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THE ORBITAL COUNTING PROBLEM FOR
HYPERCONVEX REPRESENTATIONS

by Andrés SAMBARINO (*)

Abstract. We give a precise counting result on the symmetric space
of a connected noncompact real-algebraic semisimple Lie group G,
for a class of discrete subgroups of G that contains, for example, rep-
resentations of a surface group on PSL(2,R)×PSL(2,R), induced by
choosing two points on the Teichmüller space of the surface; and rep-
resentations on the Hitchin component of PSL(d,R). We also prove
a mixing property for the Weyl chamber flow in this setting.

Sur le comptage orbitale pour les representations hyperconvexes

Résumé. Nous trouvons un asymptotique pour le comptage orbitale
dans l’espace symétrique d’un groupe de Lie connexe, réel-algébrique,
semisimple et non-compact G, pour une classe des sous groupes dis-
crets de G qui contient, par exemple, representations d’un groupe
de surface dans PSL(2,R)×PSL(2,R) induites par la choix de deux
éléments de l’espace de Teichmüller de la surface ; et les representa-
tions dans la composante de Hitchin de PSL(d,R). Nous démontrons
aussi, dans ce contexte, une propriété de melange pour le flot des
chambres de Weyl.
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2 ANDRÉS SAMBARINO

1. Introduction

The Orbital Counting Problem is: given a discrete subgroup ∆ of a
connected noncompact real-algebraic semisimple Lie group G, find an as-
ymptotic for the growth of

#{g ∈ ∆ : dX(o, g · o) 6 t}

as t→∞, where o = [K] is a basepoint on X = G/K, the symmetric space
of G, endowed with a G-invariant Riemannian metric.
When the group ∆ is a lattice, this problem has been studied by Eskin-

McMullen [9]. They prove that the number of points in ∆ · o ∩ B(o, t),
is equivalent (modulo a constant) to the volume vol(B(o, t)) of the ball of
radius t. Hence, the asymptotic has a polynomial term together with an
exponential term. Similar results have been obtained by Duke-Rudnick-
Sarnak [7].

We will hence focus on subgroups of infinite covolume. An important
tool for such groups, in negative curvature, is the limit set of the group on
the visual boundary of the space in consideration. On higher rank, it turns
out to be more useful to consider the Furstenberg boundary.

Let P be a minimal parabolic subgroup of G, and denote by FG = F =
G/P the Furstenberg boundary of X. Benoist [2] has shown that the action
of ∆ on F has a smallest closed invariant set, called the limit set of ∆ on
F , and denoted by L∆ .

The limit set is well understood for Schottky groups. These are finitely
generated free subgroups of G, for which one has a good control on the
relative position of the fixed points on F of the free generators, together
with nice contraction properties.
This precise information allows Quint [23] to build an equivariant con-

tinuous map, from the boundary at infinity of the group into F . The
limit set is hence identified with a subshift of finite type. Quint [23] uses
the Thermodynamic Formalism on this subshift, to obtain an exponential
equivalence for the orbital counting problem.
This work consists in studying the orbital counting problem, for a class

of subgroups called hyperconvex representations, which we will now define.
The product F ×F has a unique open G-orbit, denoted by F (2). For

example, when G = PGL(d,R), the space F is the space of complete flags
of Rd, i.e. families of subspaces {Vi}di=0 such that Vi ⊂ Vi+1 and dimVi = i;
and the set F (2) is the space of pairs of flags in general position, i.e. pairs
({Vi}, {Wi}) such that, for every i, one has

Vi ⊕Wd−i = Rd.
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ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 3

Let Γ be the fundamental group of a closed connected negatively curved
Riemannian manifold (for any basepoint).

Definition 1.1. — We say that a representation ρ : Γ → G is hyper-
convex if there exists a Hölder-continuous ρ-equivariant map ζ : ∂∞Γ→ F ,

such that the pair (ζ(x), ζ(y)) belongs to F (2) whenever x, y ∈ ∂∞Γ are
distinct.

If G is a rank 1 simple group, then its Furstenberg boundary is the visual
boundary of the symmetric space, and the open orbit F (2) is

{(x, y) ∈ F ×F : x 6= y}.

The classical Morse’s Lemma implies thus that a quasi-isometric embeding
Γ→ G is a hyperconvex representation (see Efremovich-Tichonirova [8]).
Hyperconvex representations where introduced by Labourie [16], in his

study of the Hitchin component. Consider a closed connected oriented
surface Σ of genus g > 2. A representation π1(Σ)→ PSL(d,R) is Fuchsian
if it factors as

π1(Σ)→ PSL(2,R)→ PSL(d,R),
where PSL(2,R) → PSL(d,R) is induced by the irreducible linear action
of SL(2,R) on Rd (unique modulo conjugation by SL(d,R)) and π1(Σ) →
PSL(2,R) is discrete and faithful. A Hitchin component of PSL(d,R), is
a connected component of the space hom(π1(Σ),PSL(d,R)), containing a
Fuchsian representation.

Theorem (Labourie [16]). — A representation in a Hitchin component
of PSL(d,R) is hyperconvex.

Finally, recall that if H is also a noncompact real-algebraic semisimple
Lie group, then the Furstenberg boundary of G×H is FG ×FH . Hence,
if ρ : Γ → G and η : Γ → H are hyperconvex representations, so is the
product ρ× η : Γ→ G×H.
Denote by C(Z) the Banach space of real continuous functions on a

compact space Z (with the uniform topology), and by C∗(Z) its topological
dual. Denote by XF the Furstenberg compactification of X (see Section
5).

Theorem (See Section 5). — Let ρ : Γ → G be a Zariski-dense hyper-
convex representation. Then there exist h, c > 0, and a probability measure
µ on XF , such that

ce−ht
∑

γ∈Γ:dX(o,ρ(γ)·o)6t

δρ(γ)·o ⊗ δρ(γ−1)·o → µ⊗ µ,
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4 ANDRÉS SAMBARINO

for the weak-star convergence on C∗(X2
F ), as t→∞.

Considering the constant function equal to 1, one obtains the following
corollary.

Corollary. — Let ρ : Γ → G be a Zariski-dense hyperconvex repre-
sentation. Then there exist h, c > 0, such that

ce−ht#{γ ∈ Γ : dX(o, ρ(γ) · o) 6 t} → 1,

as t→∞.

The exponential growth rate h in Theorem A is explicit: it is the topolog-
ical entropy of a natural flow we construct, associated to the representation
ρ. On the contrary, not much information is known about the constant c.
As first shown by Margulis [19] in negative curvature, in order to obtain

a counting theorem, one usually proves a mixing property of a well cho-
sen dynamical system. In closed manifolds with negative curvature, the
geodesic flow plays this role. In infinite covolume, for example for convex
cocompact groups, one should restrict the geodesic flow to its nonwander-
ing set. When ∆ is a lattice in higher rank, Eskin-McMullen [9] use the
mixing property of the Weyl chamber flow, to prove the counting result
previously mentioned.
Let τ be the Cartan involution on g = Lie(G), whose fixed point set is

the Lie algebra of K. Consider p = {v ∈ g : τv = −v} and a, a maximal
abelian subspace contained in p. Denote by a+ a closed Weyl chamber,
and M the centralizer of exp(a) on K. The Weyl chamber flow is the right
action by translations of exp(a) on

∆\G/M.

When ∆ is a lattice on G, the mixing property of this action is due to
Howe-Moore [13].
In this article, we prove a mixing property of the Weyl chamber flow

for hyperconvex representations. Before stating the result, let us recall the
Patterson-Sullivan theory in higher rank.

Consider a G-invariant Riemannian metric in X, and ‖ ‖ the induced Eu-
clidean norm on a, invariant under the Weyl group. Consider the Cartan
decomposition G = K exp(a+)K, and a : G → a+ the Cartan projection,
then for every g ∈ G, one has ‖a(g)‖ = dX([K], g[K]). Hence, one is inter-
ested in understanding the growth of

#{g ∈ ∆ : ‖a(g)‖ 6 t},

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 5

as t → ∞. Given an open cone C in a+, consider the exponential growth
rate

hC = lim sup
s→∞

log #{g ∈ ∆ : a(g) ∈ C , ‖a(g)‖ 6 s}
s

.

The growth indicator of ∆, introduced by Quint [20], is the map ψ∆ : a→
R ∪ {−∞}, defined by

ψ∆(v) = ‖v‖ inf hC ,

where the greatest lower bound is taken over all open cones C containing
v. Remark that ψ∆(tv) = tψ∆(v) if t > 0.

Benoist [2] has introduced the limit cone L∆ of ∆, as the closed cone
in a+ generated by {λ(g) : g ∈ ∆}, where λ : G → a+ is the Jordan
projection. Quint [20] proves the following theorem.

Theorem 1.2 (Quint [20]). — Let ∆ be a Zariski-dense discrete sub-
group of G. Then ψ∆ is concave, upper semi-continuous and the space

{v ∈ a : ψ∆(v) > −∞},

is the limit cone L∆. Moreover ψ∆ is nonnegative on L∆, and positive on
its interior.

The growth indicator plays the role, in higher rank, of the critical expo-
nent in negative curvature. Denote by P the minimal parabolic group of
G, associated to the choice of a+. The set F = G/P is K-homogeneous,
the group M is the stabilizer in K of [P ] ∈ F . The Busemann cocycle
σ : G×F → a is defined to verify the equation

gk = l exp(σ(g, kM))n,

for every g ∈ G and k ∈ K, using Iwasawa’s decomposition of G =
K exp(a)N, where N is the unipotent radical of P.

Theorem 1.3 (Quint [21]). — Let ∆ be a Zariski-dense discrete sub-
group of G. Then for each linear form ϕ, tangent to ψ∆ in a direction in
the interior of L∆, there exists a probability measure νϕ on F , supported
on L∆, such that for every g ∈ ∆ one has,

dg∗νϕ
dνϕ

(x) = e−ϕ(σ(g−1,x)).

The measure νϕ is called a ϕ-Patterson-Sullivan measure of ∆. Denote
by u0 the unique element of the Weyl group that sends a+ to −a+. The
opposition involution i : a → a is defined by i = −u0. One has i(a(g)) =
a(g−1), for every g ∈ G, and thus ψ∆◦i = ψ∆.Moreover if ϕ ∈ a∗ is tangent
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6 ANDRÉS SAMBARINO

to ψ∆, so is ϕ◦i . Hence, in higher rank, Patterson-Sullivan’s measures come
in pairs.
As in negative curvature, one can use these measures to construct in-

variant measures for the Weyl chamber flow. Consider the action of G on
F (2) × a, via Busemann’s cocycle, defined by

g(x, y, v) = (gx, gy, v − σ(g, y)).

Denote by P the opposite parabolic subgroup of P, associated to the choice
of a+, the stabilizer in G of the point ([P ], [P ], 0) ∈ F (2) × a is isomorphic
to M, and we get thus an identification G/M = F (2) × a. This is called
Hopf’s parametrization of G.

Using Tits’s [31] representations of G, one can define a vector valued
Gromov product GΠ : F (2) → a (see Section 4) such that, for every g ∈ G
and (x, y) ∈ F (2),

GΠ(gx, gy)− GΠ(x, y) = −(i ◦σ(g, x) + σ(g, y)).

For a given ϕ ∈ a∗ tangent to ψ∆, the measure

e−ϕ(GΠ(·,·))νϕ◦i ⊗ νϕ ⊗ Leba

in F (2)× a is thus ∆-invariant and a-invariant. Denote by χϕ the measure
induced on the quotient ∆\G/M.We call this measure the Bowen-Margulis
measure for ϕ, its support is the set

∆\(L(2)
∆ ×a),

where L(2)
∆ = (L∆)2 ∩F (2). This set is analogous, in higher rank, to the

nonwandering set of the geodesic flow in negative curvature. An important
contrast though, is that when ∆ is not a lattice and G is simple (of higher
rank), the measure χϕ is expected to have infinite total mass. For example,
Quint [22] has shown that if ∆\(L(2)

∆ ×a) is compact, then ∆ is a cocompact
lattice.
We prove the following mixing property, for hyperconvex representations,

inspired by the work of Thirion [30]. He proves an analogous mixing prop-
erty for ping-pong groups.

Theorem (Theorem 4.23). — Let ρ : Γ→ G be a Zariski-dense hyper-
convex representation, and consider ϕ ∈ a∗ tangent to ψ∆ in the direction
uϕ. Then there exists κ > 0 such that, for any two compactly supported
continuous functions f0, f1 : ρ(Γ)\G/M → R, one has

(2πt)(rank(G)−1)/2χϕ(f0 · f1 ◦ exp(tuϕ))→ κχϕ(f0)χϕ(f1),

as t→∞.

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 7

In Section 2, we recall results on Hölder cocycles from [27], of particular
interest is the Reparametrizing Theorem 2.20. This theorem is crucial in
understanding the nature of

ρ(Γ)\(L(2)
ρ(Γ)×a),

when ρ : Γ → G is hyperconvex (Proposition 3.5). In Section 3, we prove
a general mixing property that will imply Theorem B. This is shown in
Section 4. In the last section, we prove Theorem A by adapting a method
of Roblin [25] and Thirion [29].

2. Hölder cocycles

Reparametrizations

The standard reference for the following is Katok-Hasselblat [15]. Let X
be a compact metric space, φ = (φt)t∈R a continuous flow on X without
fixed points (i.e. no point in X verifies φtx = x for every t ∈ R), and V a
finite dimensional real vector space.

Definition 2.1. — A translation cocycle over φ is a map κ : X×R→ V

that verifies the following two conditions:
- For every x ∈ X and t, s ∈ R, one has

κ(x, t+ s) = κ(φsx, t) + κ(x, s).

- For every t ∈ R, the map κ(·, t) is Hölder-continuous with exponent
independent of t, and with bounded multiplicative constant when t

is bounded.

Two translation cocycles κ1 and κ2 are Livšic-cohomologous, if there
exists a continuous map U : X → V, such that for all x ∈ X and t ∈ R one
has

(2.1) κ1(x, t)− κ2(x, t) = U(φtx)− U(x).

Denote by p(τ) the period of a φ-periodic orbit τ. If κ is a translation
cocycle then the period of τ for κ, is defined by

Lκ(τ) = κ(x, p(τ)),

for any x ∈ τ. It is clear that Lκ(τ) does not depend on the chosen point
x ∈ τ, and that the set of periods is a cohomological invariant of κ.

SUBMITTED ARTICLE : ARTICLE.TEX



8 ANDRÉS SAMBARINO

The standard example of a translation cocycle is obtained by considering
a Hölder-continuous map f : X → V, and defining κf : X × R→ V by

(2.2) κf (x, t) =
∫ t

0
f(φsx)ds.

The period of a periodic orbit τ for f is then∫
τ

f =
∫ p(τ)

0
f(φsx)ds.

We say that a map U : X → V is C1 in the direction of the flow φ, if for
every x ∈ X, the map t 7→ U(φtx) is of class C1, and the map

x 7→ ∂

∂t

∣∣∣∣
t=0

U(φtx)

is continuous. Two Hölder-continuous maps f, g : X → V are Livšic-
cohomologous if the translation cocycles κf and κg are. If this is the case,
the map U of equation (2.1) is C1 in the direction of the flow, and for all
x ∈ X one has

f(x)− g(x) = ∂

∂t

∣∣∣∣
t=0

U(φtx).

If f : X → R is positive, then, since X is compact, f has a positive
minimum and for every x ∈ X, the function κf (x, ·) is an increasing home-
omorphism of R. We then have a map αf : X × R→ R that verifies

(2.3) αf (x, κf (x, t)) = κf (x, αf (x, t)) = t,

for every (x, t) ∈ X × R.

Definition 2.2. — The reparametrization of φ by f : X → R∗+ is
the flow ψ = ψf = (ψt)t∈R on X, defined by ψt(x) = φαf (x,t)(x), for all
t ∈ R and x ∈ X. If f is Hölder-continuous, we will say that ψ is a Hölder
reparametrization of φ.

Remark 2.3. — If two positive continuous functions f, g : X → R are
Livšic-cohomologous, then the flows ψf and ψg are conjugated i.e. there
exists a homeomorphism h : X → X such that, for all x ∈ X and t ∈ R,
one has (1)

h(ψft x) = ψgt (hx).

Denote by Mφ the set of φ-invariant probability measures on X. The
pressure of a continuous function f : X → R is defined by

P (φ, f) = sup
m∈Mφ

h(φ,m) +
∫
X

fdm,

1. This is standard, see [26, Remark 2.2.] for a detailed proof.

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 9

where h(φ,m) is the metric entropy of m for φ. A probability measure m,
on which the least upper bound is attained, is called an equilibrium state
of f. An equilibrium state for f ≡ 0 is called a probability measure of
maximal entropy, and its entropy is called the topological entropy of φ,
denoted by htop(φ).
If τ is a periodic orbit of φ, and g : X → R is continuous, then a standard

argument shows

(2.4)
∫ κf (x,p(τ)))

0
g(ψfs p)ds =

∫
τ

gf.

In fact, if m is a φ-invariant probability measure on X, then the probability
measure m#, defined by

(2.5) dm#

dm
(·) = f(·)∫

fdm
,

is invariant under ψf .

Lemma 2.4 ([27, Section 2]). — If h = htop(ψf ) < ∞, then the map
m 7→ m# is a bijection between the set of equilibrium states of −hf, and
the set of probability measures of maximal entropy of ψf .

Anosov flows and Markov codings

Assume from now on that X is a compact manifold, and that the flow φ

is C1 . We say that φ is Anosov, if the tangent bundle of X splits as a sum
of three bundles

TX = Es ⊕ E0 ⊕ Eu,

that are dφt-invariant for every t ∈ R and, there exist positive constants C
and c such that, E0 is the direction of the flow, and for every t > 0 one has
‖dφtv‖ 6 Ce−ct‖v‖ for every v ∈ Es, and ‖dφ−tv‖ 6 Ce−ct‖v‖ for every
v ∈ Eu, for any Riemannian metric on X.

We need the following classical result of Livšic [18]:

Theorem 2.5 (Livšic [18]). — Let φ be an Anosov flow on X and κ :
X × R→ V a translation cocycle. If Lκ(τ) = 0 for every periodic orbit τ,
then κ is Livšic-cohomologous to 0.

As the next lemma proves, one can always chose a translation cocycle of
the form κf , in the cohomology class of a given translation cocycle κ.

SUBMITTED ARTICLE : ARTICLE.TEX



10 ANDRÉS SAMBARINO

Lemma 2.6. — Let φ be an Anosov flow on X, and let κ : X×R→ V be
a translation cocycle, then there exists a Hölder-continuous map f : X → V

such that the cocycles κ and κf are Livšic-cohomologous.

Proof. — Fix C > 0, and consider the translation cocycle κC , defined by

κC(x, t) = 1
C

∫ C

0
κ(φs(x), t)ds.

The translation cocycles κC and κ are Livšic-cohomolgous since they have
the same periods. One easily checks that κC(·, t) is of class C1 in the
direction of the flow and thus, κC is the integral of a Hölder-continuous
function along the orbits of φ. �

The following lemma is useful.

Lemma 2.7 ([27, Section 3]). — Consider a Hölder-continuous function
f : X → R, such that

1
p(τ)

∫
τ

f > k,

for some positive k and every periodic orbit τ of φ. Then f is Livšic-
cohomologous to a positive Hölder-continuous function.

In order to study the ergodic theory of Anosov flows, Bowen [5] and
Ratner [24] introduced the notion of Markov coding.

Definition 2.8. — The triple (Σ, π, r) is a Markov coding for φ, if Σ
is an irreducible two-sided subshift of finite type, the maps π : Σ→ X and
r : Σ→ R∗+ are Hölder-continuous and verify the following conditions: Let
σ : Σ→ Σ be the shift, and let r̂ : Σ×R→ Σ×R be the homeomorphism
defined by

r̂(x, t) = (σx, t− r(x)),

then
i) the map Π : Σ × R → X defined by Π(x, t) = φt(π(x)) is surjective

and r̂-invariant,
ii) consider the suspension flow σr = (σrt )t∈R on (Σ × R)/r̂, then the

induced map Π : (Σ × R)/r̂ → X is bounded-to-one and, injective
on a residual set which is of full measure for every ergodic invariant
measure of total support of σr.

Remark 2.9. — If a flow φ admits a Markov coding then every reparametriza-
tion ψ of φ also admits a Markov coding, simply by considering the new
roof function r′(x) =

∫ r(x)
0 f(φsx)dx.

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 11

A Markov coding is a very accurate measurable model for a flow φ.

If φ admits a Markov coding, then it has a unique probability measure
of maximal entropy, and the function Π : (Σ × R)/r̂ → X induces an
isomorphism between the set probability measures of maximal entropy of
σr and that of φ. In particular the topological entropy of φ coincides with
that of σr.

Recall that a flow φ is transitive if it has a dense orbit.

Theorem 2.10 (Bowen [4, 5]). — A transitive Anosov flow admits a
Markov coding.

The following is standard.

Proposition 2.11 (Bowen-Ruelle [6]). — Let φ be a transitive Anosov
flow. Then, given a Hölder-continuous function f : X → R, there exists a
unique equilibrium state for f, moreover, the equilibrium state is ergodic.

The equilibrium state of the last proposition can be described as follows
(see Bowen-Ruelle [6, Proposition 3.1]). If (Σ, π, r) is a Markov coding for
the Anosov flow φ, then consider the function F : Σ→ R defined by

F (x) =
∫ r(x)

0
f(φt(πx))dt,

and consider the equilibrium state ν, of F−P (f). Then for every measurable
function G : X → R, one has

(2.6)
∫
X

Gdmf = 1∫
rdν

∫
Σ

∫ r(x)

0
G(φt(πx))dtdν(x).

We finish this subsection with the following classical result.

Theorem 2.12. — LetM be a closed connected, negatively curved Rie-
mannian manifold. Then the geodesic flow on T 1M is a transitive Anosov
flow.

Hölder cocycles on ∂∞Γ

Let M be a closed connected negatively curved Riemannian manifold
M, and denote by M̃ → M its universal cover. The group Γ = π1(M) is
hyperbolic, and the visual boundary of M̃ is identified with the boundary
at infinity ∂∞Γ of the group, endowed with its usual Hölder structure (see
Ghys-de la Harpe [10]). We will now focus on Hölder cocycles on ∂∞Γ.
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12 ANDRÉS SAMBARINO

Definition 2.13. — A Hölder cocycle is a map c : Γ× ∂∞Γ→ V, such
that

c(γ0γ1, x) = c(γ0, γ1x) + c(γ1, x),
for any γ0, γ1 ∈ Γ and x ∈ ∂∞Γ, and such that c(γ, ·) is Hölder-continuous,
for every γ ∈ Γ (the same exponent is assumed for every γ ∈ Γ).

Recall that each γ ∈ Γ − {e} has two fixed points on ∂∞Γ, γ+ and γ−,
and that for every x ∈ ∂∞Γ−{γ−} one has γnx→ γ+, as n→∞. We will
refer to γ+ as the attractor of γ. The period of γ for a Hölder cocycle c is
defined by

`c(γ) = c(γ, γ+).
The cocycle property implies that for all n ∈ N, one has `c(γn) = n`c(γ),
and `c(γ) only depends on the conjugacy class [γ] of γ.
Two Hölder cocycles c and c′ are cohomologous, if there exists a Hölder-

continuous function U : ∂∞Γ→ V, such that for all γ ∈ Γ one has

c(γ, x)− c′(γ, x) = U(γx)− U(x).

One easily deduces from the definition that the set of periods of a Hölder
cocycle is a cohomological invariant. The following theorem of Ledrappier
[17] relates Hölder cocycles with Hölder-continuous maps T 1M → V.

Recall that the set of periodic orbits of the geodesic flow of M is in
one-to-one correspondence with the set of conjugacy classes [Γ] − {e} of
Γ−{e}. If γ ∈ Γ, then [γ] will freely represent its conjugacy class in Γ, and
its associated periodic orbit on T 1M.

Theorem 2.14 (Ledrappier [17, page 105]). — For each Hölder cocycle
c : Γ × ∂∞Γ → V, there exists a Hölder-continuous map Fc : T 1M → V,

such that for every γ ∈ Γ− {e}, one has

`c(γ) =
∫

[γ]
Fc.

The map c 7→ Fc induces a bijection between the set of cohomology classes
of V -valued Hölder cocycles and the set of Livšic-cohomology classes of
Hölder-continuous maps from T 1M → V.

Two Hölder cocycles c and c are dual cocycles if for every γ ∈ Γ − {e},
one has `c(γ) = `c(γ−1). If this is the case we will say that the pair {c, c}
is a pair of dual cocycles.
Denote by ∂2

∞Γ the set of pairs (x, y) ∈ (∂∞Γ)2 such that x 6= y. A
function

[·, ·] : ∂2
∞Γ→ V
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is a Gromov product for a pair of dual cocycles {c, c}, if for every γ ∈ Γ
and (x, y) ∈ ∂2

∞Γ one has

[γx, γy]− [x, y] = −(c(γ, x) + c(γ, y)).

Remark 2.15. — The existence of these objects, for a given Hölder co-
cycle, is a consequence of Ledrappier’s Theorem 2.14, see [27, Section 2]
for details.

We will now focus on real valued Hölder cocycles with non negative
periods, i.e. such that `c(γ) > 0 for every γ ∈ Γ − {e}. The exponential
growth rate of such cocycle is defined by

hc = lim sup
s→∞

log #{[γ] ∈ [Γ]− {e} : `c(γ) 6 s}
s

∈ (0,∞],

(it is a consequence of Ledrappier’s work [17] that a Hölder cocycle c with
non negative periods verifies hc > 0).

Remark 2.16. — A simple argument shows that two dual cocycles have
the same exponential growth rate, i.e. hc = hc.

For γ ∈ Γ−{e}, denote by |γ| the period of [γ].We will need the following
two lemmas.

Lemma 2.17 (Ledrappier [17, page 106]). — Let c be a Hölder cocycle
with nonnegative periods and finite exponential growth rate, then

1
m
< inf
γ∈Γ−{e}

`c(γ)
|γ|

6 sup
γ∈Γ−{e}

`c(γ)
|γ|

< m,

for a positive m.

Lemma 2.18 ([27, Section 2]). — Let c : Γ × ∂∞Γ → R be a Hölder
cocycle with nonnegative periods and finite exponential growth rate, then
the function Fc is Liv̌sic-cohomologous to a positive function.

If c has finite exponential growth rate then, following Patterson’s con-
struction, Ledrappier [17] proves the existence of a Patterson-Sullivan prob-
ability measure µ on ∂∞Γ of cocycle hcc, this is to say, µ verifies

dγ∗µ

dµ
(x) = e−hcc(γ

−1,x)

for every γ ∈ Γ and x ∈ ∂∞Γ.

Theorem 2.19 (Ledrappier [17] page 102). — Let c be a Hölder cocycle
with nonnegative periods. If hc < ∞ there exists a unique Patterson-
Sullivan probability measure of cocycle hcc. Conversely, if for some positive
h, there exists a Patterson-Sullivan measure of cocycle hc, then h = hc.
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14 ANDRÉS SAMBARINO

Denote by µ and µ the Patterson-Sullivan probability measures associ-
ated to c and c respectively and consider a Gromov product [·, ·], for the
pair {c, c}. Remark that the measure

e−hc[x,y]dµ(x)dµ(y)

on ∂2
∞Γ, denoted from now on by e−hc[·,·]µ⊗µ, is Γ-invariant. The following

theorem is crucial to understand the Weyl chamber flow.

Theorem 2.20 (The Reparametrizing Theorem [27]). — Let c be a
Hölder cocycle with nonnegative periods such that hc is finite. Then:
(1) the action of Γ in ∂2

∞Γ× R via c, that is,

γ(x, y, s) = (γx, γy, s− c(γ, y)),

is proper and cocompact. Moreover, the flow ψ on Γ\(∂2
∞Γ × R),

defined by
ψtΓ(x, y, s) = Γ(x, y, s− t),

is conjugated to a Hölder reparametrization of the geodesic flow on
T 1M. The conjugating map is also Hölder-continuous. The topolog-
ical entropy of ψ is hc.

(2) The measure
e−hc[·,·]µ⊗ µ⊗ ds

on ∂2
∞Γ×R induces on the quotient Γ\(∂2

∞Γ×R) a positive multiple
of the probability measure of maximal entropy of ψ.

Remark 2.21. — Consider Fc : T 1M → R given by Ledrappier’s Theo-
rem 2.14 for the cocycle c. Lemma 2.18 implies that Fc is Livšic-cohomologous
to a positive function. The reparametrization in Theorem 2.20 is given by
this positive function.

3. The action by translations of V on Γ\(∂2
∞Γ× V )

Recall that M is a closed, connected, negatively curved Riemannian
manifold, Γ is its fundamental group (for any base point), and V is a
finite dimensional real vector space.
Fix a Hölder cocycle c : Γ × ∂∞Γ → V, and denote by Lc the smallest

closed, convex cone of V that contains the periods {`c(γ) : γ ∈ Γ − {e}}.
The dual cone of Lc is the set of linear forms that are nonnegative on this
cone:

L ∗c = {ϕ ∈ V ∗ : ϕ|Lc
> 0}.
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A direct consequence of the Reparametrizing Theorem 2.20 applied to
ϕ ◦ c is the following one.

Corollary 3.1. — If there exists ϕ ∈ L ∗c such that hϕ◦c is finite, then
the action of Γ on ∂2

∞Γ× V via c, that is,

γ(x, y, v) = (γx, γy, v − c(γ, y)),

is properly discontinuous.

Denote by int(L ∗c ) the interior of L ∗c . One has the following lemma.

Lemma 3.2. — If ϕ ∈ L ∗c is such that hϕ◦c <∞, then ϕ ∈ int(L ∗c ), in
particular int(L ∗c ) is nonempty. Moreover, for every θ ∈ int(L ∗c ), one has
hθ◦c <∞.

Proof. — Consider the map Fc : T 1M → V associated to c by Theorem
2.14. One has

ϕ(
∫

[γ]
Fc) = ϕ(`c(γ)) > 0.

Moreover, since hϕ◦c < ∞, Ledrappier’s Lemma 2.17, applied to ϕ ◦ c,
implies that there exists k > 0 such that

ϕ( 1
|γ|

∫
[γ]
Fc) = 1

|γ|
ϕ(`c(γ)) > k,

for every γ ∈ Γ− {e}. Anosov’s closing Lemma (c.f. Shub [28]) states that
the convex combinations of the Lebesgue measures on periodic orbits are
dense inMφ, thus

- ϕ(
∫
Fcdm) > k for every φ-invariant probability measure m,

- the set
{
∫
Fcdm : m ∈Mφ}

is compact and generates the cone Lc.

Hence, ϕ is positive on the cone Lc − {0}, i.e. ϕ ∈ int(L ∗c ).
If θ belongs to the interior of L ∗c , then θ|Lc−{0} > 0. Hence, there exists

a positive a such that ϕ(v) 6 aθ(v), for all v ∈ Lc. This implies that
hθ◦c 6 ahϕ◦c <∞. This finishes the proof. �

Assume from now on the existence of ϕ ∈ L ∗c with finite hϕ◦c. We
then have a natural map between P(int(L ∗c )) and P(Lc) as follows. Fix
Fc : T 1M → V associated to c.

Definition 3.3. — For ϕ ∈ int(L ∗c ), denote by mϕ the equilibrium
state, on T 1M, of the function −hϕ◦cϕ ◦ Fc (recall Proposition 2.11). The
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16 ANDRÉS SAMBARINO

dual direction of R+ϕ, is the direction in Lc given by the vector∫
Fcdmϕ,

and is denoted by uϕ ∈ P(Lc).

Remark 3.4. — A change in the Livšic-cohomology class of Fc does not
change the value of the integral of Fc over any φ-invariant measure. Hence
uϕ is well defined, independently of the choice of Fc. Remark also that
if t ∈ R+, then htϕ◦c = hϕ◦c/t, hence, the dual direction of R+ϕ, only
depends on the direction given by ϕ.

Fix also a dual cocycle c of c, and a Gromov product [·, ·] : ∂2
∞Γ→ V for

the pair {c, c}. Denote by µϕ and µϕ, the Patterson-Sullivan probability
measures of cocycles hϕ◦cϕ ◦ c and hϕ◦cϕ ◦ c respectively. The function

[·, ·]ϕ = ϕ ◦ [·, ·]

is a Gromov product for the pair {ϕ ◦ c, ϕ ◦ c}. Denote by Ωϕ the measure
on Γ\(∂2

∞Γ× V ) induced by the measure

Ω̃ϕ = e−hϕ◦c[·,·]ϕµϕ ⊗ µϕ ⊗ LebV ,

where LebV is a fixed Lebesgue measure on V. The measure Ωϕ is called
the Bowen-Margulis measure of the pair {c, c} for the linear form ϕ.

Choose a vector uϕ ∈ uϕ such that ϕ(uϕ) = 1, and consider the flow
ωϕ = (ωϕt )t∈R on Γ\(∂2

∞Γ× V ) induced on the quotient by

(x, y, v) 7→ (x, y, v − tuϕ).

Proposition 3.5 (Straightening the action of V ). — For every ϕ ∈ L ∗c
such that hϕ◦c <∞, there exists a Hölder reparametrization of the geodesic
flow ψ = ψc,ϕ, a Hölder-continuous map f : T 1M → kerϕ, with zero mean
for the probability measure of maximal entropy of ψ, denoted by m#

ϕ , i.e.∫
T 1M

fdmϕ
# = 0,

and a Hölder-continuous homeomorphism

E : Γ\(∂2
∞Γ× V )→ T 1M × kerϕ,

that conjugates the flow ωϕ with the flow ψ̂ = (ψ̂t)t∈R on T 1M × kerϕ,
defined by

(3.1) ψ̂t(p, v0) = (ψt(p), v0 −
∫ t

0
f(ψsp)ds).
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The map E also conjugates the actions of kerϕ, on Γ\(∂2
∞Γ × V ) and on

T 1M × kerϕ (by translation on the fibers), and is an isomorphism, up to
a multiplicative constant, between the measures Ωϕ and mϕ

# ⊗ Lebkerϕ .

Proof. — Consider the action of Γ on ∂2
∞Γ×R via ϕ ◦ c. Then one has a

Γ-equivariant fibration ϕ̂ : ∂2
∞Γ× V → ∂2

∞Γ×R with fiber kerϕ, given by

ϕ̂(x, y, v) = (x, y, ϕ(v)).

The measure Ω̃ϕ disintegrates over the measure

e−hϕ◦c[·,·]ϕµϕ ⊗ µϕ ⊗ LebR

on ∂2
∞Γ× R, with conditional measures the Lebesgue measure on kerϕ.

Since hϕ◦c is finite, the Reparametrizing Theorem 2.20 applies and thus,
the action of Γ on ∂2

∞Γ × R via ϕ ◦ c is properly discontinuous. More-
over there exists a Hölder-continuous homeomorphism E : Γ\(∂2

∞Γ×R)→
T 1M, that conjugates the translation flow with a reparametrization of the
geodesic flow. Denote this reparametrization by ψ. The image of the mea-
sure induced on the quotient by

e−hϕ◦c[·,·]ϕµϕ ⊗ µϕ ⊗ LebR,

is sent by E to a positive multiple of the (unique) probability measure of
maximal entropy of ψ.
The functions ϕ ◦ Fc and Fϕ◦c are Livšic-cohomologous, since they have

the same period for every periodic orbit of the geodesic flow. Lemma 2.18
implies then that, ϕ◦Fc is Livšic-cohomolgous to a positive function, hence
we can (and will) assume that ϕ◦Fc > 0. Remark 2.21 states that the flow
ψ can be taken as the reparametrization of the geodesic flow φ by ϕ ◦ Fc.
The probability measure of maximal entropy of ψ is mϕ

# (recall that mϕ

is the equilibrium state of −hϕ◦cϕ ◦ Fc and use Lemma 2.4).
Abusing notation, denote again by

ϕ̂ : Γ\(∂2
∞Γ× V )→ Γ\(∂2

∞Γ× R),

the map induced on the quotients by ϕ̂ : ∂2
∞Γ× V → ∂2

∞Γ× R. For every
u ∈ V, one has

E ◦ ϕ̂(x, y, v − u) = ψϕ(u)(E(x, y, ϕ(v))),

in particular the flow ωϕ is (semi)conjugated to ψ by E ◦ ϕ̂, i.e. for every
t ∈ R one has

E ◦ ϕ̂ ◦ ωϕt = ψt ◦ E ◦ ϕ̂.
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18 ANDRÉS SAMBARINO

The action of the abelian group kerϕ on ∂2
∞Γ × V, commutes with the

action of Γ and preserves the fibers ϕ̂−1(x, y, t) of ϕ̂. Hence we have an
action of kerϕ on the quotient, and one finds that

E ◦ ϕ̂ : Γ\(∂2
∞Γ× V )→ T 1M

is a vector bundle with fiber kerϕ, and the group kerϕ acts by Hölder-
continuous homeomorphisms on Γ\(∂2

∞Γ × V ) preserving the fibers, and
acting transitively on them. Using the zero section of a vector bundle, and
the action of kerϕ, one can trivialize this bundle. Hence, Γ\(∂2

∞Γ × V )
is (Hölder) isomorphic to T 1M × kerϕ, and this isomorphism is kerϕ-
equivariant.
Denote by Ψ = (Ψt)t∈R the flow on T 1M × kerϕ, corresponding to the

flow ωϕ via this last identification. Since ωϕ commutes with the action of
kerϕ, the same occurs for Ψ, and thus we can write

Ψt(p, v0) = (ψt(p), v0 − κ(p, t)),

where κ : T 1M × R → kerϕ is a translation cocycle over ψ. Lemma 2.6
implies the existence of a Hölder-continuous map f : T 1M → kerϕ, such
that the cocycles κ and κf are Livšic-cohomologous (for the flow ψ). The
flow Ψ is hence conjugated to the flow ψ̂ = (ψ̂t)t∈R on T 1M×kerϕ, defined
by

ψ̂t(p, v) = (ψt(p), v −
∫ t

0
f(ψs(p))ds).

Denote by E : Γ\(∂2
∞Γ× V )→ T 1M × kerϕ the composition of the trivi-

alization of Γ\(∂2
∞Γ× V ) defined above, with this last conjugacy between

Ψ and ψ̂. By definition, E conjugates the flows ωϕ and ψ̂, and is kerϕ-
equivariant.
We remark that the image by E of the measure Ωϕ on T 1M × kerϕ,

is a measure that disintegrates as a kerϕ-invariant measure on the fibers,
and a positive constant multiple of mϕ

# on T 1M. This measure is then a
positive constant multiple of mϕ

# ⊗ Lebkerϕ .

It remains to check that
∫
T 1M

fdmϕ
# = 0. In order to do this, recall

that ϕ(uϕ) = 1 and that uϕ is collinear to the vector
∫
Fcdmϕ, hence

(3.2)
∫
Fcdmϕ = uϕ

∫
ϕ ◦ Fcdmϕ.

For every γ ∈ Γ− {e}, let `0c(γ) be the projection of the period `c(γ) on
kerϕ, using the decomposition V = kerϕ⊕uϕ. Remark that, for any v ∈ V
and γ ∈ Γ− {e}, one has

γ(γ−, γ+, v + `0c(γ)) = (γ−, γ+, v − `ϕ◦c(γ)uϕ) = ωϕ`ϕ◦c(γ)(γ−, γ+, v).
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1

ψ̃ϕ(ℓc(γ))(·)

ℓ0c(γ)

fiber over p

Figure 3.1. If p ∈ T 1M belongs to the periodic orbit associated to [γ],
the translation on the fiber kerϕ by the flow ψ̂, at the returning time,
is given by `0c(γ).

This is to say, `0c(γ) is the displacement on kerϕ of the flow ωϕ, over a
point of the form (γ−, γ+, v), at the return time ϕ(`c(γ)) = `ϕ◦c(γ).

Consider also Fc = F 0
c + (ϕ ◦ Fc)uϕ, using this same decomposition.

Equation (3.2) implies that ∫
T 1M

F 0
c dmϕ = 0,

moreover one has
`0c(γ) =

∫
[γ]
F 0
c .

Since ψ̂ and ωϕ are conjugated one has, for p ∈ T 1M of the form (γ−, γ+, t),

ψ̂`ϕ◦c(γ)(p, v) = (p, v −
∫ `ϕ◦c(γ)

0
f(ψsp)ds) = (p, v + `0c(γ)).

Hence,

`0c(γ) = −
∫ `ϕ◦c(γ)

0
f(ψsp)ds = −

∫
[γ]
fϕ ◦ Fc,

by equation (2.4) with f therein equal to ϕ ◦ Fc. Livšic’s Theorem 2.5
implies that the functions F 0

c and −fϕ ◦ Fc are Livšic-cohomologous for
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the flow φ, thus

0 =
∫
F 0
c dmϕ = −

∫
fϕ ◦ Fcdmϕ = −

∫
fdmϕ

#
∫
ϕ ◦ Fcdmϕ.

This finishes the proof. �

Mixing properties of the action of V on Γ\(∂2
∞Γ× V )

Now that we have a good description of Γ\(∂2
∞Γ×V ), together with the

action of V, we can use Markov codings and a theorem of Thirion [30], to
prove a mixing property.
Consider ϕ ∈ L ∗c , with hϕ◦c < ∞, and uϕ ∈ uϕ such that ϕ(uϕ) = 1.

For v0 ∈ kerϕ and t ∈ R+, denote by ωϕ,v0
t : Γ\(∂2

∞Γ×V )→ Γ\(∂2
∞Γ×V )

the map induced on the quotient by

(x, y, v) 7→ (x, y, v − tuϕ −
√
t v0).

If | · | is a Euclidean norm on V, denote by I = I |·| : kerϕ → R the
function defined by

(3.3) I(v) = |v|
2|uϕ|2 − 〈v, uϕ〉2

|uϕ|2
.

Theorem 3.6. — Let c : Γ × ∂∞Γ → V be a Hölder cocycle, such
that the group generated by its periods is dense in V. Fix a linear form
ϕ ∈ L ∗c such that hϕ◦c <∞. Then there exists c > 0 and a Euclidean norm
| · | on V such that given two compactly supported continuous functions
f0, f1 : Γ\(∂2

∞Γ× V )→ R, one has, for every v0 ∈ kerϕ,

(2πt)(dimV−1)/2Ωϕ(f0 · f1 ◦ ωϕ,v0
t )→ ce−I(v0)/2Ωϕ(f0)Ωϕ(f1),

as t→∞.

The remainder of the section is devoted to the proof of Theorem 3.6.
Applying Proposition 3.5, we get a Hölder reparametrization of the geo-

desic flow ψ, together with a Hölder-continuous map f : T 1M → kerϕ and
E : Γ\(∂2

∞Γ× V )→ T 1M × kerϕ that conjugates:
- the actions of kerϕ on Γ\(∂2

∞Γ× V ) and on T 1M × kerϕ,
- the flow ωϕ on Γ\(∂2

∞Γ × V ) with the flow ψ̂ = (ψ̂t)t∈R on T 1M ×
kerϕ, defined by equation (3.1).

We will thus study mixing properties of

t · (x, v) 7→ (ψt(p), v −
∫ t

0
f(ψsp)ds−

√
t v0).
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Consider a Markov coding (Σ, π, r) for ψ (Remark 2.9). According to
equation (2.6), there exists an equilibrium state of the shift σ : Σ → Σ,
denoted by νϕ, corresponding to the measure mϕ

# via the Markov coding,
i.e. for every measurable function G : T 1M → R one has

(3.4)
∫
T 1M

Gdmϕ
# = 1∫

rdνϕ

∫
Σ

∫ r(x)

0
G(ψs(πx))dsdνϕ(x).

Define K : Σ→ V by

K(x) = r(x)uϕ +
∫ r(x)

0
f(ψs(πx))ds,

and K̂ : Σ× V → Σ× V by K̂(x, v) = (σx, v −K(x)).

Lemma 3.7. — The map π : Σ× V → T 1M × kerϕ, defined by

π(x, v) = (ψϕ(v)(πx), v − ϕ(v)uϕ −
∫ ϕ(v)

0
f(ψs(πx))ds)

= ψ̂ϕ(v)(πx, v − ϕ(v)uϕ),
is K̂-invariant, and induces a measurable isomorphism between the measure
induced on (Σ×V )/K̂ by νϕ⊗LebV and a positive multiple of the measure
mϕ

# ⊗ Lebkerϕ on T 1M × kerϕ.

Proof. — Let’s show that π is K̂-invariant, the proof is an explicit com-
putation. Remark that Property i) in the definition of Markov coding states
that, for every x ∈ Σ and t ∈ R, one has ψt−r(x)(π(σx))) = ψt(π(x)). Now,

π(K̂(x, v)) = ψ̂ϕ(v−K(x))(π(σx), v −K(x)− ϕ(v −K(x))uϕ).

Observe that

−
∫ −r(x)

0
f(ψs(π(σx)))ds = −

∫ 0

r(x)
f(ψs−r(x)(π(σx)))ds =

−
∫ 0

r(x)
f(ψs(πx))ds =

∫ r(x)

0
f(ψs(π(σx)))ds.

Recall that K(x) = r(x)uϕ +
∫ r(x)

0 f(ψs(πx))ds, hence

π(K̂(x, v)) = ψ̂ϕ(v)−r(x)(π(σx), v −
∫ r(x)

0
f(ψs(πx))ds− ϕ(v)uϕ) =

ψ̂ϕ(v)(π(x), v − ϕ(v)uϕ −
∫ r(x)

0
f(ψs(πx))ds−

∫ −r(x)

0
f(ψs(π(σx)))ds.

This proves the K̂-invariance. The remaining statements follow from equa-
tion (3.4) and Property ii) of Markov codings. �
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Hence, the flow ψ̂ is measurably conjugated to the translation flow on
(Σ × V )/K̂, in the direction given by uϕ. Remark that, since Proposition
3.5 states that

∫
fdm#

ϕ = 0, equation (3.4) applied to G = f yields∫
Σ
Kdνϕ = (uϕ +

∫
fdm#

ϕ )
∫

Σ
rdνϕ = uϕ

∫
Σ
rdνϕ.

Moreover, this conjugation also conjugates the actions of kerϕ on T 1M ×
kerϕ and on (Σ× V )/K̂.
Observe that the periods of K are the periods of the Hölder cocycle c,

and remark that ϕ ◦ K = r > 0. Theorem 3.6 is thus a consequence of
Proposition 3.5, and the following theorem due to Thirion [30], applied to
ν = νϕ.

Theorem 3.8 (Thirion [30]). — Let Σ be a subshift of finite type and
K : Σ → V a Hölder-continuous map such that the group generated by
its periods is dense in V. Assume there exists ϕ ∈ V ∗ such that ϕ ◦ K is
Livšic-cohomologous to a positive function. Consider an equilibrium state
ν of σ and denote by

τ =
∫

Σ
Kdν ∈ V.

Define K̂ : Σ × V → Σ × V by K̂(x, v) = (σ(x), v − K(x)). Then there
exists a Euclidean norm | · | on V such that given two compactly supported
continuous functions f0, f1 : (Σ× V )/K̂ → R, and v0 ∈ kerϕ, one has

(2πt)(dimV−1)/2
∫

(Σ×V )/K̂
f0(x, v)f1(x, v − tτ −

√
t v0)d(ν ⊗ LebV )

converges, as t→∞, to

ce−I(v0)/2
∫

(Σ×V )/K̂
f0d(ν ⊗ LebV )

∫
(Σ×V )/K̂

f1d(ν ⊗ LebV ),

where c > 0 is a constant and I(v0) = (|v0|2|τ |2 − 〈v0, τ〉2)/|τ |2.

Proof. — Let us give some hints on the proof for completeness, the basic
method is that of Guivarc’h-Hardy [12]. Consider a Hölder-continuous
function g : Σ→ R, and the associated Ruelle operator, defined by

Lg(T )(x) =
∑

y∈Σ:σ(y)=x

e−g(y)T (y),

where T : Σ→ R is Hölder-continuous. It is a standard fact that g can be
assumed to be normalized such that the equilibrium state ν, is the unique
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probability measure on Σ such that L∗gν = ν. One then considers the semi-
Markovian chain on Σ× V defined by

P(x,v) =
∑

y∈Σ:σ(y)=x

e−g(y)δ(y,v+K(y)).

The proof then consists on explicitly verifying the hypothesis of Babillot
[1, Theorem 2.9], see Thirion [30] for details. �

4. Convex representations and the Weyl chamber flow

We are now interested in studying representations Γ → G, of the fun-
damental group Γ of a closed connected negatively curved Riemannian
manifold, admitting equivariant maps from ∂∞Γ to some flag space of a
connected, noncompact real-algebraic semisimple Lie group G.
Let K be a maximal compact subgroup of G, and consider τ, the Cartan

involution on g = Lie(G) whose fixed point set is the Lie algebra of K.
Consider p = {v ∈ g : τv = −v} and a a maximal abelian subspace
contained in p.

Let Σ be the set of roots of a on g. Consider a closed Weyl chamber
a+, Σ+ the set of positive roots associated to a+, and Π the set of simple
roots determined by Σ+. Let W be the Weyl group of Σ, and denote by
u0 : a → a the longest element in W, which is the unique element in W

that sends a+ to −a+. The opposition involution i : a → a is defined by
i = −u0.

To each subset θ of Π, one associates two opposite parabolic subgroups
of G, Pθ and P̌θ, whose Lie algebras are, by definition,

pθ = g0 ⊕
⊕
α∈Σ+

gα ⊕
⊕

α∈〈Π−θ〉

g−α,

and
p̌θ = g0 ⊕

⊕
α∈Σ+

g−α ⊕
⊕

α∈〈Π−θ〉

gα,

where 〈θ〉 is the set of positive roots generated by θ, and

gα = {w ∈ g : [v, w] = α(v)w ∀v ∈ a}.

Every pair of opposite parabolic subgroups of G is conjugated to (Pθ, P̌θ)
for a unique θ, and every opposite parabolic subgroup of Pθ is conjugated
to Pi θ : the parabolic group associated to

i θ = {α ◦ i : α ∈ θ}.
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Fix from now on a nonempty subset of simple roots θ ⊂ Π and let
Fθ = G/Pθ. The space Fi θ ×Fθ has a unique open G-orbit, denoted by
F

(2)
θ .

Definition 4.1. — A representation ρ : Γ→ G is θ-convex if it admits
two Hölder-continuous ρ-equivariant maps, ξ = ξρ : ∂∞Γ → Fθ and η =
ηρ : ∂∞Γ → Fi θ, such that whenever x 6= y in ∂∞Γ, the pair (η(x), ξ(y))
belongs to F

(2)
θ .

The space FΠ = F is the Furstenberg boundary of the symmetric space
of G, hence, a Π-convex representation is called hyperconvex.

We recall some definitions from Benoist [2]. An element g ∈ G is proximal
in Fθ if it has an attracting fixed point on Fθ. This attractor is unique and
is denoted by gθ+. The element g also has a fixed point gθ− on Fi θ, which is
the attractor for g−1 on Fi θ. For every x ∈ Fθ such that (gθ−, x) ∈ F

(2)
θ ,

one has gnx→ gθ+. The point gθ− is called the repelling hyperplane of g.

Lemma 4.2 ([26, Section 3]). — Let ρ : Γ → G be a Zariski-dense θ-
convex representation. Then for every γ ∈ Γ−{e}, ρ(γ) is proximal in Fθ,

ξ(γ+) is its attracting fixed point and η(γ−) is the repelling hyperplane.

The equivariant functions ξ and η of the definition are hence unique,
since attracting points γ+ are dense in ∂∞Γ.

Busemann cocycle of ρ

To a θ-convex representation ρ : Γ→ G, one associates a Hölder cocycle
on ∂∞Γ. In order to do so, we need Busemann’s cocycle of G, introduced
by Quint [21].
The set F is K-homogeneous, denote by M the stabilizer of [P ] in K.

One defines σΠ : G×F → a to verify the following equation

gk = l exp(σΠ(g, kM))n,

for every g ∈ G and k ∈ K, using Iwasawa’s decomposition of G =
K exp(a)N, where N is the unipotent radical of P.
In order to obtain a cocycle only depending on the set Fθ (and G), one

considers
aθ =

⋂
α∈Π−θ

kerα,

the Lie algebra of the center of the reductive group Pθ ∩ P̌θ. Consider also
pθ : a→ aθ, the only projection invariant under the group Wθ = {w ∈W :
w(v) = v ∀v ∈ aθ}.
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Remark 4.3. — One easily verifies the following relation: pi θ = i ◦pθ ◦ i .

Quint [21] proves the following lemma.

Lemma 4.4 (Quint [21, Lemmas 6.1 and 6.2]). — The map pθ ◦ σΠ
factors trough a map σθ : G ×Fθ → aθ. The map σθ verifies the cocycle
relation: for every g, h ∈ G and x ∈ Fθ, one has

σθ(gh, x) = σθ(g, hx) + σθ(h, x).

The cocycle associated to a θ-convex representation βρθ = βθ : Γ×∂∞Γ→
aθ is defined by

βθ(γ, x) = σθ(ρ(γ), ξ(x)).
Denote by λ : G→ a+ the Jordan projection, and define λθ : G→ aθ by

λθ(g) = pθ(λ(g)).

Lemma 4.5. — Let ρ : Γ → G be a Zariski-dense θ-convex representa-
tion. Then the period of βθ for γ ∈ Γ− {e}, is

βθ(γ, γ+) = λθ(ρ(γ)).

Proof. — The proof follows from Lemma 4.2. See [27, Lemma 7.5] for
details. �

Remark that a θ-convex representation is also (by definition), i θ-convex.
Define then βθ : Γ× ∂∞Γ→ aθ by βθ = iβi θ. One has the following.

Lemma 4.6. — The pair {βθ, βθ} is a pair of dual cocycles.

Proof. — The proof follows from Remark 4.3, together with Lemma 4.5,
and the fact that i(λ(g)) = λ(g−1), for every g ∈ G. �

Consider Lβθ , the closed cone associated to βθ. Since Lβθ is contained
in pθ(a+), it does not contain any line, and thus the dual cone L ∗βθ has non
empty interior.

Lemma 4.7. — Let ρ : Γ → G be a Zariski-dense θ-convex representa-
tion, and consider ϕ in the interior of the dual cone L ∗βθ , then the cocycle
ϕ ◦ βθ : Γ× ∂∞Γ→ R has finite and positive exponential growth rate hϕ.

Proof. — The proof follows exactly as [27, Lemma 7.7]. �

Applying Corollary 3.1 to the cocycle βθ, one directly obtains:

Corollary 4.8. — Let ρ : Γ→ G be Zariski-dense θ-convex represen-
tation, then the action of Γ on ∂2

∞Γ× aθ via βθ is properly discontinuous.

Even though we will not use it on this work, we remark that Lemma 4.7,
together with [27, Corollary 4.1], imply the following counting result:
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Corollary 4.9. — Let ρ : Γ → G be a Zariski-dense θ-convex repre-
sentation, and consider ϕ in the interior of L ∗βθ . Then there exists hϕ > 0,
such that

hϕte
−hϕt#{[γ] ∈ [Γ] primitive : ϕ(λθ(ργ)) 6 t} → 1,

as t→∞.

Gromov product

The purpose of this section is to define a Gromov product for the pair
{βθ, βθ}.We begin with the following result of Tits [31] (see also Humphreys
[14, Chapter XI]). Recall that a representation Λ : G → PGL(d,R) is
proximal if there exists g ∈ G such that Λ(g) is proximal in P(Rd).

Proposition 4.10 (Tits [31]). — For each α ∈ Π there exists a finite
dimensional proximal irreducible representation Λα : G → PGL(Vα), such
that the highest weight χα of Λα is an integer multiple of the fundamental
weight ωα. Moreover, any other weight of Λα is of the form

χα − α−
∑
β∈Π

nββ,

with nβ ∈ N.

Fix a nonempty subset θ of Π and consider Λα : G → PGL(Vα), a
representation given by Tits’s proposition for α ∈ θ. Since Λα is proximal
and α ∈ θ, the parabolic group Pθ is contained in the stabilizer of a line in
P(Vα). Thus one obtains a continuous equivariant map ξα : Fθ → P(Vα).
The dual representation Λ∗α : G → PGL(V ∗α ) is also proximal, and its

highest weight is χα i . Hence, one obtains another equivariant map ηα =
ξiα : Fi θ → P(V ∗α ). Moreover, if (x, y) ∈ F

(2)
θ then

ηα(x)(ξα(y)) 6= 0.

Consider a scalar product on Vα invariant under Λα(K) such that Λα(exp a)
is symmetric. The Euclidean norm ‖ ‖α induced by this scalar product ver-
ifies

log ‖Λα(g)‖α = χα(a(g)),

for every g ∈ G, where a : G → a+ is the Cartan projection (observe that
the operator norm only depends on R+‖ ‖α).
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Lemma 4.11 (Quint [21, Lemma 6.4]). — For every α ∈ θ and v ∈ ξα(x)
one has

χα(σθ(g, x)) = log ‖Λα(g)v‖α
‖v‖α

.

The set {ωα|aθ : α ∈ θ} is a basis of a∗θ and hence so is {χα|aθ}α∈θ. Thus,
defining

χα(Gθ(x, y)) = log |ϕ(v)|
‖ϕ‖α‖v‖α

for any ϕ ∈ ηα(x) and v ∈ ξα(y), provides a definition of Gθ. Moreover, no-
tice that if (x, y) ∈ F

(2)
θ are such that ξα(x) ⊥ ker ηα(y) for the Euclidean

norm ‖ ‖α and all α ∈ θ, then

(4.1) Gθ(x, y) = 0.

Lemma 4.12. — For every g ∈ G and (x, y) ∈ F
(2)
θ , one has

Gθ(gx, gy)− Gθ(x, y) = −(iσi θ(g, x) + σθ(g, y)).

Proof. — For any norm ‖ ‖ on a vector space V, every g ∈ PGL(V ) and
every (ϕ, v) ∈ P(V ∗)×P(V )−{(ϕ, v) ∈ P(V ∗)×P(V ) : ϕ(v) = 0}, one has

log |ϕ ◦ g
−1(gv)|

‖ϕ ◦ g−1‖‖gv‖
− log |ϕ(v)|

‖ϕ‖‖v‖
= − log ‖gϕ‖

‖ϕ‖
− log ‖gv‖

‖v‖
.

The lemma follows from this formula together with the definition of Gθ and
Quint’s Lemma 4.11. �

The following corollary is immediate.

Corollary 4.13. — Let ρ : Γ→ G be a Zariski-dense θ-convex repre-
sentation. The function [·, ·] : ∂∞Γ(2) → aθ defined by

[x, y] = Gθ(η(x), ξ(y)),

is a Gromov product for the pair {βθ, βθ}.

Mixing

We need the following theorem of Benoist [3]:

Theorem 4.14 (Benoist [3, Main Proposition]). — Consider a Zariski-
dense subgroup ∆ of G. Then the group generated by {λ(g) : g ∈ ∆} is
dense in a.
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Recall that the Bowen-Margulis measure of the pair {βθ, βθ} for ϕ ∈
int(L ∗βθ ) is the measure Ωϕ on Γ\(∂2

∞Γ× aθ), induced on the quotient by

e−hϕ[·,·]ϕµϕ ⊗ µϕ ⊗ Lebaθ ,

where µϕ and µϕ are the Patterson-Sullivan probability measures with
cocycles hϕϕ ◦ βθ and hϕϕ ◦ βθ, respectively. Benoist’s theorem (and the
continuity of pθ) guarantees the missing hypothesis of Theorem 3.6, applied
using c = βθ, and we obtain the following result.

Theorem 4.15. — Let ρ : Γ → G be a Zariski-dense θ-convex repre-
sentation, and consider ϕ ∈ int(L ∗βθ ). Then there exists a Euclidean norm
| · | on a such that, for any two compactly supported continuous functions
f0, f1 : Γ\(∂2

∞Γ× aθ)→ R and any v0 ∈ kerϕ, one has

(2πt)(dim aθ−1)/2Ωϕ(f0 · f1 ◦ ωϕ,v0
t )→ e−I(v0)/2Ωϕ(f0)Ωϕ(f1),

as t→∞.

The growth indicator function

Consider a G-invariant Riemannian metric on X, and ‖ ‖ the induced
Euclidean norm on a, invariant under the Weyl group. Recall that if g ∈ G,
then ‖a(g)‖ = dX([K], g[K]). Consider a Zariski-dense discrete subgroup
∆ of G, and define

h∆ = lim sup
s→∞

log #{g ∈ ∆ : ‖a(g)‖ 6 s}
s

.

Recall that in the introduction we have defined ψ∆, the growth indicator
of ∆.

Lemma 4.16 (Quint [20, Corollaire 3.1.4]). — Let ∆ be a Zariski-dense
subgroup of G, then one has

sup
v∈a−{0}

ψ∆(v)
‖v‖

= h∆.

If ϕ ∈ a∗ is such that ϕ(v) > ψ∆(v) for all v ∈ a+ then ‖ϕ‖ > h∆. One
is thus interested in the convex set

D∆ = {ϕ ∈ a∗ : ϕ > ψ∆}.

This set is nonempty (Quint [20]) and the linear form Θ∆ ∈ D∆ closest to
the origin is called the the growth form of ∆. One has

(4.2) ‖Θ∆‖ = h∆.
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Since ψ∆ is concave (recall Theorem 1.2), and the balls of ‖ ‖ are strictly
convex, one obtains a unique direction R+u∆ in L∆, which realizes the
upper bound

sup
v∈a−{0}

ψ∆(v)
‖v‖

,

this is called the growth direction of ∆. Choose u∆ in the growth direction
such that Θ∆(u∆) = 1.
A linear form ϕ ∈ a∗ is tangent to ψ∆ at x if ϕ ∈ D∆ and ϕ(x) = ψ∆(x).

We say that ψ∆ has vertical tangent at x, if for every ϕ ∈ D∆, one has
ϕ(x) > ψ∆(x).
The following remarks are direct consequences of the definitions:

Remark 4.17. — For every v ∈ R+u∆, one has |Θ∆(v)| = ‖Θ∆‖‖v‖ =
ψ∆(v)‖v‖, consequently ker Θ∆ and R+u∆ are orthogonal for ‖ ‖, and Θ∆
is tangent to ψ∆ at every point of the growth direction R+u∆.

Remark 4.18. — The number of elements of a(∆) that lie outside a
given open cone containing u∆ has exponential growth rate strictly smaller
than h∆.

Fix from now on a Zariski-dense hyperconvex representation ρ : Γ→ G,

and denote by ζ : ∂∞Γ → F its ρ-equivariant map. The image ζ(∂∞Γ) is
the limit set Lρ(Γ), and thus

ζ × ζ : ∂2
∞Γ→ L(2)

ρ(Γ)

is a ρ-equivariant Hölder-continuous homeomorphism. Also, the cone LβΠ

is the limit cone Lρ(Γ) of ρ(Γ). One has the following results.

Proposition 4.19 ([26, Corollary 3.13]). — The limit cone of a Zariski-
dense hyperconvex representation is contained in the interior of the Weyl
chamber.

Theorem 4.20 ([26, Theorem A + Corollary 4.9]). — The growth in-
dicator of a Zariski-dense hyperconvex representation ρ is strictly concave,
analytic on the interior of Lρ(Γ), and with vertical tangent on the bound-
ary. If ϕ ∈ int(L ∗ρ(Γ)) then hϕϕ is tangent to ψρ(Γ) at every point of the
dual direction uϕ.

Remark 4.21. — Hence, Remark 4.17 and Theorem 4.20 imply that for
a Zariski-dense hyperconvex representation ρ of Γ, the growth direction
R+uρ(Γ) is the dual direction (see Definition 3.3) of the growth form Θρ(Γ).
Moreover, since ψρ(Γ) has vertical tangent on the boundary of Lρ(Γ), the
growth direction R+uρ(Γ) is contained in the interior of the limit cone.
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Recall that if ϕ is in the interior of L ∗ρ(Γ), then the Hölder cocycle ϕ◦βΠ
has finite and positive exponential growth rate hϕ. Ledrappier’s Theorem
2.19 guarantees the existence of a Patterson-Sullivan probability measure
µϕ on ∂∞Γ, with cocycle hϕϕ ◦βΠ. The following corollary of Theorem 1.3
and Theorem 4.20 is hence direct.

Corollary 4.22. — Let ρ : Γ → G be a Zariski-dense hyperconvex
representation. For each ϕ tangent to ψρ(Γ), there exists a unique ϕ-
Patterson-Sullivan measure of ρ(Γ), denoted by νϕ. Moreover, ζ induces
an isomorphism between µϕ and νϕ.

Consequently, the map

ζ × ζ × id : ∂2
∞Γ× a→ L(2)

ρ(Γ)×a

is a ρ-equivariant homeomorphism, and induces on the quotients a map
still denoted by ζ × ζ × id : Γ\(∂2

∞Γ × a) → ρ(Γ)\(L(2)
ρ(Γ)×a), which is a

measurable isomorphism between the ϕ-Bowen-Margulis measures of ρ(Γ)
on each side:

(ζ × ζ × id)∗Ωϕ = χϕ,

where χϕ is the ϕ-Bowen-Margulis measure of ρ(Γ), defined in the intro-
duction.
Theorem 4.15 together with Remark 4.21 imply the following mixing

property of the Weyl chamber flow. Recall that the rank of G is the dimen-
sion of a, and that the Weyl chamber flow is the right action by translations
of exp(a) on ρ(Γ)\G/M. If f : ρ(Γ)\G/M → R and v ∈ a we denote the
composition of f with the right action of exp(v) on ρ(Γ)\G/M by

f ◦ exp(v).

Theorem 4.23. — Let ρ : Γ → G be a Zariski-dense hyperconvex
representation. Consider ϕ ∈ int(L ∗ρ ). Then there exists a Euclidean
norm | · | on a such that, for all compactly supported continuous functions
f0, f1 : ρ(Γ)\G/M → R and for all v0 ∈ kerϕ, one has

(2πt)(rank(G)−1)/2χϕ(f0 · f1 ◦ exp(tuϕ +
√
t v0))

converges to
ce−I(v0)/2χϕ(f0)χϕ(f1)

as t→∞, for a constant c > 0.

The following corollary will be most useful to us.
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Corollary 4.24. — Let ρ : Γ → G be a Zariski-dense hyperconvex
representation. Then there exists C > 0 such that given two compactly
supported continuous functions f0, f1 : ρ(Γ)\G/M one has

e−‖Θρ(Γ)‖T
∫
B(0,T )∩a+

eΘρ(Γ)(u)χΘρ(Γ)(f0·f1◦exp(u))dLeba(u)→ CχΘρ(Γ)(f0)χΘρ(Γ)(f1),

as T →∞.

The proof of the corollary follows the exact same lines as Thirion [29,
§12.k] for Ping-Pong groups. We give a sketch of this proof for complete-
ness.

Proof. — In order to simplify notation, denote by Θ = Θρ(Γ), H = ker Θ
and uρ = uρ(Γ). Consider the change of variables G : R×H → a given by

G(t, v) = t
uρ
‖uρ‖

+
√
t v.

Since uρ is orthogonal to H (see Remark 4.17), its Jacobian is (
√
t )dimH =

t(rank(G)−1)/2. The integral we are interested in becomes∫
H

e−‖Θ‖T
∫ ∞

0
e‖Θ‖t(

√
t )dimHχΘ(f0·f1◦exp(G(t, v)))1B(T )(t, v)dtdLebH(v),

where B(T ) = {(t, v) ∈ R × H : G(t, v) ∈ a+, ‖G(t, v)‖ 6 T}, and 1A is
the characteristic function of a subset A.
The conditions t > 0 and ‖G(t, v)‖ 6 T imply that

0 < t <
1
2(
√
‖v‖4 + 4T 2 − ‖v‖2) = R(T, v).

Note that R(T, v) − T → −‖v‖2/2 as T → ∞, and observe that for every
v ∈ H there exists t0 such that, for all t > t0, one has G(t, v) ∈ a+. This,
together with Theorem 4.23 applied to

G(t, v) = t‖Θ‖uρ +
√
t‖Θ‖ v√

‖Θ‖
,

implies the existence of a Euclidean norm | · | and c > 0 such that

e−‖Θ‖T
∫ R(T,v)

0
e‖Θ‖t(

√
t )dimHχΘ(f0 · f1 ◦ exp(G(t, v)))1B(T )(t, v)dt

converges to

ce−(‖Θ‖‖v‖2+I|·|(‖Θ‖−1/2v))/2χΘ(f0)χΘ(f1)

as T →∞.
We must now integrate both sides of this limit with respect to LebH , in

order to so we will apply the dominated convergence theorem. Hence, we
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need to find an integrable function F : H → R, such that for every v ∈ H
one has

e‖Θ‖T
∫ R(T,v)

0
e‖Θ‖t(

√
t )dimHχΘ(f0 ·f1◦exp(G(t, v)))1B(T )(t, v)dt 6 F (v).

Remark that, since I(v) > 0 for all v ∈ H, Theorem 4.23 implies that for
all large enough t, one has

(
√
t )dimHχΘ(f0 · f1 ◦ exp(G(t, v))) 6 K,

for a constant K independent of v.
Lemma 4.25 below states that there exists a constant κ > 0 such that,

for all (t, v) ∈ H×R, with G(t, v) ∈ B(T ) one has R(T, v)−T 6 −κ‖v‖2/2.
Hence

e−‖Θ‖T
∫ R(T,v)

0
e‖Θ‖t(

√
t )dimHχΘ(f0 · f1 ◦ exp(G(t, v)))1B(T )(t, v)dt 6

Ke−‖Θ‖T
∫ R(T,v)

0
e‖Θ‖t1B(T )(t, v)dt 6 Ke‖Θ‖(R(T,v)−T ) 6 Ke−κ‖Θ‖‖v‖

2/2,

for a constant K > 0. This last function is clearly integrable on H. This
finishes the proof.

�

Lemma 4.25. — There exists κ > 0 such that for every T > 0, if (t, v) ∈
B(T ) then R(T, v)− T 6 −κ‖v‖2/2.

Proof. — Recall that the angle between two walls of a+ is at most π/2,
hence, since uρ ∈ int a+, there exists θ0 ∈ (0, π/2) such that if G(t, v) ∈ a+,

then the angle between G(t, v) and tuρ/‖uρ‖ is at most θ0, i.e.

‖
√
t v‖
t

6 tan(θ0).

From now on, standard computations imply the lemma, see Thirion [29,
page 184] for details.

�

5. The orbital counting problem

General aspects

The standard reference for this subsection is the book by Guivarc’h-
Ji-Taylor [11]. Recall that G is a connected, noncompact real-algebraic
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semisimple Lie group, X its symmetric space and Γ is the fundamental
group of a closed connected negatively curved Riemannian manifold.
Recall that we have denoted by a : G→ a+ the Cartan projection of G.

We will define a new projection a : X×X → a+ by a(g ·o, h ·o) = a(g−1h).
Notice that a is G-invariant for the diagonal action of G on X × X, that
‖a(p, q)‖ = dX(p, q) and that

(5.1) i(a(p, q)) = a(q, p).

By definition, one has q ∈ Kpgp exp(a(p, q)) · o, where Kp is the stabilizer
in G of p, and gp ∈ G is such that gp · o = p.

Remark 5.1. — Observe that there exists κ0 > 0 such that for every
g ∈ G one has ‖a(p, gq)− a(g)‖ 6 κ0.

Similarly (and abusing notation), we will define the Busemann cocycle
σ : F ×X ×X → a by

(x, g · o, h · o) 7→ σx(g · o, h · o) = σ(g−1, x)− σ(h−1, x).

A parametrized flat is a map f : a→ X, defined by f(v) = g exp(v) ·o, for
some g ∈ G. Observe that G acts transitively on the set of parametrized
flats and that the stabilizer of f0 : v 7→ exp(v) · o is the group M of
elements in K commuting with exp(a). We will hence identify the space of
parametrized flats with G/M.

A maximal flat is the image on X of a parametrized flat i.e. the maximal
flat associated to f is defined by [f] = f(a) = {g exp(v)·o : v ∈ a}. The space
of maximal flats is naturally identified with G/MA = F (2) (recall Hopf’s
parametrization of G on the Introduction). Denote by (Ž,Z) : G/M →
F (2) = G/MA the canonical projection.
The following proposition is standard.

Proposition 5.2 (see [11, Chapter III]). —
(1) Let f, g be two parametrized flats, then the function a → R, defined

by
v 7→ dX(f(v), g(v)),

is bounded on the Weyl chamber a+ if and only if Z(f) = Z(g).

(2) A pair (p, x) ∈ X ×F determines a unique parametrized flat f such
that f(0) = p and Z(f) = x.

(3) A point (x, y) ∈ F (2) determines a unique maximal flat [fxy] such
that Ž(fxy) = x and Z(fxy) = y.
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The usual relation between the Cartan projection and Busemann’s cocy-
cle is given by the following lemma of Quint [21]. Observe that if p, q ∈ X
are such that a(p, q) ∈ int(a+) then, there is a unique parametrized flat
fpq such that fpq(0) = p, and fpq(a(p, q)) = q. Denote by xpq = Z(fpq) and
recall that Π is the set of simple roots of G.

Lemma 5.3 (Quint [21, Lemma 6.6]). — Fix p, q ∈ X, then

a(p, z)− a(q, z)− σxpz (p, q)→ 0,

as minα∈Π α(a(p, z))→∞.

Given r > 0, define the shadow (on F ) of q seen from p of size r, by

Or(p, q) = {Z(f) : f ∈ G/M, f(0) = p, ∃v ∈ int(a+), dX(f(v), q) < r}.

Denote by BX(p, r) the ball in X of radius r centered at p, and define by

O+
r (p, q) =

⋃
p0∈BX(p,r)

Or(p0, q),

and
O−r (p, q) =

⋂
p0∈BX(p,r)

Or(p0, q).

Finally, for x ∈ F define the shadow of q seen from x of size r, by

Or(x, q) = {Z(f) : f ∈ G/M, dX(f(0), q) < r, Ž(f) = x}.

Lemma 5.4 (Thirion [29, Proposition 8.66]). — There exists κ > 0 such
that, if p, p0 ∈ X and r > 0, then for all x ∈ O+

r (p, p0) one has

‖σx(p, p0)− a(p, p0)‖ 6 κr.

Let ∆ be a Zariski-dense discrete subgroup of G, and consider a linear
form ϕ ∈ a∗ tangent to ψ∆ on a direction in the interior of L∆. Denote
by νϕ the ϕ-Patterson-Sullivan measure of ∆ (recall Quint’s Theorem 1.3).
Define the ϕ-Patterson-Sullivan density (µp)p∈X by µo = νϕ and

dµp
dµo

(x) = e−ϕ(σx(p,o)).

Since F is Kp-homogeneous and Kp is compact, there is a unique Kp-
invariant probability measure on F . This gives an embedding of X on the
spaceM(F ) of probability measures on F . The closure of this embedding,
denoted by XF , is called the Furstenberg compactification of X. Observe
that if v ∈ int(a+) and k ∈ K, then

ketv · o→ δkM

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 35

as t→∞, for the weak-star convergence onM(F ), where δkM is the unit
Dirac mass at kM.

A pair (p, x) ∈ X ×F is in good position (w.r.t. ∆) if the parametrized
flat f determined by p and x verifies Ž(f) ∈ L∆ . Given a, b ∈ R and ε > 0,
we will say that a ε∼ b if e−εa 6 b 6 eεa.

Lemma 5.5 (Thirion [29, Lemma 10.7]). — Fix a pair in good posi-
tion (p, x) ∈ X × F . Then for all but countably many r ∈ R+ one has
µp(∂Or(x, p)) = 0. Moreover, given ε > 0 there exists a neighborhood Vx
of x in XF such that for all z ∈ Vx and all (but countably many) small
enough r one has

µp(Or(z, p))
ε∼ µp(Or(x, p))

and if z ∈ Vx ∩X then µp(O±r (z, p)) ε∼ µp(Or(x, p)).

Proof. — Indeed, the function R∗+ → [0, 1] defined by r 7→ µp(Or(x, p))
is the distribution function of a probability measure in R∗+, and has only
a countable number of discontinuity points. See Thirion [29, Lemma 10.7]
for details.

�

If p = g · o ∈ X, define the ϕ-Gromov product (or simply Gromov
product) based at p as the map [·, ·]p = [·, ·]ϕp : F (2) → R with

[x, y]g·o = ϕ(GΠ(g−1x, g−1y)).

Remark 5.6. — Observe that [·, ·]p is continuous, and that if p belongs
to the maximal flat determined by (x, y) ∈ F (2) then [x, y]p = 0 (recall
equation (4.1)).

Denote by (µp)p∈X the ϕ◦ i-Patterson-Sullivan density of ∆. The follow-
ing remark follows from the definitions of (µp)p∈X , (µp)p∈X and Lemma
4.12.

Remark 5.7. — The measure e−[·,·]pµp⊗µp⊗Leba is independent of p.
As said in the introduction, this measure is called the ϕ-Bowen-Margulis
measure of ∆, and is denoted by χ̃ϕ.

The main theorem

This section is devoted to the proof of the following theorem. The method
is that of Roblin [25]. Indeed, his method adapts to our situation with
minor arrangements, provided Corollary 4.24. This was noticed by Thirion
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[29], who extended Roblin’s method to some higher rank situations. We
will explain here how to overpass the main difficulties and refer the reader
to Roblin [25, Chapitre 4] or Thirion [29, Chapitre 10] for the minor details.
If ρ : Γ → G is a Zariski-dense hyperconvex representation, denote by

Θ = Θρ(Γ) its growth form. Recall that ‖Θ‖ = hρ(Γ) and that Θ is i-
invariant and tangent to the growth indicator of ρ(Γ). Denote by (µp)p∈X
the Θ-Patterson-Sullivan density of ρ(Γ). Note that, with the above nota-
tion, µp = µp for all p ∈ X.

Theorem 5.8. — Let ρ : Γ → G be a Zariski-dense hyperconvex rep-
resentation, and consider p, q ∈ X, then there exists c = c(p, q) > 0 such
that

e−‖Θ‖T
∑

γ∈Γ:dX(p,ρ(γ)q)6T

δρ(γ)q ⊗ δρ(γ−1)p → cµp ⊗ µq

as T →∞, for the weak-star convergence on C∗(XF ×XF ).

A Zariski-dense hyperconvex representation ρ : Γ→ G is fixed from now
on. In order to simplify notation, we will identify Γ with ρ(Γ), i.e. if p ∈ X
then γp means ρ(γ)p.
For T ∈ R+, let λT (p, q) be the measure on XF ×XF defined by

λT (p, q) = e−‖Θ‖T
∑

γ∈Γ:dX(p,γq)6T

δγq ⊗ δγ−1p.

If A ⊂ F and r > 0, consider the subset C+
r (p,A) of X, defined as the

r-neighborhood of

{f(a+) : f ∈ G/M, dX(f(0), p) 6 r, Z(f) ∈ A},

and consider the set C−r (p,A) defined by

{y ∈ X : BX(y, r) ⊂
⋂

{q∈X:dX(q,p)6r}

⋃
{f∈G/M :f(0)=q, Z(f)∈A}

f(a+)}.

The following proposition is the main step of the proof of Theorem 5.8.

Proposition 5.9. — Consider p, q ∈ X and x, y ∈ F such that (p, x)
and (q, y) are in good position. Then there exists c > 0 that verifies the
following: for every ε > 0 there exists a neighborhood W of (x, y) on
XF ×XF , such that for every Borel sets A,B ⊂ F with A×B ⊂ W, one
has

lim sup
T→∞

λT (p, q)(C−1 (p,A)× C−1 (q,B)) 6 eεcµp(A)µq(B)

and
lim inf
T→∞

λT (p, q)(C+
1 (p,A)× C+

1 (q,B)) > e−εcµp(A)µq(B).
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Proof. — If [f] is a maximal flat and p ∈ X, denote by fp the parametrized
flat such that [fp] = [f], and such that fp(0) is the orthogonal projection
of p on [f]. If v ∈ a, denote by trv : a → a the translation by v, i.e.
trv(u) = u+v. For A ⊂ F and r > 0, consider the subsets of G/M defined
by

K+
r (p,A) = {fp ◦ trv : v ∈ Ba(0, r), dX(fp(0), p) 6 r, Z(f) ∈ A}

and

K−r (p,A) = {fp ◦ trv : v ∈ Ba(0, r), dX(fp(0), p) 6 r, Ž(f) ∈ A},

where Ba(0, r) is the ball on a of radius r centered at 0, for the Euclidean
norm ‖ ‖. Denote by Kr(p) = K+

r (p,F ) = K−r (p,F ).
Fix ε > 0. Lemma 5.5 applied to (p, x) and (q, y) provides neighborhoods

Vx of x and Vy of y, such that for all (but countably many) small enough
r > 0 one has µp(∂Or(x, p)) = µp(∂Or(y, q)) = 0 and if z ∈ Vx then

µp(Or(z, p))
ε∼ µp(Or(x, p))

and if w ∈ Vy then

µp(Or(w, q))
ε∼ µp(Or(y, q)).

Moreover, for all z ∈ Vx ∩X and w ∈ Vy ∩X, Lemma 5.5 states that

µp(O±r (z, p)) ε∼ µp(Or(x, p))

and
µp(O±r (w, q)) ε∼ µp(Or(y, q)).

Consider r < min{1, ε/‖Θ‖, ε/κ, ε/‖Θ‖κ} such that the last paragraph
holds, where κ is the constant given by Lemma 5.4, and such that |Θ(u)| < ε

for all u ∈ Ba(0, r).
We can assume also that r is small enough such that if z ∈ Vx and

w ∈ Or(z, p) then, e−[w,z]p ε∼ 1 (Remark 5.6) and similarly for Vy and q.
We will show that Vx × Vy is the desired neighborhood. Consider then

A,B Borel subsets of F such that A×B ⊂ Vx×Vy. Let us simplify notation
and write K+ = K+

r (p,A) and K− = K−r (q,B).
Given γ ∈ Γ and T > 0, define Ξ(γ, T ) by

Ξ(γ, T ) =
∫
Ba(0,T )∩a+

eΘ(v)χ̃Θ(K+ · exp(v) ∩ γ ·K−)dLeba(v).

Following Roblin’s [25] method (see also Thirion [29]), we will compute

e−‖Θ‖T
∑
γ∈Γ

Ξ(γ, T )
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in two different ways. Observe first that Corollary 4.24 (2) gives

e−‖Θ‖T
∑
γ∈Γ

Ξ(γ, T ) ε∼ cχ̃Θ(K+)χ̃Θ(K−)

for all big enough T and a constant c > 0. Let’s compute then χ̃Θ(K+)
and χ̃Θ(K−). Remark 5.7 states that

χ̃Θ = e−[·,·]pµp ⊗ µp ⊗ Leba,

hence

χ̃Θ(K+) =
∫
v∈Ba(0,r)

∫
z∈A

∫
w∈Or(z,p)

e−[w,z]p1Kr(p)(fpwz◦trv)dµp(w)dµp(z)dLeba(v).

Since w ∈ Or(z, p) (and by our choice of r) one has e−[w,z]p ε∼ 1, thus

χ̃Θ(K+) ε∼ vol(Ba(0, r))
∫
A

µp(Or(z, p))dµp(z).

Since z ∈ A ⊂ Vx and by the definition of Vx, we have µp(Or(z, p))
ε∼

µp(Or(x, p)), hence

χ̃Θ(K+) 2ε∼ vol(Ba(0, r))µp(Or(x, p))µp(A).

Analogous reasoning, using the equality χ̃Θ = e−[·,·]qµq ⊗ µq ⊗ Leba, gives
χ̃Θ(K−) 2ε∼ vol(Ba(0, r))µq(Or(y, q))µq(B). Hence, if we denote by

H = vol(Ba(0, r))2µq(Or(y, q))µp(Or(x, p)),

one has

(5.2) e−‖Θ‖T
∑
γ∈Γ

Ξ(γ, T ) 4ε∼ cµp(A)µq(B)H,

for all big enough T. Notice that, since (p, x) and (q, y) are in good position,
one has H 6= 0. This will allow us later to divide by H.
We will now explicitly compute

∑
γ∈Γ Ξ(γ, T ).

Remark 5.10. — Denote by V +
A = C+

1 (p,A)∩Vx and V +
B = C+

1 (q,B)∩
Vy, and denote by V −A = C−1 (p,A)∩Vx and V −B = C−1 (q,B)∩Vy. Then there
exist constants L > 0, independent of ε and T, and C > 0 independent of
T, such that for all big enough T one has∑

γ∈Γ
Ξ(γ, T − 2r) 6 C + eLεH

∑
1V +

A
(γq)1V +

B
(γ−1p),

2. Even though Corollary 4.24 is stated for continuous functions with compact sup-
port, a standard measure-theoretic argument permits to extend it to characteristic func-
tions of compact sets.
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where the sum is over all γ ∈ Γ such that dX(p, γq) 6 T and (γq, γ−1p) ∈
C+

1 (p,A)× C+
1 (q,B), and moreover∑

γ∈Γ
Ξ(γ, T + 2r) > −C + e−LεH

∑
1V −

A
(γq)1V −

B
(γ−1p),

where the last sum is over all γ ∈ Γ such that dX(p, γq) 6 T and (γq, γ−1p) ∈
C−1 (p,A)× C−1 (q,B).

Proof. — We will only show the upper bound (the lower bound being
analogous). Observe that, if for some γ ∈ Γ one has Ξ(γ, T − 2r) 6= 0, then

K+ · exp(v) ∩ γ ·K− 6= ∅,

for some v ∈ Ba(0, T − 2r) ∩ a+. This intersection is contained in

(O+
r (γq, p) ∩ γB)× (O+

r (p, γq) ∩A)× a,

and necessarily one has:
i) v ∈ Ba(a(p, γq), 2r), in particular dX(p, γq) 6 T, and
ii) (γq, γ−1p) ∈ C+

1 (p,A)× C+
1 (q,B).

Observe that χ̃Θ(K+ · exp(v) ∩ γK−) =∫
u∈Ba(0,r)

∫
z∈O+

r (p,γq)∩A

∫
w∈O+

r (γq,p)∩γB
e−[w,z]p1Kr(γq)(fpzw◦tru+v)dµp(z)dµp(w)dLeba(u).

For (z, w) ∈ (O+
r (p, γq) ∩A)× (O+

r (γq, p) ∩ γB), one has e−[w,z]p ε∼ 1 and∫
Ba(0,T−2r)

eΘ(v)e−[w,z]p1Kr(γq)(fpzw◦tru+v)dLeba(v) 6 e3εeΘ(a(p,γq)) vol(Ba(0, r)).

One concludes that
∑
γ∈Γ Ξ(γ, T − 2r) 6

C+eL0ε vol(Ba(0, r))2
∑

eΘ(a(p,γq))µp(O+
r (γq, p))µp(O+

r (p, γq))1V +
A

(γq)1V +
B

(γ−1p),

for some L0 > 0 independent of T, where the sum is over all γ ∈ Γ that
verify i) and ii) above, and C is a constant independent of T, determined
by the (finitely many) γ ∈ Γ such that

(γq, γ−1p) ∈ C+
r (p,A)× C+

r (q,B)− Vx × Vy,

(which is bounded in X × X). Since γq ∈ Vx one has µp(O+
r (γq, p)) ε∼

µp(Or(x, p)) and the right hand side of the last equation becomes

C+eL0ε vol(Ba(0, r))2µp(Or(x, p))
∑

eΘ(a(p,γq))µp(O+
r (p, γq))1V +

A
(γq)1V +

B
(γ−1p).

Using Lemma 5.4 and the fact that γq belongs to V +
A ⊂ Vx, one obtains

eΘ(a(p,γq)) ε∼ eΘ(σz(p,γq)),

SUBMITTED ARTICLE : ARTICLE.TEX



40 ANDRÉS SAMBARINO

for any z ∈ O+
r (p, γq). Applying the definition of (µm)m∈X , one has that

eΘ(a(p,γq))µp(O+
r (p, γq)) ε∼

∫
O+
r (p,γq)

eΘ(σz(p,γq))dµp(z) = µγq(O+
r (p, γq))

= µq(O+
r (γ−1p, q)) ε∼ µq(Or(y, q)),

since γ−1p ∈ V +
B ⊂ Vy. Hence, for some constant L > 0∑

γ∈Γ
Ξ(γ, T − 2r) 6 C + eLεH

∑
1V +

A
(γq)1V +

B
(γ−1p),

where the sum is over all γ ∈ Γ that verify i) and ii) above. This finishes
the proof of the remark. �

The proof of the proposition will be completed when we compute

e−‖Θ‖(T−2r)
∑
γ∈Γ

Ξ(γ, T − 2r),

assembling equation (5.2) and Remark 5.10. For all big enough T, one has

e−4εcµp(A)µq(B)H 6 e−‖Θ‖(T−2r)
∑
γ∈Γ

Ξ(γ, T − 2r) 6

e−‖Θ‖T (C0 + eL0εH
∑

1V +
A

(γq)1V +
B

(γ−1p)),
for some L0 independent of ε and T (recall that r < ε/‖Θ‖) and C0 inde-
pendent of T, where the sum is over all γ ∈ Γ that verify i) and ii) above.
Since C0 is independent of T and since H 6= 0, one obtains

lim inf
T→∞

λT (p, q)(C+
1 (p,A)× C+

1 (q,B)) > e−L0εcµp(A)µq(B).

The other inequality follows similarly. �

We continue with the proof of Theorem 5.8. For A ⊂ a+, define the
measure λT (p, q,A ) on XF ×XF by

λT (p, q,A ) = e−‖Θ‖T
∑

γ∈Γ:a(p,γq)∈A , dX(p,γq)6T

δγq ⊗ δγ−1p.

Observe that λT (p, q) = λT (p, q, a+).
We will need the following lemma.

Lemma 5.11. — Let ∆ be a Zariski-dense subgroup of G. Consider a
continuous function f : XF ×XF → R and an open cone C with u∆ ∈ C .

Then
e−h∆t

∑
f(gq, g−1p)→ 0

as t → ∞, where the sum is over all g ∈ ∆ such that dX(p, gq) 6 t and
a(p, gq) /∈ C .

ANNALES DE L’INSTITUT FOURIER



ORBITAL COUNTING FOR HYPERCONVEX REPRESENTATIONS 41

Proof. — The lemma follows directly from Remark 4.18 together with
Remark 5.1. �

In our current notation, the last lemma reads as follows.

Lemma 5.12. — Let C ⊂ a+ be an open cone with uΓ ∈ C , then

λT (p, q,C )− λT (p, q)→ 0,

for the weak-star convergence on C(XF ×XF ), as T →∞.

Proof of Theorem 5.8. — It remains to overpass the good position hy-
pothesis on Proposition 5.9.
Notice that if x ∈ F then one can choose z ∈ ∂∞Γ such that (x, ζ(z)) ∈

F (2), where ζ : ∂∞Γ → F is the equivariant map. Fix then (x, y) in
F ×F and consider (z, w) ∈ ζ(∂∞Γ)2 such that (x, z) and (y, w) belong
to F (2). Choosing p0 on the maximal flat determined by (x, z), and q0 on
the maximal flat determined by (y, w), one gets that (p0, x) and (q0, y) are
both in good position.
Applying Proposition 5.9 to the pairs (p0, x) and (q0, y) and a given

ε > 0, one obtains a neighborhood W of (x, y) ∈ X2
F such that if A×B is

a Borel set contained in F 2 ∩W, then

(5.3) lim inf
T→∞

λT (p0, q0)(C+
1 (p0, A)× C+

1 (q0, B)) > e−εcµp0(A)µq0(B).

Discarding finitely many γ ∈ Γ, we can assume that if γq0 ∈ C+
1 (p0, A)

and γ−1p ∈ C+
1 (q,B), then (γq0, γ

−1p) ∈ W. Moreover, if W is small
enough, Quint’s Lemma 5.3 together with Proposition 4.19 imply that for
all such γ ∈ Γ one has

‖a(p0, γq0)− a(p, γq0)− σx(p0, p)‖ 6 ε

and
‖a(q0, γ

−1p)− a(q, γ−1p)− σy(q0, q)‖ 6 ε.
Equation (5.1) andG-invariance of a imply that a(q0, γ

−1p) = i(a(p, γq0)),
and since i2 = id one has

‖a(p, γq0)− a(p, γq)− iσy(q0, q)‖ < ε.

Consequently,

‖a(p0, γq0)− a(p, γq)− (σx(p0, p) + iσy(q0, q))‖ 6 2ε.

Hence,

Θ(a(p0, γq0)) 6 Θ(a(p, γq)) + Θ(σx(p0, p) + iσy(q0, q)) + δ,

for some δ (Θ is continuous at 0).
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Recall that if v ∈ R·uρ(Γ) then |Θ(v)| = ‖Θ‖‖v‖ (Remark 4.17). Consider
then a closed cone C , with uρ(Γ) ∈ int C , such that for all v ∈ C one has

Θ(v) = |Θ(v)| ε∼ ‖Θ‖‖v‖.

Notice that, since a(p0, γq0) is at bounded distance from a(p, γq) (inde-
pendently of γ ∈ Γ, see Remark 5.1), we can consider an open cone C ′

with uρ(Γ) ∈ C ′, such that if γ is big enough, and a(p, γq) ∈ C ′, then
a(p0, γq0) ∈ C . Hence, for all big enough γ ∈ Γ such that a(p, γq) ∈ C ′ one
has

dX(p0, γq0) 6 dX(p, γq) + 1
‖Θ‖ (Θ(σx(p0, p) + i(σy(q0, q))) + δ).

Lemma 5.12 together with equation (5.3), imply that

lim inf
T→∞

λT (p0, q0,C )(C+
1 (p0, A)× C+

1 (q0, B) > e−εcµp0(A)µq0(B).

Denoting by

T ′ = T + 1
‖Θ‖Θ(σx(p0, p) + i(σy(q0, q))) + δ,

one concludes that (using again Lemma 5.12) for all big enough T one has
λT (p, q)(C+

1 (p,A)× C+
1 (q,B)) > λT (p, q,C ′)(C+

1 (p,A)× C+
1 (q,B))− ε >

e−εeΘ(σx(p0,p)+i(σy(q0,q)))+δλT
′
(p0, q0,C )(C+

1 (p0, A)× C+
1 (q0, B))− ε.

Thus, lim infT λT (p, q)(C+
1 (p,A)× C+

1 (q,B)) >

e−2εceΘ(σx(p0,p)+iσy(q0,q)))µp0(A)µq0(B)− ε.

Finally, by definition of (µm)m∈X , one has

eΘ(σx(p0,p))µp0(A) ε∼ µp(A),

and
eΘ(iσy(q0,q))µq0(B) ε∼ µq(B).

One concludes that

lim inf
T→∞

λT (p, q)(C+
1 (p,A)× C+

1 (q,B)) > e−4εcµp(A)µq(B)− ε,

as desired. The other inequality is analogous, and a standard partition of
unity argument finishes the proof of the theorem (see Roblin [25, pages
62-63] for more details). �
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