective Anosov representation ρ : Γ Ñ PGL d pKq is weakly irreducible if the image of its boundary map is not contained in a proper subspace of PpK d q. Clearly if ρ is irreducible, then ρ is weakly irreducible, but it is possible to construct examples of weakly irreducible Anosov representations with non reductive image.

The assumption of weak irreducibility can be used to study properties of the stereographic projection π z,ρ defined in Definition 6.4. Lemma 9.2. Let ρ : Γ Ñ PGL d pKq be ta 1 , a p u-Anosov. If the stereographic projection π z,ρ : BΓztzu Ñ PpK d q collapses an open set U Ă BΓ, then π z,ρ is constant. In particular the representation ρ is not weakly irreducible.

Proof. Indeed, as fixed points of attractive elements are dense in BΓ we can find γ P Γ with γ `P U . Up to shrinking U we can assume that γ ¨U Ă U . Let V Ă K d be the smallest subspace containing ξptq for every t in U . As π z,ρ | U is constant, the subspace V is proper, furthermore ρpγqV " V , since if ξpx 1 q, . . . , ξpx k q is a basis of V then ξpγx 1 q, . . . , ξpγx k q are also linearly independent vectors contained in V . In particular, for every n, π z,ρ pγ ´nU q is constant. As the union of the sets of the form γ ´nU is the complement of a point in BΓ, the first result follows by continuity of π z,ρ .

If the map π z,ρ is constant then, for every x P BΓ´tzu, the image of the boundary map is contained in the proper subspace x 1 ρ `zd´r ρ , hence the representation is not weakly irreducible. Proof. Let ρ : Γ S Ñ PGL d pRq be ta 1 , a 2 u-Anosov and not p1, 1, 2q-hyperconvex. By definition, there exists a triple of pairwise distinct points x, y, z P BΓ S such that px 1 ρ ' y 1 ρ q X z d´2 ρ ‰ 0, [START_REF] Gabay | Convergence groups are fuchsian groups[END_REF] and thus the stereographic projection π z,ρ is not injective. Note that PpR d {z d´2 ρ q is topologically a circle. Therefore the stereographic projection π z,ρ is a map from an interval with a point removed to a circle that:

-does not collapse intervals, -is not injective.

One can therefore, using the intermediate value theorem, find an interval I Ă BΓ S ztzu and a point w P BΓ S zptzu Y Iq such that π z,ρ pwq belongs to the interior of π z,ρ pIq.

This last property will hold for any map close enough to π z,ρ , in particular for the stereographic projection π z,η for some η close to ρ. Thus, π z,η is not injective and hence η is not p1, 1, 2q-hyperconvex, as desired.

Recall from Definition 6.14 that a reducible representation π : SL 2 pKq Ñ SL d pKq is k-coherent if it has a gap of index k and its highest k weights belong to the same irreducible factor. Combining results from previous sections one has the following. Corollary 9.4. Let π : SL 2 pRq Ñ SL d pRq be a 2-coherent representation and ρ : Γ S Ñ PSL 2 pRq be co-compact, then any deformation η of πρ among weakly irreducible ta 1 , a 2 u-Anosov representations into PSL d pRq is p1, 1, 2q-hyperconvex. In particular, verifies: -has C 1 -limit set in PpR d q, -the exponential growth rate h a1 η " 1.

Proof. Proposition 6.16 states that πρ is p1, where the first arrow is a the choice of a hyperbolic metric on S. Such a connected component is usually denoted by H d pSq and an element ρ P H d pSq is called a Hitchin representation.

Recall from Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] that a map ξ : BΓ Ñ FpR d q satisfies Property (H) if for every triple of distinct points x, y, z and every integer k one has ξ k`1 pyq `pξ k`1 pzq X ξ n´k pxqq `ξn´k´2 pxq " R d .

One has the following central result by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF].

Theorem 9.5 (Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]). Every Hitchin representation ρ : Γ Ñ PSL d pRq is pp, q, rq-hyperconvex, for every triple with p `q " r. The equivariant boundary map ξ : BΓ Ñ FpR d q has property (H).

Thus, one concludes the following for deformations of the exterior powers. Proposition 9.6. Let ρ P H d pSq and consider any k P 1, d ´1 . Then any weakly irreducible ta 1 , a 2 u-Anosov representation η : π 1 S Ñ PSLp^kR d q connected by weakly irreducible ta 1 , a 2 u-Anosov representations to ^kρ is p1, 1, 2q-hyperconvex and consequently verifies: -has C 1 -limit set in Pp^kR d q, -the exponential growth rate h a1 η " 1.

Proof. Observe that for every s, the representation ^sρ is ta 1 , a 2 u-Anosov, furthermore Proposition 8.11 ensures that ^sρ is p1, 1, 2q-hyperconvex as the boundary curve satisfies Property (H) (for k " s ´1). The result then follows from Proposition 7.4, Corollary 6.9 and Corollary 9.4.

When no deformation is applied one recovers the following result from Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]Theorem B].

Theorem 9.7 (Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]). For every ρ P H d pSq and every k P 1, d ´1 one has h a k ρ " 1. The work of Kostant [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF] provides a subalgebra ι g R : sl 2 pRq Ñ g R , unique up to conjugation and called the principal sl 2 , such that the centralizer of ι g R `0 1 0 0 ˘has minimal dimension. Denote by ι G R : PSL 2 pRq Ñ G R the induced morphism. For example, ι PSL d pRq " ι d is the (unique up to conjugation) irreducible representation of SL 2 pRq in R d defined in Subsection 6.3.

Let S be a closed connected genus ě 2 surface. The Hitchin component of G R is the connected component of the character variety Xpπ 1 S, G R q that contains a Fuchsian representation, i.e. a representation that factors as

π 1 S Ñ PSL 2 pRq ιG R ÝÑ G R ,
where the first arrow is a the choice of a hyperbolic metric on S. We will denote this connected component by H pS, G R q and an element ρ P H pS, G R q is called a Hitchin representation. where, in each case, the first arrows is the principal inclusion ι G R . Thus H `S, PSpp2n, Rq ˘Ă H 2n pSq, H `S, PSOpn, n `1q ˘Ă H 2n`1 pSq, H pS, PG 2,R q Ă H pS, PSOp3, 4q ˘Ă H 7 pSq.

On the other hand if we consider the embedding SOpn ´1, nq Ă SOpn, nq as the stabilizer of a positive definite line. The morphism ι SOpn,nq is the composition of ι SOpn´1,nq with such inclusion. Hence the induced action of ι SOpn,nq on R n,n decomposes in SL 2 pRq-irreducible modules as ι 2n´1 ' ι 1 , and in particular H `S, PSOpn, nq ˘is not a subset of a PSL 2n pRq-Hitchin component.

It is known to experts that every Hitchin representation is Anosov with respect to the minimal parabolic of G, see for example Fock-Goncharov [START_REF] Fock | Moduli spaces of local systems and higher teichmüller theory[END_REF].

Recall that the simple roots of the group PSOpn, nq are given by ta 1 , . . . , a n´1 , b n u where, as above, a i pxq " x i ´xi`1 and b n is defined by b n pxq " x n´1 `xn .

Thus every representation ρ P H `S, PSOpn, nq ˘, when considered as a representation in SL 2n pRq under the canonical inclusion, is ta p u-Anosov for every p ď n ´1.

Furthermore it is easy to check that the n-th exterior power ^n : PSOpn, nq Ñ PSLp^nR 2n q splits as the direct sum of two irreducible PSOpn, nq-modules, which have respectively a n´1 and b n as first root (see for example Danciger-Zhang [START_REF] Danciger | Affine actions with hitchin linear part[END_REF]). In particular we obtain the following result, independently announced by Labourie [START_REF] Labourie | Entropy and affine actions for surfaces groups[END_REF].

Theorem 9.9. For every ρ P H pS, PSOpn, nqq and every p ď n ´2 the exterior power ^pρ is p1, 1, 2q-hyperconvex, and the same holds for each one of the two irreducible submodules of ^nρ. Thus the associated limit curve of ρ on the p-Grassmannian for p ď n ´2, as well as each one of the two limit curves in the n-Grassmannian, is C 1 and one has h a ρ " 1 for every simple root a. Proof. Considering a diagonalizable element in SL 2 pRq as in the proof of Lemma 6.15 we obtain that ^kpι 2n´1 ' ι 1 q is 2-coherent for every k P 1, n ´2 . Similarly a direct computation shows that the 5 highest weights of ^npι 2n´1 ' ι 1 q are χ ^npι2n´1'ι1q " χ p2q ^npι2n´1'ι1q " 2n `. . . `2 " npn `1q, χ p3q ^npι2n´1'ι1q " χ p4q ^npι2n´1'ι1q " 2n `. . . `4 " npn `1q ´2

χ p5q ^npι2n´1'ι1q " 2n `. . . `6 " npn `1q ´4

and each of the first four weights appears with multiplicity one in each irreducible SOpn, nq-submodules of ^nR 2n . We deduce that the restriction of the representation ^npι 2n´1 ' ι 1 q to each of the two submodules is also p1, 1, 2q-hyperconvex.

The result is then a consequence of Corollary 9.4 together with the classification of Zariski closures due to Guichard [21].

Remark 9.10. Danciger-Zhang [START_REF] Danciger | Affine actions with hitchin linear part[END_REF] recently proved that when a representation ρ P H pS, PSOpn, nqq is regarded as a representation in PSL 2n pRq, it is, instead, never ta n u-Anosov and the limit curve in the n ´1-Grassmannian is never C 1 .

" 8 )

 8 and Sullivan shows:Theorem (Sullivan). If Γ is a convex co-compact subgroup of PSOp1, nq then the Hausdorff dimension of L Γ is h Γ . A.S.was partially financed by ANR DynGeo ANR-16-CE40-0025. B.P. and A.W acknowledge funding by the Deutsche Forschungsgemeinschaft within the Priority Program SPP 2026 "Geometry at Infinity". A.W. acknowledges funding by the European Research Council under ERC-Consolidator grant 614733, and by the Klaus-Tschira-Foundation.
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  Morse actions on Euclidean buildings (and thus in particular Anosov subgroups of PGL d pKq when K is non-Archimedean) were already defined by Kapovich-Leeb-Porti [27, Definition 5.35], the interest of such concept was also suggested in Géritaud-Guichard-Kassel-W. [20, Remark 1.6 (a)]. Definition 3.1. Consider p P 1, d ´1 . A representation ρ : Γ Ñ PGL d pKq is ta p u-Anosov 4 if there exist positive constants c, µ such that for all γ P Γ one has σ p`1 σ p `ρpγq ˘ď ce ´µ|γ| .

  3.2), to get an easy proof of openness of Anosov representations. Their proof easily extends to every local field: Proposition 3.4. The set of ta p u-Anosov representations is open in hompΓ, PGL d pKqq.
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 35 Bochi-Potrie-S. [4, Proposition 4.9]). If ρ : Γ Ñ PGL d pKq is ta p u-Anosov, then for any geodesic ray tγ n u with endpoint x, the limits ξ p ρ pxq :" lim nÑ8 U p pρpγ n qq ξ d´p ρ pxq :" lim nÑ8 U d´p pρpγ n qq exist and do not depend on the ray; they define continuous ρ-equivariant transverse maps ξ p : BΓ Ñ G p pK d q, ξ d´p : BΓ Ñ G d´p pK d q.
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 421 Let ρ : Γ Ñ PGL d pKq be a projective Anosov representation. Then there exist δ ą 0, L P N such that for all γ P Γ with |γ| ą L and every x P C 8 pγq one has >px 1 ρ , U d´1 pρpγ ´1qqq ą δ. Proof. By definition of Cpγq, for all x P C 8 pγq there exists a geodesic ray tα i u 8 0 in Γ with α 0 " γ ´1 and α i Ñ x as i Ñ 8. The lemma then follows combining Proposition 3.3 and Proposition 3.5. 4.1. Proof of Proposition 4.1. For each T ą 0 consider the covering U T of BΓ given by Lemma 2.22. By definition, U " U γ P U T is of the form γC 8 pγq for some γ P Γ with |γ| ě T. Lemma 4.2 implies that there exists δ such that for every x P C 8 pγq one has d ´x1 ρ , U d´1 `ρpγ ´1q ˘¯ě δ and thus Lemma 2.5 applied to ρpγq implies that d ´ρpγqx 1 ρ , U 1 `ρpγq ˘¯ď ρpγq ˘ď Ce ´µT .
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 7 4 can be applied to many different situations to produce interesting examples through the represent and deform method, we now explain how this works in a specific situation. Denote byS k : PGL d`1 pRq Ñ PGLpS k pR d`1 qq the k-symmetric power.Note that in PGL d`1 pKq a p1, 1, dq-hyperconvex representation is a projective Anosov representation ρ such that for each triple px, y, zq P B p2q Γ the sum x 1
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 993 2 is particularly useful to analyze properties of p1, 1, 2q-representations of groups Γ S . The following argument is very similar to Labourie [31, Proposition 8.3]. The space of real weakly irreducible ta 1 , a 2 u-Anosov representations of Γ S that are not p1, 1, 2q-hyperconvex is open.

Remark 9 . 8 (

 98 Canonical inclusions). By construction, one sees that the irreducible representation ι d : SL 2 pRq Ñ SL d pRq factors, depending on the parity of d, asSL 2 pRq ι Spp2n,Rq ÝÑ Spp2n, Rq Ñ SL 2n pRq, SL 2 pRq ι SOpn,n`1q ÝÑ SOpn, n `1q Ñ SL 2n`1 pRq, SL 2 pRq G 2,R ÝÑ G 2,R Ñ SOp3, 4q Ñ SL 7 pRq,

  As the distance d is, in this case, non-Archimedean, we deduce, also in this case, that any choice of U p pgq is orthogonal to gU d´p pg ´1q for any other choice of U d´p pg ´1q. Let g P GLpV, Kq have a gap of index p. Then, for all P P G p pV q transverse to U d´p pg ´1q we have: Let g, h P GLpV, Kq. Suppose that g and gh have gaps of index p. Let α :" > `Up phq, U d´p pg ´1q ˘. Then: σ p pghq ě psin αq σ p pgq σ p phq , σ p`1 pghq ď psin αq ´1 σ p`1 pgq σ p`1 phq .

	Lemma 2.6 ([4, Lemma A.7]).			
	Lemma 2.3 ([4, Lemma A.4]). Let g, h P GLpV, Kq have a gap of index p. Then for any possible choice of Cartan attractor U p pgq (resp. U p pghq): dpU p pghq, U p pgqq ď }h}}h ´1} σ p`1 σ p pgq (2)
	dpU p pghq, gU p phqq ď }g}}g ´1}	σ p`1 σ p	phq.	(3)
	Remark 2.4. If K is non-Archimedean, the Cartan attractors U p pgq are not uniquely defined (cfr. Remark 2.2). However it follows from Lemma 2.3 that,
	g a 1 g l 1 g , and denoting given two different Cartan decompositions for g, g " k g a g l g " k 1 V p " xe 1 , . . . , e p y, we have dpk g V p , k 1 g V p q ď σ p`1 σ p pgq,
	namely all possible different choices for U p pgq are contained in a ball of radius σp`1 σp pgq. Lemma 2.5 ([4, Lemma A.6]). dpgpP q, U p pgqq ď σ p`1 σ p pgq 1 sin >pP, U d´p pg ´1qq .

  Kq on PpK d q. Recall that only finitely many β can occur, as, by construction, |β| " L. The result follows taking

	c " min |β|"L	δ ρ 2	σ d σ 1
	ρpβqξ 1 ρ pC 8 pα 2 qq of radius	2 δρ	σ d		1 ρ P

σ1 `ρpβq ˘: σ d σ1 pgq is the smallest contraction for the action of g P SLpd,

  Lemma 8.4. Let Γ ă PO R p1, dq be a convex cocompact subgroup and let ρ : Γ Ñ PO K p1, dq be obtained extending the coefficients. Then ρ is p1, 1, dq-hyperconvex.Corollary 8.5. Every ta 1 u-Anosov representation β : Γ Ñ PO K p1, dq sufficiently close to a totally real representation ρ is p1, 1, dq-hyperconvex. In particular for each such representation dim Hff pξpBΓqq " h a1 β ď pd ´1q dim K. Proof. The first statement is a direct consequence of Propositions 6.2 and 8.3. Furthermore we know that for every element g P PO K p1, dq, we have p 2 pgq " d, and hence every point in BΓ is locally conformal for β. Theorem 5.14 then applies and gives the second statement.Another class of examples was studied by Dufloux in his thesis[START_REF] Dufloux | Dimension de Hausdorff des ensembles limites[END_REF][START_REF] Dufloux | Hausdorff dimension of limit sets[END_REF]. He says that a Schottky subgroup Γ ă PUp1, dq generated by a symmetric set W is well positioned if, for every w P W there is an open subsets Bpwq Ă BH d C such that ' the closures Bpwq are pairwise disjoint; ' wpBH d C zBpw ´1qq Ă Bpwq; ' no chain passes through three of these open subsets Bpwq.

	second statement follows then from Proposition 6.7, and the last is a consequence
	of Theorem 7.1.		
	There are many interesting examples of representations satisfying the assumption
	of Proposition 8.3, a natural class of examples can be obtained deforming totally
	real embeddings. The following is a direct consequence of Proposition 8.3:
	1 ρ	`y1 ρ	`z1 ρ is direct if and only if z 1 ρ doesn't belong to C x 1 ρ ,y 1 ρ . The

  It follows from Lemma 3.6 that if |α| is big enough U 1 pρpα ´1qq P Bpw ´1 Since the chain C y,z through y 1 ρ and z 1 ρ is the intersection of BH d K with Ppy 1 ρ ' z 1 ρ q, and, by assumption, C y,z doesn't intersect the open subset Bpw α q Ă BH d K , the result follows. The fact that the representation ρ : Γ Ñ SL d`1 pKq is p1, 1, dq-hyperconvex is a consequence of Theorem 7.1.

	Corollary 8.7 (cfr. [15, Corollary
	α q and s‰wα Bpsq and the intersection s‰wα Bpsq with the image of the boundary map is Ť s‰wα Bpsq: by construction C 8 pαq Ă Ť of the δ ρ {2 neighbourhood of X 8 pαq Ă Ť already contained in Ť s‰wα Bpsq.

  1, 2q-hyperconvex. Proposition 6.2 states hyperconvexity is an open property and, since BΓ S is topologically a circle, Proposition 9.3 implies that p1, 1, 2q-hyperconvex is closed among weakly irreducible ta 1 , a 2 u-Anosov representations. The remaining statements follow from Proposition 7.4 and Corollary 6.9 for K " R. This result can be useful to distinguish some components of weakly irreducible Anosov representations (similar bounds on the number of connected components of Anosov representations were obtained with different techniques by Stecker-Treib [41, Corollary 8.2]). 9.2. The Hitchin component of PSL d pRq. Let S be a closed connected oriented surface of genus ě 2. The Hitchin component of PSL d pRq is a connected component of the character variety Xpπ 1 S, PSL d pRqq that contains a Fuchsian representation, i.e. a representation that factors as π 1 S Ñ PSL 2 pRq

	ι d ÝÑ PSL d pRq,

  9.3. Hitchin representations in other groups. More generally, let G R be a simple real-split Lie group. These have been classified, i.e. up to finite coverings G R is a group in the following list: PSL d pRq, PSpp2n, Rq, SOpn, n `1q SOpn, nq, or it is the split real forms of the exceptional groups F 4,split , G 2,split ,E 6,split ,E 7,split and E 8,split .

For completeness, let us note that the space Up associated to an operator from a vector space equipped with a good norm to itself, can be defined for an operator between two vector spaces both equipped with good norms.

In the language of Bochi-Potrie-S. [4, Section 3.1] a tapu-Anosov representation is called p-dominated.

This follows from Proposition 2.15, see also, for example,[START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] Theorem A.15].

A celebrated Theorem of Gabai[START_REF] Gabay | Convergence groups are fuchsian groups[END_REF] states that a hyperbolic group Γ S such that BΓ S is a circle is virtually the fundamental group of a connected, closed genus ě 2 surface. We will not use this fact.