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Non-homogenous bivariate fragmentation process: Mean and variance

In this paper we are interested in two-dimensions fragmentation process that describes the evolution of an object having a rectangular shape. We focus on the non-homogenous fragmentation process where we break a rectangle according to a distribution that depends on its dimensions. Via the renewal theory, we compute the mean and the variance of the distribution of the total number of the sub-rectangles obtained at the end of the process.

Preliminaries

In this section, we describe the model of the fragmentation in the general case i.e. b and b 1 are two arbitrary nonnegative integers. We define the notations and we prove that the mean of the total number of the rectangles obtained at the end of the process is solution of a bi-renewal equation.

Introduction

Random fragmentation applies in several fields, such as biology [START_REF] Powell | Some features of generation times of individual bacteria[END_REF], physics [START_REF] Beysens | Fragmentation Phenomena, Les Houches Series[END_REF], computer sciences [START_REF] Dean | Phase transition in a random fragmentation problem with applications to computer science[END_REF][START_REF] Sibuya | Random sequential bisection and its associated binary tree[END_REF], etc. The fragmentation process has been the interest of many authors since the works of Brennan [START_REF] Brennan | Splitting intervals[END_REF] and Sibuya [START_REF] Sibuya | Random sequential bisection and its associated binary tree[END_REF]. Afterwards, Janson [START_REF] Svante | The size of random fragmentation trees[END_REF] focused on a non-homogenous fragmentation of an interval of length x, i.e the fragmentation of the interval depends on x, he studied the case when the fragmentation probability is ppxq " 1 txě1u , he gave the asymptotic behavior of the total number of fragments obtained at the end of the process. More recently, Aguech [START_REF] Aguech | The size of random fragmentation intervals[END_REF] studied the fragmentation of an interval, he considered the case when the fragmentation probability is given by ppxq " 1 ´e´x where x is length of the interval, he described the asymptotic distribution of the total number of the obtained fragments.

In the literature, it is always common to consider an interval of length x at the beginning. In this paper we study a fragmentation process in two dimensions. We start with a rectangle of dimensions x and y. We suppose that with probability ppx, yq " 1 txě1, yě1u we decide to cut, independently and uniformly, x into b slides and y into b 1 slides where b and b 1 are two nonnegative integers, with complementary probability we decide to let them definitively stable. Let U " pU 1 , ¨¨¨, U b q and V " pV 1 , ¨¨¨, V 1 b q be two independent random vectors such that the lengths of the sub-pieces obtained by cutting x are respectively: U 1 x, ¨¨¨, U b x and the lengths of the sub-pieces obtained by cutting y are respectively: V 1 x, ¨¨¨, V b 1 x. We repeat recursively and independently this procedure on all the sub-rectangles with new and independent copies of U and V. The figure below illustrates an example of fragmentation of a rectangle when b " 3 and b 1 " 2. Note that the process stops almost surely after a finite number of steps and it leaves a finite number of rectangles all stable, we note them by N px, yq. A fundamental method to study the behavior of N px, yq is the multivariate renewal theory. Such a model has been studied by numerous authors, namely Mode, Hunter [START_REF] Hunter | Renewal Theory in Two Dimensions: Basic results[END_REF][START_REF] Hunter | Renewal Theory in Two Dimensions: Asymptotic Results[END_REF], Mallora, Omey and Santos [START_REF] Mallora | Multivariate weighted renewal functions[END_REF] and Omey [START_REF] Omey | Abelian and Tauberian Theorems for the Laplace Transform of Functions in Several Variables[END_REF]. Smith [START_REF] Smith | A Frequncy-function form of the central limit theorem[END_REF] developed the renewal theory, in particular the renewal density, for one dimension. Afterwards, these results have been extended by Mode [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF] who studied the case of a bi-dimensional renewal process. Unfortunately, the previous results are not sufficient to compute the second moment of a non-homogenous fragmentation process. In this note, we prove a renewal theorem which is efficient for computing the variance. The paper is organized as follows: In Section (2), we give the notations and the assumptions that we need in all the paper, we prove that the mean of N px, yq satisfies a bi-renewal equation for all integers b, b 1 ě 2. In Section (3), we prove Theorem (1) which gives under some assumptions the asymptotic of the bi-renewal density function. In Section (4), we take b " b 1 " 2 and we show that the variance of N px, yq satisfies a bi-renewal equation, via Theorem (1) we determine the approximations of the mean and the variance of N px, yq.

Definition of the model:

We consider a rectangle of sides of lengths x and y. We fix b and b 1 two integers and let U " pU 1 ¨¨¨, U b q and V " pV 1 ¨¨¨, V b 1 q be two independent random vectors such

that b ř i"1 U i " 1 and b 1 ř j"1
V j " 1. The fragmentation process is described as follows:

' If x ě 1 and y ě 1, we cut the rectangle according to the random vectors U " pU 1 , ¨¨¨, U b q for the dimension x and V " pV 1 , ¨¨¨, V b 1 q for the dimension y.

' If x ă 1 or y ă 1, we decide to leave the rectangle definitively stable.

' Recursively, we repeat independently at each step this procedure on all subrectangles with independent copies of U and V.

Obviously, our fragmentation process can be considered as a random tree where the root is the first rectangle, the internal nodes are the unstable rectangles and the leaves are the stable rectangles. Let N px, yq be the total number of pieces in the fragmentation tree. Note that if x ă 1 or y ă 1, N px, yq " 1 . We assume that we start with a rectangle with dimensions greater than 1, then N px, yq satisfies the following equation:

N px, yq D " 1 `b ÿ i"1 b 1 ÿ j"1 N i, j pxU i , yV j q,
where for 1 ď i ď b and 1 ď j ď b 1 , N i, j p., .q are independent copies of N p., .q. Let us define mpx, yq " ErN px, yqs, m ˚px, yq " mpe x , e y q, X i " ´lnpU i q, Y j " ´lnpV j q, µ i, j is the joint distribution of the random vector pX i , Y j q and µ "

b ÿ i"1 b 1 ÿ j"1 µ i, j .
The bivariate function m ˚pt 1 , t 2 q satisfies the following equation:

m ˚pt 1 , t 2 q " 1 `pm ˚˚µqpt 1 , t 2 q.
Note that µ is not a probability measure, we define so the probability measure ν by dνpt 1 , t 2 q " e ´pt 1 `t2 q dµpt 1 , t 2 q.

(1)

The function M ˚pt 1 , t 2 q " e ´pt 1 `t2 q m ˚pt 1 , t 2 q satisfies immediately the bivariate renewal equation:

M ˚pt 1 , t 2 q " f pt 1 , t 2 q `pM ˚˚νqpt 1 , t 2 q where f pt 1 , t 2 q " e ´pt 1 `t2 q .

(2)

The class of distributions J 2

Let M ą 0 and k P t1, 2u we define

A k " tt k : |t k | ă M u and A C k its complementary set.
Let X be a random vector following some distribution ω and let Ψ be its associated characteristic function i.e Ψpt 1 , t 2 q " ż `8

´8 ż `8 ´8 e it 1 s 1 `it 2 s 2 dωps 1 , s 2 q, we shall called that ω belongs to the class J 2 if Ψ satisfies: for some nonnegative reals α 1 , α 2 , c

• |Ψpt 1 , t 2 q| ď c |t 1 | α 1 for all pt 1 , t 2 q P A C 1 ˆA2 , • |Ψpt 1 , t 2 q| ď c |t 2 | α 2 for all pt 1 , t 2 q P A 1 ˆAC 2 , • |Ψpt 1 , t 2 q| ď c |t 1 | α 1 |t 2 | α 2 for all pt 1 , t 2 q P A C 1 ˆAC 2 .
The sub-class J 2 of J 2 consists on all the distributions that belong to J 2 and having finite mean vectors and definite-positive matrices.

Notations:

These notations will be useful in the paper

• ||.|| is an arbitrary norm on R 2 `,
• for all t 1 , t

2 P R `, Φpt 1 , t 2 q " b ř i"1 b 1 ř j"1 EpU t 1 i V t 2 j q, • θ 1 " ´b ř i"1 E " U i lnpU i q ‰ , θ 2 " ´b1 ř j"1 E " V j lnpV j q ‰ • γ " b ř i"1 b 1 ř j"1 E " U 2 i V 2 j ´lnpV j q ´θ2 θ 1 lnpU i q ¯ı, • ρ " b ř i"1 b 1 ř j"1 E " U 2 i V 2 j ´lnpV j q ´θ2 θ 1 lnpU i q ¯2ı .
For a random vector X " `Xp1q , X p2q ˘with mean λ " ´λ1 , λ 2 ¯and with definite positive covariance matrix Σ and with finite moment of order 3, we denote by:

• |Σ| the determinant of Σ and Σ ´1 its inverse matrix,

• σ 2 k " V arpX pkq q, k " 1, 2, K "

λ 1 ? 2π|Σ|pλ 1 Σ ´1λq , • for k " 1, 2, a k " E " pX pkq ´λk q 3 ‰ σ 4 k , • c 0 " ´1´2pa 1 λ 1 `a2 λ 2 q 4λ 1 Σ ´1λ `1 2pλ 1 Σ ´1λq 2 ´a1 λ 3 1 σ 2 1 `a2 λ 3 2 σ 2 2 ¯, • c 1 " λ 2 a 2 ´1 `λ2 2 ´a1 λ 1 λ 2 2 ´2a 2 λ 3 2 σ 2 2 λΣ ´1λ `λ2 2 σ 2 2 pλ 1 Σ ´1λq 2 `a1 λ 3 1 σ 2 1 `a2 λ 3 2 σ 2 2 ˘, • c 2 " λ 2 2 σ 2 2 `´1 `λ2 2 σ 2 2 λ 1 Σ ´1λ ˘.
In particular, if the distribution of X is given by ν (1), in this case λ 1 " θ 1 and λ 2 " θ 2 . We designate by

• For all i, j P t1, 2u, υ ij " ´lnpV j q `θ2 θ 1 lnpU i q,

L 1 pU i , V j q " K 2θ 3 2 2 " `1 `c1 ´2 c 2 θ 1 `2 c 2 θ 2 ˘υij `c2 θ 2 υ 2 ij ı and L 2 pU i , V j q " c 2 Kυ ij θ 5 2 2 , • r L 1 " K 2 ř i"1 U i lnpU i q 2θ 1 ? θ 2 ´2 ř i"1 2 ř j"1 U i V j L 1 pU i , V j q, r L 2 " 2 ř i"1 2 ř j"1 U i V j L 2 pU i , V j q, • A 1 " E " r L 2 1 ı , A 2 " E " r L 1 r L 2 ı and A 3 " E " r L 2 2 ı .

Remarks

• If minpt 1 , t 2 q ą 1 we have Φpt 1 , t 2 q ă 1,

• the characteristic function Ψ of a random vector with distribution ν (1) can be written in terms of Φ as follows: Ψpt 1 , t 2 q " Φp1 ´it 1 , 1 ´it 2 q,

• the random variables U i and V j belong to the interval r0, 1s for all i P t1, ¨¨¨, bu, j P t1, ¨¨¨, b 1 u, in other words ν (1) is defined on r0, 8rˆr0, 8r.

Assumptions

We will need these assumptions later:

• (A): Each U i and V j is an absolutely continuous random variable such that b ř i"1 E " U i | lnpU i q| 3 ı ă 8 and b 1 ř i"1 E " V j | lnpV j q| 3 ı ă 8,
• (B): the probability measure ν given by (1) belongs to the set J 2 .

Bi-renewal Theory

The one dimension renewal theory is well studied by Feller [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], Blackwell [START_REF] Blackwell | A renewal theorem[END_REF][START_REF] Blackwell | Extension of a renewal theorem[END_REF] and Asmussen [START_REF] Asmussen | Applied probability and queues, Stoch. Model. Appl. Probab. Springer[END_REF]. The next Lemma (1) gives an extension of the renewal Theorem (Theorem 2.4 of [START_REF] Asmussen | Applied probability and queues, Stoch. Model. Appl. Probab. Springer[END_REF]) for two dimensions. For a measure ω we denote by ω ˚n the n-fold convolution of ω with itself.

Lemma 1.

Let ω be a finite measure and g be a bounded function on the compacts of R `ˆR `. Consider the bi-dimensional renewal equation

F pt 1 , t 2 q " gpt 1 , t 2 q `pF ˚ωqpt 1 , t 2 q. ( 3 
)
Then the function hpt 1 , t 2 q :" 8 ř n"0 ω ˚npt 1 , t 2 q is well defined, furthermore Equation (3) admits a unique solution, bounded on the compacts of R 2 `given by ph ˚gq.

Proof. Let p ω be the Laplace transform of ω i.e

p ωpt 1 , t 2 q " ż `8 0 ż `8 0 e ´pt 1 s 1 `t2 s 2 q dωps 1 , s 2 q.
As lim

||pt 1 ,t 2 q||Ñ8
p ωpt 1 , t 2 q " 0, there exist α Ps0, 1r and a, b P R `such that p ωpa, bq ă α.

Then for all t 1 ą 0 and t 2 ą 0 we have

ω ˚npt 1 , t 2 q " ż t 1 0 ż t 2 0 dω ˚nps 1 , s 2 q ď ż t 1 0 ż t 2 0
e apt 1 ´s1 q`bpt 2 ´s2 q dω ˚nps 1 , s 2 q " e at 1 `bt 2 y ω ˚npa, bq " e at 1 `bt 2 p ω n pa, bq ď e at 1 `bt 2 α n , therefore hpt 1 , t 2 q ď e at 1 `bt 2 1´α ă 8. Since the function g is bounded by some positive constant M we conclude

|pg ˚hqpt 1 , t 2 q| ď M 8 ÿ n"0 ż t 1 0 ż t 2 0 dω ˚nps 1 , s 2 q ď M e at 1 `bt 2 1 ´α .
This means that g ˚h is well defined and bounded on all the compacts of R 2 `. On the other hand, g ˚h satisfies Equation (3), therefore to prove that is the unique solution of Equation (3) we assume that there exist such two solutions F 1 and F 2 bounded on the compacts of R 2 `. In other words, we suppose that

F 1 pt 1 , t 2 q " gpt 1 , t 2 q `pF 1 ˚ωqpt 1 , t 2 q (4)
and

F 2 pt 1 , t 2 q " gpt 1 , t 2 q `pF 2 ˚ωqpt 1 , t 2 q. ( 5 
)
The difference function G " F 1 ´F2 satisfies G " pG ˚ωq.

Then for all n ě 1, we have G " pG ˚ω˚n q. This implies that, for all n ě 1,

|Gpt 1 , t 2 q| " ˇˇż t 1 0 ż t 2 0 Gpt 1 ´s1 , t 2 ´s2 qdω ˚nps 1 , s 2 q ˇď p| sup G| r0,t 1 sˆr0,t 2 s qω ˚npt 1 , t 2 q (G is bounded on r0, t 1 s ˆr0, t 2 s) ď ´| sup G| r0,t 1 sˆr0,t 2 s ¯eat 1 `bt 2 α n , α Ps0, 1r.
As a consequence, we have Gpt 1 , t 2 q " lim nÑ8 pG ˚ω˚n qpt 1 , t 2 q " 0.

Remarks:

1. If ω is a probability measure, Equation ( 3) is called proper bi-renewal equation.

2. By Lemma (1), the solution of the proper renewal Equation ( 2) is given by

M ˚pt 1 , t 2 q " 8 ÿ n"0 pf ˚ν˚n qpt 1 , t 2 q " 8 ÿ n"0 ż 8 0 ż 8 0 e ´pt 1 ´s1 `t2 ´s2 q dν ˚nps 1 , s 2 q,
where ν is the probability measure given by Equation ( 1).

Under different assumptions, Hunter [START_REF] Hunter | Renewal Theory in Two Dimensions: Asymptotic Results[END_REF], Mode [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF], Mallor, Omey and Santos [START_REF] Omey | Abelian and Tauberian Theorems for the Laplace Transform of Functions in Several Variables[END_REF] described the asymptotic behavior of H :"

8 ř n"0 ν ˚n.
Namely, there principal results are:

• lim tÑ`8
Hptx, txq t " minp x θ 1 , y θ 2 q for all x, y P R (Theorem p4.1q of [START_REF] Omey | Abelian and Tauberian Theorems for the Laplace Transform of Functions in Several Variables[END_REF]).

• If we consider a vector X following the bivariate exponential distribution, in other words the probability density function of X is given by

upt 1 , t 2 q " 1 θ 1 θ 2 p1 ´ q exp `´θ ´1 1 t 1 `θ´1 2 t 2 1 ´ ˘I0 ´2p θ ´1 1 θ ´1 2 t 1 t 2 q 1{2 1
´ where P r0, 1r and I 0 is the modified Bessel function of the first kind of order zero, then as t goes to infinity [START_REF] Hunter | Renewal Theory in Two Dimensions: Asymptotic Results[END_REF] Hpθ 1 t, θ 2 tq " t ´c tp1 ´ q π `op ? tq.

• Hunter [START_REF] Hunter | Renewal Theory in Two Dimensions: Asymptotic Results[END_REF] proved that in the case of the bivariate exponential distribution we have as t 1 and t 2 tend to `8 with t 2 t 1 tends to some constant K:

Hpt 1 , t 2 q ? t 1 t 2 ÝÑ min ´?K θ 1 , 1 θ 2 ? K ¯.
Unfortunately, all the previous results are insufficient to give the behavior of N px, yq for our model. In fact, they give the approximation of H along the line tptx, tyq, t P Ru where x and y are two constants, but they don't give any information about the asymptotic behavior of the renewal density. For this reason, we give in the next Lemma a refined version of Mode's Theorem [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF]. X i , then we have for all px 1 , x 2 q P R 2 `,

as n goes to infinity

? n " h n px 1 , x 2 q ´e´1 2 px 2 1 `x2 2 q 2π ı " e ´1 2 px 2 1 `x2 2 q 12π " x 1 px 2 1 ´3qEpX p1q 3 q `x2 px 2 2 ´3q ˆEpX p2q 3 q ı `op 1 ? n q.
Proof. The techniques used to prove this lemma are similar used in the case of one dimension, for the convenience of the reader we refer to Theorem 1 of [START_REF] Smith | A Frequncy-function form of the central limit theorem[END_REF] and Lemma 2.1 of [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF].

Theorem 1. Let pX n q nPN " ´Xp1q n , X
p2q n ¯nPN be a sequence of i.i.d and absolutely continuous random vectors in R 2 with mean λ " pλ 1 , λ 2 q, covariance matrix

Σ " ˆσ2 1 0 0 σ 2 2
˙and with common distribution ω. Let h n be the probability density function of the random vector

T n " n ř i"1 X i and let hpx 1 , x 2 q " 8 ř n"1 h n px 1 , x 2 q.
Assume that ω P J 2 and that lim

x k Ñ`8 x 3 2 k h n px 1 , x 2 q " 0 for all n ě 1 and k " 1, 2. ( 6 
)
Then for an arbitrary nonnegative constant B we have as

x 1 , x 2 Ñ 8 such that | x 1 λ 1 ´x2 λ 2 |ď B: ? x 2 hpx 1 , x 2 q " K `Cpx 1 , x 2 q x 1 `op 1 x 1 q where Cpx 1 , x 2 q " Kλ 1 2 " c 0 `c1 p x 1 λ 1 ´x2 λ 2 q `c2 p x 1 λ 1 ´x2 λ 2 q 2 ı ( 7 
)
and K and c i , i " 0, 1, 2 are given in paragraph (2.3).

Proof. We denote by x " px 1 , x 2 q and by pxq "

x 1 λ 1 ´x2 λ 2 . ( 8 
)
Let Y " pY p1q , Y p2q q where Y pkq " X pkq ´λk σ k for k " 1, 2 and let Y 1 , ¨¨¨, Y n be a sequence of i.i.d random vectors following the same distribution as Y. The random vector Y is centered and its covariance matrix CovpYq " Id, then by Lemma (2) the probability density function f n of the random vector

1 ? n n ÿ k"1 Y k " ´n ř k"1 X p1q k ´nλ 1 ? nσ 1 , n ř k"1 X p2q k ´nλ 2 ? nσ 2 satisfies: lim nÑ8 ? n " f n pxq´e ´1 2 px 2 1 `x2 2 q 2π ı " e ´1 2 px 2 1 `x2 2 q 12π " x 1 px 2 1 ´3qEpY p1q 3 q`x 2 px 2 2 ´3qEpY p2q 3 q ı .
Moreover, we have:

nσ 1 σ 2 h n pxq " f n ´x1 ´nλ 1 ? nσ 1 , x 2 ´nλ 2 ? nσ 2 ¯. (9) 
Let

K n pxq " nh n pxq´e ´1 2n px´nλq 1 Σ ´1px´nλq 2π|Σ| 1 2 ´e´1 2n px´nλq 1 Σ ´1px´nλq 2 ř k"1 a k px k ´nλ k q " p x k ´nλ k ? nσ k q 2 ´3‰ 12πn|Σ| 1 2
, we conclude then that lim nÑ`8

K n pxq " 0.

For k " 1, 2 and r P r0, 2s, define the functions

V n pxq " n ´xk ´nλ k ? nσ k ¯rh n pxq, (10) 
W n pxq " ´xk ´nλ k ? nσ k ¯r 1 2π a |Σ| exp " ´1 2n px ´nλq 1 Σ ´1px ´nλq ı . (11) 
By Theorem 2.1 of Mode [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF], we have for all r P r0, 2s and k " 1, 2 lim nÑ`8 "

V n pxq ´Wn pxq ı " 0.

We conclude that for r " 2, k " 1 there exist a positive constant D and a nonnegative integer n 0 ě 1 such that for all n ě n 0

h n pxq ď D px 1 ´nλ 1 q 2 . ( 12 
)
Under assumption [START_REF] Brennan | Splitting intervals[END_REF], for all " pnq ą 0 there exists a constant A ą 0 such that for all |x 1 | ě A, we have:

x 3 2
1 h n pxq ď . Furthemore, as | pxq| ď B (where pxq is given by ( 8)), b x 2

x 1 is increased by some constant M , accordingly

? x 2 n 0 ´1 ÿ n"1 h n pxq ď 1 x 1 c x 2 x 1 n 0 ´1 ÿ n"1 ď M x 1 n 0 ´1 ÿ n"1 :" 1 pn 0 q x 1 .
Hence, when ||x|| tends to infinity with the condition | pxq| ď B, we have

? x 2 n 0 ´1 ÿ n"1 h n pxq " op 1 x 1 q. ( 13 
)
For x 1 positif and x 2 positif, we define two real numbers z 1 and z 2 by:

z k " d λ k x k ´nλ k ´xk ˘, k " 1, 2. (14) 
Equation ( 14) implies that

z 2 " p λ 2 λ 1 q 3 2 c x 1 x 2 z 1 `λ2 3 2 ? x 2 pxq, n " x 1 λ 1 `z1 ? x 1 λ 3 2 1 " x 2 λ 2 `z2 ? x 2 λ 3 2 2 " x 2 λ 2 `?x 1 λ 3 2 1 z 1 ` pxq. ( 15 
)
Take r " 0 in [START_REF] Hunter | Renewal Theory in Two Dimensions: Asymptotic Results[END_REF] and ( 11) and denote, respectively by V pz 1 , xq and W pz 1 , xq the functions obtained by replacing n by ( 15) in ( 10)and ( 11), we obtain

V pz 1 , xq " b x 1 λ ´1 1 `z1 ? x 1 λ ´3 2 1 b x 2 λ ´1 2 `?x 1 λ ´3 2 1 z 1 ` pxqh n pxq ˆ1tn" x 1 λ 1 `z1 ? x 1 λ 1 3 2 u , W pz 1 , xq " 1 2π a |Σ| exp " ´1 2 `x1 λ ´1 1 `z1 ? x 1 λ ´3 2 1 ˘ z 2 1 x 1 λ 1 Σ ´1λ λ 3 1 `λ2 2 pxq ˆp 2 ? x 1 z 1 λ 3 2

1

` pxq ( ı .

We define the following functions

V ˚pz 1 , xq " " V pz 1 , xq ´W pz 1 , xq ‰ 2 ź k"1 g f f e x k λ ´1 k x k λ ´1 k `zk ? x k λ ´3 2 k , W ˚pz 1 , xq " W pz 1 , xq 2 ź k"1 g f f e x k λ ´1 k x k λ ´1 k `zk ? x k λ ´3 2 k ,
Using Equations ( 14), V ˚and W ˚can be expressed as:

V ˚pz 1 , xq " " V pz 1 , xq ´W pz 1 , xq ‰ g f f e x 1 λ ´1 1 x 1 λ ´1 1 `z1 ? x 1 λ ´3 2 1 ˆg f f e x 2 λ ´1 2 x 2 λ ´1 2 `z1 ? x 1 λ ´3 2 1 ` pxq , ( 16 
)
W ˚pz 1 , xq " W pz 1 , xq g f f e x 1 λ ´1 1 x 1 λ ´1 1 `z1 ? x 1 λ ´3 2 1 ĝ f f e x 2 λ ´1 2 x 2 λ ´1 2 `z1 ? x 1 λ ´3 2 1 ` pxq . ( 17 
)
Let a be a nonnegative number such that N :" 2a b λ 1 λ 2

x 1 `1 P N, define the regular subdivision of the interval r´a, aq by r´a, aq " N ´1 ď j"1 rw j , w j`1 q such that @ 1 ď j ď N ´1, w j`1 ´wj "

c λ 1 λ 2 x 1 .
Let f and g be two functions defined on r´a, aq ˆR2

`by: f py, xq "

N ´1 ÿ j"1 V ˚py, xq1 rw j ,w j`1 s pyq, (18) 
gpy, xq "

N ´1 ÿ j"1 W ˚py, xq1 rw j ,w j`1 s pyq. ( 19 
)
where V ˚and W ˚are respectively given by ( 16) and [START_REF] Sibuya | Random sequential bisection and its associated binary tree[END_REF]. Recall that for all j P t1, ¨¨¨, N ´1u, y P rw j , w j`1 q implies that n "

x 1 λ 1 `y ? x 1 λ 3 2 1 P " α j px 1 q, β j px 1 q ¯X N ˚,
where

α j px 1 q " x 1 λ 1 `wj ? x 1 λ 3 2 1 and β j px 1 q " x 1 λ 1 `wj`1 ? x 1 λ 3 2 1 .
Let n j 1 px 1 q and n j 2 px 1 q be respectively the smallest and the largest nonnegative integer in the interval " α j px 1 q, β j px 1 q ¯, then we conclude that for j " 1, ¨¨¨, N ´1, y P rw j , w j`1 q if and only if n "

x 1 λ 1 `y ?

x 1 λ 3 2 1 P tn j 1 px 1 q, ¨¨¨, n j 2 px 1 qqu. ( 20 
)
Summing ( 18) and ( 19) we obtain f py, xq `gpy, xq "

c x 1 x 2 λ 1 λ 2 N ´1 ÿ j"1 h n pxq1 tn"x 1 λ ´1 1 `y? x 1 λ ´3 2 1 u 1 rw j ,w j`1 r pyq " c x 1 x 2 λ 1 λ 2 N ´1 ÿ j"1 n j 2 px 1 q ÿ n"n j 1 px 1 q
h n pxq1 rw j ,w j`1 r pyq, with the convention that the empty sum is equal to zero. By integrating we get

ż a ´a f py, xqdy `ż a ´a gpy, xqdy " c x 1 x 2 λ 1 λ 2 N ´1 ÿ j"1 n j 2 px 1 q ÿ n"n j 1 px 1 q h n pxq ż w j`1 w j dy " c x 1 x 2 λ 1 λ 2 N ´1 ÿ j"1 n j 2 px 1 q ÿ n"n j 1 px 1 q h n pxq `wj`1 ´wj q " ? x 2 n N ´1 2 px 1 q ÿ n"n 1 1 px 1 q h n pxq.
In the rest of the proof we denote by n 1 px 1 , aq " n 1 1 px 1 q and by n 2 px 1 , aq " n N ´1 2 px 1 q and we conclude that

? x 2 n 2 px 1 ,aq ÿ n"n 1 px 1 ,aq h n pxq " ż a ´a f py, xqdy `ż a ´a gpy, xqdy. (21) 
Moreover, as ||x|| tends to infinity, such that | pxq| ă B where is given by ( 8), we have :

λ 2 x 2 " λ 1 x 1 `opx ´3 2 1 q.
Let Rpy, xq " exp

" ´1 2 `x1 λ ´1 1 `y? x 1 λ ´3 2 1 ˘ y 2 x 1 λ 1 Σ ´1λ λ 3 1 `λ2 2 pxqp 2 ? x 1 y λ 3 2 1 ` pxqq ( ı , Rpy, xq " e ´y2 λ 1 Σ ´1λ 2λ 2 1 « 1 ´y ? x 1 ´λ2 2 pxq σ 2 2 ? λ 1 ´y2 λ 1 Σ ´1λ 2λ 5 2 1 ¯`1 x 1 ! ´λ1 λ 2 2 2 pxq 2σ 2 2 λ2 2 y 2 pxq σ 2 2 λ 1 ´1 `λ2 2 pxq 2σ 2 2 ¯´y 4 λ 1 Σ ´1λ 2λ 3 1 ´1 `λ2 2 pxq σ 2 2 ¯`y 6 pλ 1 Σ ´1λq 2 8λ 5 1 ) ff `op 1 x 1 q, (22) 
g f f e x 1 λ ´1 1 x 1 λ ´1 1 `y? x 1 λ ´3 2 1 g f f e x 2 λ ´1 2 x 2 λ ´1 2 `y? x 1 λ ´3 2 1 ` pxq "1 ´y ? x 1 λ 1 `1 x 1 " y 2 λ 1 ´λ1 2 pxq ı `op 1 x 1 q. (23) 
Multiplying Equation ( 22) by Equation (23), we get

f py, xq " e ´y2 λ 1 Σ ´1λ 2λ 2 1 2π a |Σ| « 1 `P1 py, xq ? x 1 `P2 py, xq x 1 ff `op 1 x 1 q,
where

P 1 py, xq " y ? λ 1 ´y2 λ 1 Σ ´1λ 2λ 2 1 ´λ2 2 pxq σ 2 2 ´1¯, P 2 py, xq " ´λ1 pxq 2 ´λ1 λ 2 2 2 pxq 2σ 2 2 `y2 λ 1 ´1 `λ2 2 pxq σ 2 2 p2 `λ2 2 pxq 2σ 2 2 q ȳ4 pλ 1 Σ ´1λq 2λ 3 1 p2 `λ2 2 pxq σ 2 2 q `y6 pλ 1 Σ ´1λq 2 8λ 5 1 .
This means that when ||x|| tends to infinity, we have

! x 1 e y 2 λ 1 Σ ´1λ 2λ 2 1 f py, xq ´1 2π a |Σ| " x 1 `P1 py, xq ? x 1 `P2 py, xq ı) 1 t| pxq|ďBu Ñ 0. (24)
Thus, for all ą 0, there exists a constant A ą 0 such that for ||x|| ě A we have 

ˇˇx 1 e y 2 λ 1 Σ ´1λ 2λ 2 1 f py, xq ´1 2π a |Σ| " x 1 `P1
ż a ´a f py, xqdy " 1 2π a |Σ| ż a ´a e ´y2 λ 1 Σ ´1λ 2λ 2 1 " 1 `P1 py, xq ? x 1 `P2 py, xq x 1 ı dy `op 1 x 1 q.
By choosing a large enough, we obtain:

ż a ´a f py, xqdy "K « 1 `λ1 2x 1 # ´ pxqp1 `λ2 2 pxq σ 2 2 q `1 λ 1 Σ ´1λ " ´1 4 `λ2 2 σ 2 2 pxq ˆp1 `λ2 2 σ 2 2 pxqq ı +ff `op 1 x 1 q. (26) 
By similar steps and using (9) , we get ż a ´a gpy, xqdy "

λ 1 K 2x 1 # λ 2 a 2 pxq ´λ1 λ 1 Σ ´1λ " a 1 `1 2 `λ2 2 pxq σ 2 2 ˘`a 2 λ 2 λ 1 `1 2 2 λ 2 2 pxq σ 2 2 ˘ı `λ3 1 pλ 1 Σ ´1λq 2 `1 2 `λ2 2 pxq σ 2 2 ˘`a 1 σ 2 1 `λ3 2 a 2 λ 3 1 σ 2 2 ˘+ `op 1 x 1 q, (27) 
where a 1 and a 2 are given in paragraph (2.3). Summing up (26) and ( 27), we obtain:

? x 2 ÿ něn 0 n 1 px 1 ,aqďnďn 2 px 1 ,aq h n pxq " K `Cpx 1 , x 2 q x 1 `op 1 x 1 q, ( 28 
)
where K is given in paragraph (2.3) and Cpx 1 , x 2 q is given by [START_REF] Dean | Phase transition in a random fragmentation problem with applications to computer science[END_REF].

It remains now to approximate the sum ? x 2 ř něn 0 nąn 2 px 1 ,aq or năn 1 px 1 ,aq h n pxq, for this purpose let

α " x 1 λ 1 `a ? x 1 λ 3 2 1
, using [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF] 13), ( 28) and (29), we obtain the requested result.

Mean and Variance of the total number of pieces

Theorem 2. Let a be a positive number, under assumptions pAq and pBq, the mean and the variance of N px θ 1 , ax θ 2 q are given as x Ñ `8 by:

mpx θ 1 , ax θ 2 q " Kax θ 1 `θ2 ? θ 2 ln x `aηpln aqx θ 1 `θ2 ln 3 2 x `op x θ 1 `θ2 pln 3 2 xq q (30)
and σ 2 px θ 1 , ax θ 2 q " τ pln aqa 2 x 2pθ 1 `θ2 q ln 3 x `o´x2pθ 1 `θ2 q ln 3 x

¯(31)

where for all α P R,

ηpαq " K 2 ? θ 2 " c 0 ´c1 θ 1 `c2 θ 2 2 `2 c 2 θ 2 1 `p1 ´αq θ 2 p1 `c1 ´2 c 2 θ 1 q `c2 p1 ´αq 2 θ 2 2 ı , (32) τ pαq " A 1 `2A 2 α `A3 α 2 1 ´Φp2, 2q `2pA 2 `αA 3 qγ `A3 ρ r1 ´Φp2, 2qs 2 `A3 γ 2 r1 ´Φp2, 2qs 3 (33)
and the constants c i , i " 0, 1, 2 and A j , j " 1, 2, 3 are all given in paragraph (2.3).

To prove this Theorem we need the following Lemma: Lemma 3. Let ξ be an integrable function on R 2 and G be an uniformly bounded function such that Gpt 1 , t 2 q ÝÑ g as t This Lemma is an immediate consequence of Lemma (3.1) in [START_REF] Mode | A Renewal Density Theorm in the Multi Dimensional Case[END_REF].

Proof. of Theorem (2): The function M ˚pt 1 , t 2 q :" e ´pt 1 `t2 q m ˚pt 1 , t 2 q satisfies Equation (2), its solution is given by M ˚pt 1 , t 2 q " pf ˚hqpt 1 , t 2 q, where hpt 1 , t 2 q " 8 ÿ n"0 dν ˚npt 1 , t 2 q.

Let r hpt 1 , t 2 q " hpθ 1 t 1 , θ 2 t 2 q and r Cpt 1 , t 2 q " Cpθ 1 t 1 , θ 2 t 2 q, we have for all α P R M ˚pθ 1 t, θ 2 t `αq "

ż θ 1 t 0 ż θ 2 t`α 0 e ´ps 1 `s2 q hpθ 1 t ´s1 , θ 2 t `α ´s2 qds 1 ds 2 " θ 1 θ 2 ż t 0 ż t`α θ 2 0 e ´pθ 1 u`θ 2 vq r hpt ´u, t `α θ 2 ´vqdudv.
Then we conclude that the expression of

x M ptq :" t c pt `α θ 2 qM ˚pθ 1 t, θ 2 t `αq (34) 
can be written as the following

x M ptq " I 1 ptq `I2 ptq `θ1 Kt a θ 2 t `α ż t 0 ż t`α θ 2 0 e ´pθ 1 u`θ 2 vq b t `α θ 2 ´v dudv `aθ 2 t `α ż t 0 ż t`α θ 2 0 e ´pθ 1 u`θ 2 vq r Cpt ´u, t `α θ 2 ´vq b t `α θ 2 ´v dudv,
where

I 1 ptq " θ 1 θ 2 c t `α θ 2 ż t 0 ż t`α θ 2 0 " pt ´uq r hpt ´u, t `α θ 2 ´vq ´Kpt ´uq b θ 2 pt `α θ 2 ´vq ´r Cpt ´u, t `α θ 2 ´vq θ 1 b θ 2 pt `α θ 2 ´vq ı e ´pθ 1 u`θ 2 vq dudv and I 2 ptq " θ 1 θ 2 c t `α θ 2 ż t 0 ż t`α θ 2 0 ue ´pθ 1 u`θ 2 vq " r hpt´u, t`α θ 2 ´vq´K b θ 2 pt `α θ 2 ´vq ı dudv.
As t goes to infinity we have I 1 ptq " op1q, in fact let

G 1 pt 1 , t 2 q " ? t 2 t 1 r hpt 1 , t 2 q ´Kt 1 ? θ 2 ´r Cpt 1 , t 2 q θ 1 ? θ 2 , ξ 1 pt 1 , t 2 q " e ´pθ 1 t 1 `θ2 t 2 q and G 2 pt 1 , t 2 q " t 1 r hpt 1 , t 2 q ´Kt 1 ? θ 2 t 2 ´r Cpt 1 , t 2 q θ 1 ? θ 2 t 2 , ξ 2 pt 1 , t 2 q " ? t 2 e ´pθ 1 t 1 `θ2 t 2 q .
Using the fact that for all v P r0, t `α `op 1

t 3 2 q,
where η is given by (32).

To compute the variance, let F " σpU 1 , U 

¯2

By integrating we show that σ 2 ˚pt 1 , t 2 q :" σ 2 pe t 1 , e t 2 q satisfies the renewal equation given by σ 2 ˚pt 1 , t 2 q " pσ 2 ˚˚µqpt 1 , t 2 q `kpt 1 , t 2 q (36)

where kpt 1 , t 2 q " E "´1 ´2 ř

i"1 2 ř j"1 mpt 1 ´Xi , t 2 ´Yj q `m˚p t 1 , t 2 q ¯2ı . The function V pt 1 , t 2 q :" e ´pt 1 `t2 q σ 2 ˚pt 1 , t 2 q satisfies the bivariate renewal equation V pt 1 , t 2 q " pV ˚νqpt 1 , t 2 q `k1 pt 1 , t 2 q

where k 1 pt 1 , t 2 q " e ´pt 1 `t2 q kpt 1 , t 2 q. It follows that, n ¯is the sum of n-iid random vectors with common distribution ν. For i and j P t1, 2u, let T " t ´Xi θ 1 and S " θ 2 θ 1 X i ´Yj `α, using the refined expression (30) of m ˚we get: m ˚pθ 1 T, θ 2 T `Sq " m ˚pθ 1 t ´Xi , θ 2 t `α ´Yj q " K e pθ 1 `θ2 qT `S ? S 2 T `ηpSqe pθ 1 `θ2 qT `S T 3 2

V
`o´epθ 1 `θ2 qT `S T 3 2

" K e pθ 1 `θ2 qt`α U i V j ? θ 2 t r1 ´lnpU i q 2θ 1 t `op 1 t qs `rηpαq `L1 pU i , V j q ´αL 2 pU i , V j qs U i V j e pθ 1 `θ2 qt`α t 3 2

`o´epθ 1 `θ2 qt`α t 3 2

¯.

Thus, where τ is given by (33).

m

3 Figure 1 :

 31 Figure 1: A cut rectangle at step 1 when b " 3, b 1 " 2.

Lemma 2 .

 2 Let pX n q nPN " i.i.d) centered random vectors whose distribution function belongs to J 2 such that CovpXq " Id, Er||X 1 || 3 s ă `8. Let h n be the probability density function of the random vector Z n " 1

	´Xp1q n , X n p2q	¯nPN	be a sequence of independent and iden-
	tically distributed (?	n	n ř i"1

.

  Denote that if ||x|| ď A, the function F py, xq is bounded. Then F is dominated by an integrable function on r´a, aq independent of x. Furthermore by (24) we have as ||x|| Ñ `8, F py, xq Ñ 0.We conclude by the dominated convergence Theorem if ||x|| Ñ `8 we have, ş a ´a F py, xqdz 1 " op1q, which means that when x 1 and x 2 tends to infinity with | pxq| ď B we have

				py, xq	ıˇˇˇ1 x 1 `P2 py, xq ?	t| pxq|ďBu ď . (25)
	Let F py, xq "	! x 1 f py, xq	´e´y 2 λ 1 Σ ´1λ 2λ 2 1 2π ? |Σ|	" x 1 `P1 py, xq ? x 1 `P2 py, xq ı) 1 t| pxq|ďBu , by
	(25) we deduce that for ||x|| ě A,	
			|F py, xq| ď e	´y2 λ 1 Σ ´1λ 2λ 2 1

  we get:

	? x 2	ÿ něn 0	h n pxq ď 2D	?	x 2	ÿ něn 0	1 pnλ 1 ´x1 q 2
	nąn 2 px 1 ,aq or					nąn 2 px 1 ,aq
		năn 1 px 1 ,aq	ď 2D	?	x 2	ż 8 α´1	dv pnλ 1 ´x1 q 2 "	2D ? x 1 λ a 1 ? x 2 ´λ1 ´1{2	,
	as a is arbitrarily chosen we can assume that a ą x 1 . Consequently,
				? x 2	ÿ něn 0	h n pxq " op	1 x 1	q.	(29)
					nąn 2 px 1 ,aq or
					năn 1 px 1 ,aq	
	Furthermore, we have					
	8		n 0 ´1					
	ÿ		ÿ					
	n"1	h n pxq "	n"1	h n pxq	`ÿ něn 0	h n pxq	`ÿ něn 0	h n pxq,
					nąn 2 px 1 ,aq or	n 1 px 1 ,aqďnďn 2 px 1 ,aq
					năn 1 px 1 ,aq
	thus by Equations (					

  1 , t 2 go to infinity with |t 1 ´t2 | ď B where B is an arbitrary positive constant. For all t P R`and α P R, we denote by , s 2 qGpt ´s1 , t `α ´s2 qds 1 ds 2 . , s 2 qds 1 ds 2 .

	Lptq " ξps 1 We have ż t ż t`α lim tÑ`8 Lptq " g	ż 8 0	ż 8 0	ξps 1
	0	0		

  In view of Theorem (1), as t 1 and t 2 tend to infinity such that |t 1 ´t2 | ď B we have G 1 pt 1 , t 2 q Ñ 0 and G 2 pt 1 , t 2 q Ñ 0. Furthermore, ξ 1 and ξ 2 are integrable on R `ˆR `, we conclude by Lemma (3) that as as t goes to infinity, I 1 ptq Ñ 0. By similar argument, we prove that as t Ñ `8, I 2 ptq " op1q. Thus We conclude by (34) and (35) that as t goes to infinity M ˚pθ 1 t, θ 2 t `αq "

												K ? θ 2 t	`ηpαq 3 t 2
												b	b
											θ 2 s,	t `α θ 2 ď	t `α θ 2 ´v `?v we obtain,
	|I 1 ptq| ď θ 1 θ 2	ż t 0	ż t`α θ 2 0	|G 1 pt ´u, t	`α θ 2	´vq|ξ 1 pu, vqdudv
				`θ1 θ 2	ż t 0	ż t`α θ 2 0	|G 2 pt ´u, t	`α θ 2	´vq|ξ 2 pu, vqdudv.
	x M ptq "	a	θ 2 t `αe ´pθ 1 `θ2 qt´α	ż t 0	ż t`α θ 2 0	e θ 1 s 1 `θ2 s 2 r Cps 1 , s 2 q ? s 2	ds 1 ds 2
				c						
			`2tK	t	`α θ 2	p1 ´e´θ 1 t qDawp	a θ 2 t `αq `op1q,
	where Daw is the Dawson's integral given by
						Dawptq " e	´t2	ż t	e u 2 du.
												0
	As t Ñ `8, we have								
	Dawp	a θ 2 t `αq "		2	1 θ 2 t ?	`α	`1 4pθ 2 t `αq	3 2 `3 8pθ 2 t `αq	5 2	`op	1 2 t 5	q
				"		2	1 ? θ 2 t		´α 4pθ 2 tq `1

  2 , V 1 , V 2 q

	E " pN px, yq ´mpx, yqq 2 | F	ı	" E "´1	`2 ÿ	2 ÿ	N pxU i , yV j q ´mpx, yq ¯2|F	ı
					i"1	j"1
			2	2			
			ÿ	ÿ		
			"		V arpN pxU i , yV j qq	1
			i"1	j"1		
								2
				´mpx, yq	`2 ÿ	ÿ	mpxU i , yV j q
								i"1	j"1

  pθ 1 t, θ 2 `αq " ph ˚k1 qpθ 1 t, θ 2 t `αq "

			8 ÿ n"0	E " k 1 ´θ1 t ´Sp1q n , θ 2 t `α ´Sp2q n ¯1tS p1q n ďθ 1 t,S	p2q n ďθ 2 t`αu	ı
	where	´Sp1q n , S	p2q	

  ˚pθ 1 t, θ 2 t `αq ´2 ÿ ˚pθ 1 t ´Xi , θ 2 t `α ´Yj q " `r L 1 `αr L 2 ˘epθ 1 `θ2 qt`α t 1 pθ 1 t, θ 2 t `αq " e pθ 1 `θ2 qt`α t 3 ´A1 `2A 2 α `A3 α 2 ˘`o ´epθ 1 `θ2 qt`α t 3

	Consequently,					
							¯.
	We obtain, by a similar computation			
	k 1 pθ 1 t ´Sp1q n , θ 2 t `α ´Sp2q n q "	e pθ 1 `θ2 qt`α´pS p1q n t 3	`Sp2q n q	" pA 1 `2A 2 α `A3 α 2 q
				`2pA 2 `αA 3 q `θ2 θ 1	S p1q n	´Sp2q n ˘`A 3	θ2
				θ 1	S p1q n	´Sp2q n	˘2ı	t 3 `o´epθ 1 `θ2 qt`α	¯.
	Finally, we get					
	V pθ 1 t, θ 2 t `αq "	e pθ 1 `θ2 qt`α t 3	τ pαq	`o´epθ 1 `θ2 qt`α t 3
		2				
		ÿ				
							3
	i"1	j"1					2
							2 3 `o´epθ 1 `θ2 qt`α t	¯.

m k