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ABSTRACT: Co-clustering designs in a same exercise a simultaneous clustering of the
rows and the columns of a data array. The Latent Block Model (LBM) is a probabilis-
tic model for co-clustering, based on a generalized mixture model. LBM parameter
estimation is a difficult problem as the likelihood is numerically untractable. How-
ever, deterministic or stochastic strategies have been designed and the consistency
and asymptotic normality have been recently solved when the number of blocks is
known. We address model selection for LBM and propose here a class of penalized
log-likelihood criteria that are consistent to select the true number of blocks for LBM.
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1 Introduction

Clustering is an essential unsupervised tool to discover hidden structure from
data by detecting groups of observations that are similar within a group and
dissimilar from one group to another one. The challenge of modern data is to
learn from observations xi ∈ Rd with a large number n of units observed on a
large number d of variables, and the question is not only to cluster the obser-
vations, but also to cluster simultaneously the observations and the variables,
leading to a tremendous parsimonious data representation.

This is called co-clustering and has many applications in many fields such
as recommendation systems (to cluster simultaneously customers and goods),
text mining (to co-cluster words and documents), genomics (to co-cluster genes
and experimental conditions) for example. As for clustering, there are many
ways to perform co-clustering, and we will focus here on the latent block
model (LBM). We present the model and its asymptotical properties. In par-
ticular, we shall analyze the log-likelihood ratio under model order misspeci-
fications, and derive a class of penalized log-likelihood criteria asymptotically
consistent, results that are new for LBM.



Figure 1. n×d = 450×600 observations (left) and their reorganization according to
the underlying structure in 4×5 blocks (right)

2 The latent block model

LBM is a probabilistic model for co-clustering. Upon a data matrix X = (xi j)
of n rows and d columns, it defines a block clustering latent structure as the
Cartesian product of a row partition z by a column partition w with three main
assumptions:

- row assignments (or labels) zi, i = 1, . . . ,n, are independent from column
assignments (or labels) w j, j = 1, . . . ,d : p(z,w) = p(z)p(w);

- row labels are independent, with a common multinomial distribution:
zi ∼ M (1,π = (π1, . . . ,πg)); in the same way, column labels are i.i.d.
multinomial variables: w j ∼M (1,ρ = (ρ1, . . . ,ρm)).

- conditionally to row and column assignments (z1, . . . ,zn)×(w1, . . . ,wd),
the observed data Xi j are independent, and their (conditional) distribution
ϕ(.,α) belongs to the same parametric family, which parameter α only
depends on the given block:

Xi j|{zikw j` = 1} ∼ ϕ(.,αk`)

where zik is the indicator membership variable of whether row i belongs
to row-group k and w j` is the indicator variable of whether column j
belongs to column-group `.

Hence, the complete parameter set is θ = (π,ρ,α), with α = (α11, . . . ,αgm).
With these assumptions, the likelihood of the complete data is

p(x,z,w;θ) = p(z;θ)p(w,θ)p(x|z,w;θ) = ∏
i,k

π
zik
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The labels are usually unobserved, and the observed likelihood is obtained by
marginalization over all the label configurations:
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LBM deals with matrix of homogeneous data, such as binary (Govaert &
Nadif, 2008), Gaussian (Lomet, 2012), categorical (Keribin et al., 2015) or
count (Govaert & Nadif, 2010) data. It involves a double missing data struc-
ture z for rows and w for columns, and the observed likelihood can not be fac-
torized as a product of the mixing density as for simple mixture models. This
implies that the likelihood is rapidly not tractable numerically even for few ob-
servations and few blocks, as the marginalization involves kn×dm terms. The
estimation can however be performed either with numerical approximations
(such as variational methods) or with Bayesian approaches (VBayes algorithm
or Gibbs sampling).

3 Asymptotic properties

The double missing structure also leads to a very challenging and interesting
study to state the asymptotic behavior of the maximum likelihood (MLE) and
variational (VE) estimators. This question was first studied on the Stochastic
Block Model (SBM) which is a LBM with the same statistical units in rows
and columns, used to model graph adjacency matrices. In this case, there is
only one set of latent variables z. Celisse et al., 2012 first proved that under
the true parameter value, the conditional distribution of the assignments of
a binary SBM converges to a Dirac of the real assignments. Assuming the
existence of an estimator of α converging at rate at least n−1, they obtained the
consistency of MLE and VE. Mariadassou & Matias, 2015 presented a unified
framework for LBM and SBM for observations coming from an exponential
family, but cannot get rid off the previous assumption to prove consistency.
Using a different approach, Bickel et al., 2013 showed for binary SBM (i) the
consistency and aymptotic normality of the MLE in the complete model where
the labels are known (ii) these properties can be transferred to the MLE of the
observed model. Recently, Brault et al., 2017 solved the consistency and the
asymptotic normality of the MLE and VE for LBM observations coming from
an exponential family.

These results were obtained when the true order (K×L) of the model is
known. The question of the choice of K and L is crucial, and well-posed in
the probability framework of LBM. Let K′ (resp. L′) be misspecifications of
the number of row (resp. column) clusters. In this talk, we will study the



likelihood ratio statistics

DKK′,LL′ = log
supθ∈ΘK′,L′

p(x;θ)

supθ∈ΘK,L
p(x;θ)

for K′ 6= K or L′ 6= L or both. Extending Wang et al., 2017 methodology
for SBM, we deal with the LBM double asymptotic in row and column to
provide an appropriate penalty term and define a class of selection criteria
asymptotically consistent.
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Compiègne.

MARIADASSOU, MAHENDRA, & MATIAS, CATHERINE. 2015. Convergence
of the groups posterior distribution in latent or stochastic block models.
Bernoulli, 21(1), 537–573.

WANG, YX RACHEL, BICKEL, PETER J, et al. 2017. Likelihood-based model
selection for stochastic block models. The Annals of Statistics, 45(2),
500–528.


