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SIMPSON CORRESPONDENCE FOR SEMISTABLE
HIGGS BUNDLES OVER KÄHLER MANIFOLDS

YA DENG

Abstract. In this note we provide an elementary proof of the Simpson correspon-
dence between semistable Higgs bundles with vanishing Chern classes and represen-
tation of fundamental groups of Kähler manifolds.

0. Introduction

Recently, J. Cao [Cao16] proved a longstanding conjecture by Demailly-Peternell-
Schneider: for any smooth projective manifold whose anticanonical bundle is nef, the
Albanese map of X is locally isotrivial. A crucial step of his proof relies on an elegant
criteria in [CH17] for the local isotriviality of the fibration, which is based on deep
results for the numerically flat vector bundles (see Definition 1.4 below) in [DPS94]
and the Simpson correspondence in [Sim92].

Theorem 0.1. Let E be a holomorphic vector bundle over a Kähler manifold X which
is numerically flat. Then

(i) [DPS94, Theorem 1.18]. E admits a filtration

{0} = E0 ( E1 ( · · · ( Ep = E(0.1)

by vector subbundles such that the quotients Ek/Ek−1 are hermitian flat, that is,
given by unitary representations π1(X) → U(rk). In particular, E is semistable
and all the Chern classes of E vanish.

(ii) [Sim92, §3]. E has a holomorphic structure which is an extension of unitary flat
bundles.

Theorem 0.1.(ii) is indeed a special case (i.e. the Higgs fields vanish) of the equiv-
alence between the category of semistable Higgs bundles with vanishing Chern classes
and the category of representations of the fundamental groups of Kähler manifolds
established by Simpson [Sim92, §3].

Theorem A ([Sim92, Corollary 3.10]). Let X be a compact Kähler manifold equipped
with a smooth vector bundle V . Then the following statements are equivalent

(1) (V,D) is a flat vector bundle over X, i.e. D2 = 0.

(2) V can be equipped with a Higgs bundle structure (V, ∂̄, θ) which is semistable.

Moreover, these equivalences are compatible with extensions in the following sense:

(i) let

{0} = (V0, D0) ( (V1, D1) ( . . . ( (Vm, Dm) = (V,D)
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be the filtration of flat vector bundles such that Di := D↾Vi
and induced graded

terms (Vi/Vi−1,∇i) correspond to irreducible representations of the fundamen-
tal group π1(X). Then each Vi is θ and ∂̄-invariant, and the induced Higgs
bundle structures on the graded terms (Vi/Vi−1, ∂̄i, τi) are stable with vanishing
Chern classes. Moreover, (Vi/Vi−1, ∂̄i, τi) is the (unique) Higgs bundle induced by
(Vi/Vi−1,∇i) from the Simpson correspondence.

(ii) Let

{0} = (V0, ∂̄0, θ0) ( (V1, ∂̄1, θ1) ( . . . ( (Vm, ∂̄m, θm) = (V, ∂̄, θ)

be the filtration of sub Higgs bundles such that ∂̄i := ∂̄↾Vi
and θi := θ↾Vi

, and
each induced graded terms (Vi/Vi−1, ∂̄i, τi) is a stable Higgs bundle (the existence
of such a filtration is proved by Simpson in [Sim92, Theorem 2] for projective
manifolds and by Nie-Zhang [NZ15] for Kähler manifolds). Then each Vi is a
D-invariant subbundle and the induced flat bundle (Vi/Vi−1,∇i) corresponds to
irreducible representation of π1(X). Moreover, (Vi/Vi−1,∇i) is the (unique) flat
bundle induced by (Vi/Vi−1, ∂̄i, θi) from the Simpson correspondence.

In [Sim92], Simpson introduced differential graded category [Sim92, §3], plus the
formality isomorphism [Sim92, Lemma 2.2] to reduce the proof of Theorem A to
his correspondence between polystable Higgs bundles with vanishing Chern classes
and semisimple representations of fundamental groups of Kähler manifolds in [Sim88].
While the correspondence for an extension of polystable Higgs bundles (i.e. m = 2 in
Theorem A) was written down explicitly in [Sim92, §3, p. 37], the cases of successive
extensions follow from the aforementioned differential graded categories.

The purpose of this note is to provide an elementary proof of Theorems A.(i)
and A.(ii). Precisely speaking, we will construct the explicit equivalences in Theo-
rem A. When m = 2, Simpson applied the Hodge decompositions for harmonic bundles
in [Sim92, §2] to build this concrete correspondence. In this note, we applied his
∂∂̄-lemma for harmonic bundles in [Sim92, §2] instead to deal with the general cases
m > 2.

1. Technical Preliminaries

In this section we recall the definition of Higgs bundles, harmonic metrics for flat bun-
dles, and the Simpson correspondence between polystable Higgs bundles and semisim-
ple representations of fundamental groups. We refer the readers to [Cor88, Sim88,
Sim92] for further details.

1.1. Higgs bundles.

Definition 1.1. Let X be a n-dimensional Kähler manifold with a fixed Kähler metric
ω. A Higgs bundle on X is a triple (V, ∂̄, θ), where V is a smooth vector bundle,
∂̄ is a (0, 1)-connection satisfying the integrability condition ∂̄2 = 0, and θ is a map
θ : V → V ⊗ A

1,0(X, V ) such that

(∂̄ + θ)2 = 0.(1.1.2)

By the theorem of Koszul-Malgrange, ∂̄ gives rise to a holomorphic structure on V ,
and we denote by E the holomorphic vector bundle (V, ∂̄). Thus (1.1.2) is equivalent
to that

∂̄(θ) = 0, and θ ∧ θ = 0.

Hence we can write abusively (E, θ) for the definition of Higgs bundle, where E is a
holomorphic vector bundle, and θ : E → E ⊗ Ω1

X with θ ∧ θ = 0.
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We say that a Higgs bundle (E, θ) is stable (resp. semistable) if for all θ-invariant
torsion-free coherent subsheaves F ( E, say Higgs subsheaves of (F, θ), we have

µω(F ) :=
c1(detF ) · [ω]n−1

rankF
< (resp. 6)

c1(detE) · [ω]n−1

rankE
=: µω(E)

where detF = (∧rankFF )⋆⋆ is the determinant bundle of F , and we say that µω(F ) is
the slope of F with respect to ω. A Higgs bundle (E, θ) is polystable if it is a direct
sum of stable Higgs bundles with the same slope.

For any Higgs bundle (E, θ) over a Kähler manifold X, if h is a metric on E, set D(h)
to be its Chern connection with D(h)0,1 = ∂̄. Consider furthermore the connection

Dh = D(h) + θ + θ∗h,

where θ⋆h is the adjoint of θ with respect to h, and let Fh := D2
h denote its curvature.

Then the metric h is called Hermitian-Yang-Mills if

ΛFh = µω(E) · 1.

1.2. Higher order Kähler identities for harmonic Bundles. Let (V,D) is a flat
bundle equipped with a metric h. Decompose D = d′ + d′′ into connections of type
(1, 0) and (0, 1) respectively. Let δ′ and δ′′ be the unique (1, 0) and (0, 1) connections
respectively, such that the connections δ′ + d′′ and d′ + δ′′ preserve the metric h. Set

θ =
d′ − δ′

2
, ∂̄ =

d′′ + δ′′

2
, ∂ =

d′ + δ′

2
,(1.2.3)

then we can decompose the connection D into

D = ∂̄ + θ + ∂ + θ∗h,

here θ∗h is the adjoint of θ with respect to h, and it is easy to verify that ∂̄ + ∂ is also
a metric connection. In general, the triple (V, ∂̄, θ) might not be a Higgs bundle.

However, since the hermitian metric h on V can be thought of as a map

Φh : X → GL(n,C)/U(n),

by the series of the work of Siu-Sampson-Corlette-Deligne, when Φh happens to be a
harmonic map, (V, ∂̄, θ) is a Higgs bundle. Such a metric h on V is called harmonic
metric, and we say that (V,D, h) is a harmonic bundle.

Suppose that (V,D, h) is a harmonic bundle.The harmonic decomposition is defined
by

D = D′ +D′′, where D′′ = ∂̄ + θ, D′ = ∂ + θ∗h.(1.2.4)

Define the Laplacians

∆ = DD∗ +D∗D

∆′′ = D′′(D′′)∗ + (D′′)∗D′′

and similarly ∆′. Then by [Sim92, §2] we have

∆ = 2∆′ = 2∆′′,(1.2.5)

and thus the spaces of harmonic forms with coefficients in V are all the same, which
are denoted by H •(V ). By the Hodge theory we have the following orthogonal de-
compositions of the space of V -valued forms with respect to the L2-inner product:

Ap(V ) = H
p(V )⊕ Im(D′′)⊕ Im

(

(D′′)∗
)

(1.2.6)

= H
p(V )⊕ Im(D)⊕ Im(D∗)(1.2.7)
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Consequencely one has the following ∂∂̄-lemma for harmonic bundles in [Sim92, Lemma
2.1].

Lemma 1.2 (∂∂̄-lemma). If (V,D, h) is a harmonic bundle, then

ker(D′) ∩ ker(D′′) ∩
(

Im(D′′) + Im(D′)
)

= Im(D′D′′).(1.2.8)

We will define the de Rham cohomology H i
DR(X, V ) for the flat bundle (V,D). We

identify V with the locally constant sheaf of flat sections of V . Consider the sheaves
of C ∞ differential forms with coefficients in V :

V →
(

A
0(V )

D
−→ A

1(V )
D
−→ · · ·

)

,

which are fine, and thus the cohomology H i
DR(X, V ) is naturally isomorphic to the

cohomology of the complex of global sections
(

A•(V ), D
)

= A0(V )
D
−→ A1(V )

D
−→ · · ·

Let us finish this subsection by recalling the following Corlette-Simpson correspon-
dence.

Theorem 1.3. Let (X,ω) be a compact Kähler manifold of dimension n.

(i) [Cor88, Don87] A flat bundle V has a harmonic metric if and only if it arises
from a semisimple representation of π1(X).

(ii) [Sim88] A Higgs bundle (E, θ) admits an Hermitian-Yang-Mills metric if and
only if it is polystable. Such a metric is harmonic if and only if ch1(E) · {ω}n−1 =
ch2(E) · {ω}n−2 = 0.

1.3. Numerically Flat Vector Bundle. Let E be a holomorphic vector bundle of
rank r over a compact complex manifold X. We denote by P(E) the projectivized
bundle of hyperplanes of E and by OP(E)(1) the tautological line bundle over P(E).
Recall the following definition in [DPS94].

Definition 1.4. Let X be a compact Kähler manifold.

(i) We say that a line bundle L is nef, if for any ε > 0, there exists a smooth hermitian
metric hε on L such that iΘhε

(L) > −εω, where ω is a fixed Kähler metric on X.
(ii) A holomorphic vector bundle E is said to be nef if OP(E)(1) is nef over P(E).
(iii) We say that a holomorphic vector bundle E is numerically flat if both E and its

dual E⋆ is nef.

2. Proof of Theorem A

Proof Theorem A. (i) Let ρ : π1(X) → GL(n,C) be the representation of the fun-
damental group corresponding to the flat vector bundle (V,D). After taking some
conjugation, one can put the representation in block upper triangular form









ρ1 ∗ . . . ∗
0 ρ2 . . . ∗
...

...
. . .

...
0 0 . . . ρm









such that for every i = 1, . . . , r, ρi : π1(X) → GL(ri,C) is an irreducible representa-
tions. Thus there is a filtration of flat vector bundles

{0} = V0 ( V1 ( . . . ( Vm = V
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such that Vi corresponds to








ρ1 ∗ . . . ∗
0 ρ2 . . . ∗
...

...
. . .

...
0 0 . . . ρi









In particular,

(i) each Vi is invariant under the flat connection D, that is, D(Vi) ⊂ Vi ⊗ A 1(X).
(ii) The quotient connection Di on Qi := Vi/Vi−1 induced by D is also flat, which

corresponds to the irreducible representation ρi : π1(X) → GL(ri,C).

By Theorem 1.3, we can find a (unique) harmonic metric hi such that (Qi, Di, hi) is
an harmonic bundle. By (1.2.4) for each i = 1, . . . , m, there is a unique harmonic
decomposition

D′′

i = ∂̄i + θi, D′

i = ∂i + θ∗i ,(2.9)

where θ∗i is the adjoint of θi with respect to hi. Moreover, Qi can be equipped with a
Higgs bundle structure (Qi, ∂̄i, θi).

For simplicity we first consider the case that V is an extension of an irreducible
representation by another one, that is, m = 2 and we have an exact sequence of flat
vector bundles over X:

0 → Q1 → V → Q2 → 0,

and thus there is η ∈ A1
(

X, hom(Q2, Q1)
)

such that D is given by

D =

[

D1 η
0 D2

]

.

We denote by D2,1 the induced flat connection on the bundle hom(Q2, Q1) by D1 and
D2. By D2 = 0, one has D2,1(η) = 0, and thus {η} ∈ H1

DR

(

X, hom(Q2, Q1)
)

.

Claim 2.1. The cohomology class {η} ∈ H1
DR

(

X, hom(Q2, Q1)
)

characterizes the iso-
morphism class of (V,D) among all extensions of Q1 by Q2.

Proof of Claim 2.1.For any η′ ∈ A1
(

X, hom(Q2, Q1)
)

such that η′ ∈ {η}. Then η′ =

η + D2,1(a) for some a ∈ A0
(

X, hom(Q2, Q1)
)

. We define a gauge transformation
g ∈ Aut∞(V ) by

(2.10) g =

[

1 −a
0 1

]

,

Then

g ◦D ◦ g−1 =

[

D1 η′

0 D2

]

=: D̃.(2.11)

Hence (V,D) and (V, D̃) are isomorphic flat bundles. �

Since both (Q1, D1, h1) and (Q2, D2, h2) are both harmonic bundles, so is
(

hom(Q2, Q1), D2,1, h1h
∗

2

)

.
Set D′

2,1 and D′′

2,1 to be the harmonic decomposition of D2,1 as (1.2.4), and let ∆2,1

and ∆′′

2,1 be the Laplacians of D2,1 and D′′

2,1 respectively. By Claim 2.1 one can
assume that η is the (unique) harmonic representation in its extension class {η} ∈
H1

DR

(

X, hom(Q2, Q1)
)

. Then

∆′′

2,1(η) =
1

2
∆2,1(η) = 0.
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In particular

D′′

2,1(η) = 0.(2.12)

Let η′ and η′′ to be the (1, 0) and (0, 1)-parts of η respectively. Set

∂̄ :=

[

∂̄1 η′′

0 ∂̄2

]

and θ :=

[

θ1 η′

0 θ2

]

.

Then (2.12) is equivalent to (∂̄ + θ)2 = 0, and by Definition 1.1 (V, ∂̄, θ) is a Higgs
bundle over X. Moreover, it is compatible with the Higgs bundle structures (Qi, ∂̄i, θi).
We prove the theorem when m = 2.

For general m > 2, we will prove the theorem by inductions. Set ∇j := D1⊕· · ·⊕Dj

to be the flat connection on Q1 ⊕ · · · ⊕Qj , and

∇′

j := D′

1 ⊕D′

2 ⊕ · · · ⊕D′

j, ∇′′

j := D′′

1 ⊕D′′

2 ⊕ · · · ⊕D′′

j .

Then ∇i = ∇′

i +∇′′

i is the harmonic decomposition defined in (2.9).
Assume that

(2.13) ∇̃j =







D1 Bj

. . .

0 Dj






,

is the flat connection on Q1⊕· · ·⊕Qj defining Vj . Here Bj ∈ A1
(

X,End(Q1⊕. . .⊕Qj)
)

which is strictly upper-triangle such that

∇j(Bj) +Bj ∧ Bj = 0(2.14)

by ∇̃2
j = 0. Here we write abusively ∇j the induced flat connection of End(Q1⊕· · ·⊕Qj)

by (Q1 ⊕ · · · ⊕Qj ,∇j)

Claim 2.2. Assume that we can find Bj−1 ∈ A1
(

X,End(Q1 ⊕ . . . ⊕ Qj−1)
)

which is
strictly upper-triangle such that

(i) for ∇̃j−1 defined in (2.13), the pair (Q1 ⊕ . . .⊕Qj−1, ∇̃j−1) defines Vj−1.
(ii) ∇′′

j−1(Bj−1) +Bj−1 ∧ Bj−1 = 0, or equivalently ∇′

j−1(Bj−1) = 0.

Then so is true for j.

Proof of Claim 2.2.Since Vj is an extension of Vj−1 by Qj

0 → Vj−1 → Vj → Qj → 0,

we denote by β ∈ H1
DR

(

X, hom(Qj , Vj−1)
)

the extension class. Choose any representa-

tive A ∈ β, then (Q1 ⊕ . . .⊕Qj , ∇̃j) defining Vj can be written as

(2.15) ∇̃j =











D1 Bj−1 a1
. . .

...

0 Dj−1 aj−1

0 . . . 0 Dj











where A = a1 ⊕ · · · ⊕ aj−1 with ai ∈ A1
(

X, hom(Qj , Qi)
)

. Then by ∇̃2
j = 0, one has

(2.16) ∇̃j−1 ◦ A+ A ◦Dj = 0.
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In particular, Dj,j−1(aj−1) = 0, where Dj,i the connection on hom(Qj, Qi) induced by
Dj and Di. Since

(

hom(Qj , Qi), Dj,i, hih
∗

j

)

is also a harmonic bundle, we set D′

j,i and
D′′

j,i to be the harmonic decomposition of Dj,i as (1.2.4). By (1.2.7) there exists

cj−1 ∈ A0
(

X, hom(Qj , Qj−1)
)

⊂ A0
(

X, hom(Qj, Vj−1)
)

such that

∆j,j−1(aj−1 +Dj,j−1cj−1) = 0,(2.17)

where ∆j,i (resp. ∆′

j,i) is the Laplacian of Dj,i (resp. D′

j,i). Denote by ∇̃j,j−1 the

induced flat connection on hom(Qj , Vj−1) by the connections Dj and ∇̃j−1, then

A1 := A+ ∇̃j,j−1(cj−1) = a1 ⊕ · · · ⊕ aj−1 + (∇̃j−1 ◦ cj−1 − cj−1 ◦Dj)

belongs to the same extension class as A1. If we write A1 = a′1 ⊕ · · · ⊕ a′j−1 with a′i ∈

A1
(

X, hom(Qj , Qi)
)

, then a′j−1 = aj−1+Dj,j−1(cj−1). By (2.17), one has ∆′

j,j−1(a
′

j−1) =
1
2
∆j,j−1(a

′

j−1) = 0, and thus
D′

j,j−1(a
′

j−1) = 0.

This gives us hints that we can use some ad hoc methods to find the proper A.

Assume now for some A = a1 ⊕ · · · ⊕ aj−1 ∈ β such that D′

j,i(ai) = 0 for all
i = k + 1, . . . , j − 1. By (2.16) we have

Dj,k(ak) +

j−1
∑

i=k+1

bkiai = 0,

here bki is the projection of Bj−1 ∈ A1
(

X,End(Q1 ⊕ . . . ⊕ Qj−1)
)

to the component

A1
(

X, hom(Qi, Qk)
)

. By the assumption that ∇′

j−1(Bj−1) = 0, we have D′

i,k(bki) = 0.
Hence

0 = D′

j,kDj,k(ak) +D′

j,k(

j−1
∑

i=k+1

bkiai)

= D′

j,kDj,k(ak) +

j−1
∑

i=k+1

(

D′

i,k(bki)ai − bkiD
′

j,i(ai)
)

= D′

j,kD
′′

j,k(ak)

= −D′′

j,kD
′

j,k(ak)

Applying Lemma 1.2 to D′

j,k(ak), there exists ck ∈ A0
(

X, hom(Qj , Qk)
)

such that

D′

j,k(ak) = −D′

j,kD
′′

j,k(ck) = −D′

j,kDj,k(ck).(2.18)

Set

Ã : = A + ∇̃j,j−1(ck)

= A + (∇̃j−1 ◦ ck − ck ◦Dj)

= a′1 ⊕ . . .⊕ a′k−1 ⊕
(

ak +Dj,k(ck)
)

⊕ ak+1 ⊕ . . .⊕ aj−1.

which belongs to the extension class as A. In other words, the components of Ã
in A1

(

X, hom(Qj, Qi)
)

for i = k + 1, . . . , j − 1 are the same as those of A, and

the component of Ã in A1
(

X, hom(Qj , Qk)
)

are replaced by ak + Dj,k(ck), such that

D′

j,k

(

ak + Dj,k(ck)
)

= 0 by (2.18). Thus by the induction on k we can choose A ∈ β
properly such that D′

j,k(ak) = 0 for all k = 1, . . . , j−1. This is equivalent to ∇′

j(Bj) = 0.
The claim is thus proved. �
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By Claim 2.2 we conclude that there exists η ∈ A1
(

X,End(Q1 ⊕ . . . ⊕ Qm)
)

which
is strictly upper-triangle, such that (Q1 ⊕ . . .⊕Qm,∇m + η) defines the flat bundle V ,
and

∇′

m(η) = 0 ⇔ D′

j,k(ηkj) = 0 ∀ 1 6 k < j 6 m.(2.19)

Here we denote by ηkj the component of η in A1
(

X, hom(Qj , Qk)
)

. Hence

∇′′

m(η) + η ∧ η = 0.(2.20)

Set

∂̄ :=







∂̄1 η′′

. . .

0 ∂̄m






and θ =







θ1 η′

. . .

0 θm






.

Here η′ and η′′ are the (1, 0) and (0, 1)-parts of η respectively, and D′′

i = ∂̄i + θi is
defined as (2.9). Then (2.20) is equivalent to (∂̄ + θ)2 = 0, and thus that (V, ∂̄, θ)
is a Higgs bundle over X. In this setting, for each 1 6 i 6 m, (Vi, ∂̄↾Vi

, θ↾Vi
) is a

Higgs subbundle of E, and the induced Higgs bundle structure on the graded term
Qi := Vi/Vi−1 coincides with (Qi, ∂̄i, θi).

(ii) The proof of Theorem A.(ii) proceeds along the same lines as Theorem A.(i). We
will only sketch a proof for Theorem 0.1.(ii), i.e. the case that θ = 0. Let us start with
a holomorphic vector bundle (V, ∂̄). Suppose that it admits a filtration

{0} = (V0, ∂̄0) ( (V1, ∂̄1) ( · · · ( (Vm, ∂̄m) = (V, ∂̄)

of holomorphic vector bundles such that for each i = 1, . . . , m, the graded term Qi :=
(Vi/Vi−1, D

′′

i ) is hermitian flat, i.e. it can be equipped with a hermitian metric hi so
that the Chern connection Di is flat. Set D′

i := Di −D′′

i , which is a (1, 0)-connection.
Set ∇j := D1 ⊕ · · · ⊕Dj to be the hermitian flat connection on Q1 ⊕ · · · ⊕Qj , and

∇′

j := D′

1 ⊕ · · · ⊕D′

j, ∇′′

j := D′′

1 ⊕ · · · ⊕D′′

j .

Then (∇′

m)
2 = (∇′′

m)
2 = 0. A similar proof as Claim 2.2 shows the following result.

Claim 2.3. There exists η ∈ A0,1
(

X,End(Q1 ⊕ . . . ⊕ Qm)
)

such that the complex

structure of (V, ∂̄) is given by

∂̄ =







D′′

1 η
. . .

0 D′′

m







and ∇′

m(η) = 0.

Let us denote D := ∂̄ +∇′

m, which is a flat connection for

D2 = (∂̄ +∇′

m)
2 = (∇′

m +∇′′

m + η)2 = ∇′

m(η) + ∂̄2 = 0.

Namely, (V,D) is a flat bundle. Since ∇′

m is the (1, 0) component of D, the underlying
holomorphic structure of (V,D) coincides with (V, ∂̄). It follows from our construction
that, (Vi, ∂̄i) is a D-invariant subbundle for each i = 1, . . . , m, with Di the induced flat
bundle structure on the graded terms. �

Remark 2.4. (i) Note that by the proof of Theorem A.(i), the category of successive of
unitary extensions of fundamental groups is larger than that of semistable vector bundles
with vanishing Chern classes. In fact, even if all the graded terms are unitary repre-
sentations of π1, the corresponding semistable Higgs bundles might have non-vanishing
(nilpotent) Higgs fields.
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(ii) The condition of numerical flatness in Theorem 0.1.(ii) is necessary. Indeed, in
[BH15] Biswas-Heu constructed an example of an extension of flat vector bundles, which
does not admit any holomorphic connection.
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