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The paper presents a study on four adaptive sampling methods of a multi-fidelity (MF) metamodel, based on stochastic radial
basis functions (RBF), for global design optimisation based on expen-sive CFD computer simulations and adaptive grid
refinement. The MF metamodel is built as the sum of a low-fidelity-trained metamodel and an error metamodel, based on the
difference between high- and low-fidelity simulations. The MF metamodel is adaptively refined using dynamic sam-pling
criteria, based on the prediction uncertainty in combination with the objective optimum and the computational cost of high- 
and low-fidelity evaluations. The adaptive sampling methods are demonstrated by four analytical benchmark and two design
optimisation problems, pertaining to the resistance reduction of a NACA hydrofoil and a destroyer-type vessel. The performance
of the adaptive sampling methods is assessed via objective function convergence.

1. Introduction

Fluid-dynamic shape design of complex industrial sys-
tems like aerial, ground, and water-borne vehicles
demands the use of high-fidel ty numerical solvers
with large computational grids to assess accurately
the design performance and make sound design
decisions. The latter can be achieved by combining
computational fluid dynamics (CFD) analysis with a
shape/design modific tion tool (CAD) and a min-
imisation algorithm into an automatic simulation-
based design optimisation (SBDO). The optimisation
algorithm may require a large number of function
evaluations to converge to the final solution, especially
if a global optimum is desired. Therefore, the resulting
computational cost of the SBDOprocess could become
very high, making SBDO hardly affordable for most
users and projects, for which computational resources
and time are usually limited.

To reduce the computational cost of the SBDO
process, metamodeling methods have been devel-
oped and successfully applied in several engineer-
ing field (Viana et al. 2014). Among other meta-
models, radial basis functions (RBF) methods have
demonstrated their accuracy and efficie y in engi-
neering design (Jin, Chen, and Simpson 2001) along

with their ease of implementation. The performance
of metamodels is problem-dependent and determined
by several concurrent issues, such as the presence
of nonlinearities, the problem dimensionality, the
noisy or smooth behaviour of the function, and the
approach used for its training (Liu, Ong, and Cai
2018).

The research of accurate and effici t methods
for metamodel-based analysis and optimisation has
recently moved from standard (or static) to function-
adaptive approaches, also known as dynamic meta-
models. In addition to auto tuning, a dynamic meta-
model is able to improve its fitting capability by
adaptive sampling or training. The design of exper-
iments (DoE) used for metamodel training is not
defi ed a priori but dynamically updated, exploit-
ing the information that becomes available during
the analysis process. The purpose of performing an
adaptive DoE is to add training points anywhere it
is most useful, so as to use a relatively low number
of function evaluations to represent the function. For
global exploration of design/uncertainty spaces (such
as in global optimisation and uncertainty quantifica-
tion), a dynamic RBF (DRBF) has been formulated by
Volpi et al. (2015), based on the maximum prediction
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uncertainty, and compared to dynamic Kriging (Zhao,
Choi, and Lee 2011). Similarly, the non-linearity of the
response and the largest distance among training-set
samples have been used byMackman andAllen (2010)
for RBF. To improve the efficie y of global optimi-
sation procedures, sequential and parallel infil cri-
teria have been used balancing the exploration and
exploitation of the design space: the expected improve-
ment (Jones, Schonlau, and Welch 1998) has been
proposed to update Kriging model; multiple points
have been added on Kriging model based on approx-
imate computation of the probability of improve-
ment (Viana and Haftka 2010); a multi-objective infil
criteria based on the estimated variance and the
response value has been proposed by Yi, Kwon, and
Choi (2014); similarly, a parallel sampling criterion
for DRBF has been proposed by Diez et al. (2019)
based on the identific tion of the global minimum of
the objective function andmaximum of the prediction
uncertainty.

In addition to dynamic metamodels, multi-fidel ty
(MF, or variable-fidel ty) approximationmethods have
been developed with the aim of combining the
accuracy of high-fidel ty solvers/evaluations with the
computational cost of low-fidel ty solvers/evaluations.
Thus, MF metamodels are trained with a combina-
tion of high-fidelity (accurate, expensive) simulations
and low-fidel ty (approximate, less expensive) simu-
lations. Combining metamodeling methods with MF
approximations potentially leads to a further reduc-
tion of the computational cost of the SBDO proce-
dure. Additive and/or multiplicative correction meth-
ods, also known as ‘bridge functions’ or ‘scaling func-
tions’ (Han, Görtz, and Zimmermann 2013), are used
to build MF metamodels, using high- and low-fidel ty
evaluations (Ng and Eldred 2012; Zheng et al. 2013;
Pellegrini et al. 2016). Several metamodels have been
used in the literature with MF data, such as non-
intrusive polynomial chaos (Ng and Eldred 2012),
co-kriging (Baar et al. 2015) and RBF (Pellegrini
et al. 2016). In SBDO based on CFD computations,
high- and low-fidel ty evaluations may be obtained by
varying the physical model, the size of the compu-
tational grid, the computational time step, the con-
vergence level of the simulations, and/or combining
experimental data with numerical simulations (Kuya
et al. 2011).

Adaptive sampling methods have been recently
combined with MF metamodels: Huang et al. (2006)

propose an augmented expected improvement for
multi-fidel ty Kriging; Pellegrini et al. (2016) use
a DRBF, sequentially adding low-fidel ty or both
high- and low-fidel ty samples, depending on which
fidelity has the greatest prediction uncertainty and
on a parameter based on the computational cost; Liu
et al. (2016) propose a sampling method based on
the propagation of the low-fidelity variance to the MF
metamodel, updating only the fidelity that provides
the maximum reduction of the MF uncertainty; Cai
et al. (2017) sample both high- and low-fidelity at each
iteration, based on the cross-validation error and a
Voronoi partition.

The objective of the present work is to assess the
performance of a multi-fidel ty DRBF (MF-DRBF)
metamodel for global optimisation, conditional to four
adaptive samplingmethods. These are based on: (i) the
maximum prediction uncertainty, (ii) a multi-fidel ty
version of the expected improvement, (iii) the maxi-
mum prediction uncertainty and the objective func-
tion through an aggregated merit factor, (iv) multi-
criteria sampling based on the solution of a multi-
objective problem considering the maximum predic-
tion uncertainty and the objective function value (Diez
et al. 2019).

The sampling methods for the MF-DRBF meta-
model are demonstrated by four multi-modal analyt-
ical benchmark problems with one and two dimen-
sions. Their performance is assessed by studying the
convergence of the optimisation procedure and the
normalised root mean square error of the predic-
tion. Finally, the sampling methods are applied to two
CFD-based design problems pertaining to the min-
imisation of (a) the drag coeffici t of a four-digit
NACA hydrofoil at Reynolds number equal to 8.41 ·

106 and (b) the total resistance of the DTMB 5415,
an early and open-to-public version of the DDG-
51 (a USS Arleigh Burke-class destroyer-type ves-
sel), in calm water at Froude number equal to 0.3.
CFD simulations are based on the Reynolds-averaged
Navier-Stokes equation solver ISIS-CFD, developed at
Ecole Centrale de Nantes/CNRS and integrated in the
FINE/Marine simulation suite from NUMECA Int.
The CFD-solver fidel ty is varied by using two compu-
tational grid levels, defined by an adaptive grid refine-
ment technique (Wackers et al. 2017). Optimisations
are performed with a deterministic version of the par-
ticle swarm optimisation (DPSO, Serani et al. 2016b)
algorithm.
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2. Stochastic radial basis functions

Consider an objective function f (x), where x ∈ R
N

is the design variable vector and N the design space
dimension. Let the true function value be known in a
number J of training points xj with associated objective
function values f (xj). The metamodel prediction f̃ (x)

is computed as the expected value (EV) of a predic-
tion ensemble obtained considering a stochastic tun-
ing parameter in the RBF kernel, e.g. τ ∼ unif[1, 3]:

f̃ (x) = EV
[
g (x, τ)

]
τ
, with

g (x, τ) =

J∑

j=1
wj||x − xj||

τ , (1)

where wj are unknown coeffici ts, || · || is the
Euclidean norm. The coeffici ts wj are determined
enforcing exact interpolation at the training points
g(xj, τ) = f (xj) by solving Aw = f , with w = {wj},
aij = ||xi − xj||

τ and f = {f (xj)}.
The uncertainty Ũf (x) associated with the stochas-

tic RBF metamodel prediction is quantifi d by the
95%-confidence interval of g(x, τ), evaluated using a
Monte Carlo sampling over τ (Volpi et al. 2015).

3. Multi-fidelity metamodel

Similarly toKennedy andO’Hagan (2000), theMFpre-
diction f̂ (x) is define by an additive correction to a
low-fidel ty trained metamodel f̃L(x) as

f̂ (x) = f̃L (x) + ε̃ (x) , (2)

where the correction is provided by the metamodel of
the error (or discrepancy) ε̃(x), defined as the differ-
ence between high- (HF) and low-fid lity (LF) evalua-
tions (fH and fL):

ε (x) = fH (x) − fL (x) . (3)

The training set for f̃L is denoted by L, whereas
the training set for ε̃ is denoted by E ⊆ L. Assuming
(for the sake of simplicity and ease of implementation)
that the uncertainties associated with the low-fidelity
and error metamodels (ŨfL

and Uε̃ respectively) are
uncorrelated, the uncertainty of the MF prediction is

U
f̂
(x) =

√
U2
f̃L

(x) + U2
ε̃ (x). (4)

A sketch of the MF metamodel concept and nota-
tion is shown in Figure 1. Note that ‘∧’ indicates MF
approximation and ‘∼ ’ denotes the RBF prediction.

4. Adaptive samplingmethods

The MF metamodel is dynamically updated by adding
new training points following a two-step procedure
(see Figure 2): (1) the coordinates of the new training
point x⋆ are chosen using one of the adaptive sampling
methods described in the following subsections; (2)
once x⋆ is identifie , either L or E are refined, based
on the following statement

If Uf̃L
(x⋆) ≥ βUε̃(x

⋆), add {x⋆, fL(x⋆)} to L,

else, add {x⋆, fL(x⋆)} to L and {x⋆, ε(x⋆)} to E ,
(5)

where β ∈ [0, 1) is the ratio between the LF and HF
computational costs. In the fi st case, only a low-
fidel ty evaluation is performed, whereas the second
case requires both low- and high-fidel ty evaluations
at the same point x⋆.

4.1. Maximumuncertainty

Maximum-uncertainty adaptive sampling (MUAS)
has been discussed formulti-fidelity problems in Pelle-
grini et al. (2016). This method identifie a new train-
ing point (see Figure 3) by solving the single-objective
maximisation problem

x⋆ = argmax
x

[U
f̂
(x)]. (6)

4.2. Multi-fidelity expected improvement

An extension of the expected improvement (Jones,
Schonlau, and Welch 1998) for multi-fidelity RBF
applications (MFEI) has been proposed by Pellegrini
et al. (2018). It is define as

MFEI (x) = EV
[
max

(
fmin − gL(x, τ) + gǫ(x, τ), 0

)]
τ
,

with fmin = min
[
f̂ (x)

]
, (7)

where gL(x, τ) and gǫ(x, τ) are RBF interpolation of
fL and ǫ, following Eq. (1). Therefore, the MFEI is
the expected value of potential reduction considering
stochastic multi-fidel ty RBF and minima provided by
f̂ at the current iteration of the sampling process.

The MFEI adaptive sampling identifie a new train-
ing point (see Figure 4) by solving the single-objective
maximisation problem

x⋆ = argmax
x

[MFEI(x)]. (8)
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Figure 1. Multi-fidelity metamodel concept and notation.

Figure 2. Updating scheme for the adaptive multi-fidelity metamodel.

Figure 3. MUAS sampling strategy.

Figure 4. MFEI sampling strategy.
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Figure 5. ACAS sampling strategy.

4.3. Aggregate criteria

Anaggregate-criteria adaptive sampling (ACAS)method
is defined with the aim of finding points with
large uncertainty and small objective function value.
Accordingly, ACAS identifie a new training point (see
Figure 5) by solving the single-objective minimisation

x⋆ = argmin
x

[f̂ (x) − U
f̂
(x)]. (9)

4.4. Multi-criteria

Similarly to the aggregate criteria, a multi-criteria
adaptive sampling (MCAS, Yi, Kwon, and Choi 2014;
Diez et al. 2019) identifies NP new training points (see
Figure 6) considering both the MF prediction and the
associated uncertainty (multi-criteria infil sampling).
Specifical y, a multi-objective optimisation problem
addressing the minimisation of the objective function
and the maximisation of the prediction uncertainty is
solved

minimise f̂ (x) and maximise U
f̂
(x),

subject to U
f̂
(x) > U⋆

f̂
,

(10)

where U⋆

f̂
= γR, with R = sup[fH(x)] − inf[fH(x)] <

∞, is a constraint parameter, defi ed in the view of the
fact that: (a) sampling too close to available training
points does not add useful information to the analysis,
(b) as the distance between training points decreases,
the matrix A may become ill-conditioned, and (c) the
uncertainty at the training points is zero, i.e.

lim
|x−x⋆|→0

U
f̂
(x) = 0 (11)

The non-dominated solution set obtained by the solu-
tion of Equation (10) is down-sampled in order to
identifyNP equally spaced points along the curvilinear

Figure 6. MCAS down-sampling strategy: green zone is defined
to avoid over-fitting in the neighbourhood of the minimum.

coordinate define by the Pareto frontier (see Figures 6
and 7). NP depends on the number of non-dominated
solutions and typical values go from 2 to 10, whereas
γ is generally set equal to (0.1 ÷ 1)%R.

5. Optimisation problems

The assessment of the adaptive sampling methods for
the MF-DRBF is based on four analytical benchmarks
and two CFD-based design optimisation problems. A
deterministic single-objective formulation of the par-
ticle swarm optimisation (DPSO) algorithm (Serani
et al. 2016b), is used for the metamodel-based opti-
misations, as well as for the solution of the min-
imisation/maximisation sampling problems of Equa-
tions (6), (8), and (9). A multi-objective extension of
DPSO as presented by Pellegrini et al. (2017) is used
for the solution of Equation (10).

5.1. Analytical benchmark problems

Four analytical benchmark problems (SK1, SSFYY2,
MLF1, Far1) are selected from Huband et al. (2006).
These problems have dimensionality ranging fromone
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Figure 7. MCAS sampling strategy.

Figure 8. Analytical benchmark problems.

to two and contain two objective functions. To simu-
late a MF environment, the first objective function is
considered as the high-fidel ty objective (fH), whereas
the second objective is considered as the error function
(ε). Therefore, the low-fidel ty evaluation is com-
puted as fL = fH − ε. The analytical benchmark prob-
lems are shown in Figure 8 and details are provided

in Table 1. Despite their low dimensionality, these
benchmark problems are challenging for the construc-
tion of both single- and multi-fidelity metamodels,
since they are generally multimodal with several min-
ima. Furthermore, also the error functions are multi-
modal. Moreover, high- and low-fidelity functions are
define to show quite different behaviours, as could

Table 1. Analytical benchmark problems.

Name Problem Domain

SK1 fH(x) = x
4 + 3x3 − 10x2 − 10x − 10 [−6, 4.5]

ε(x) = −0.5x4 − 2x3 − 10x2 + 10x − 5
SSFYY2 fH(x) = 10 + x

2 − 10 cos(xπ/2) [−16, 8]
ε(x) = (x − 4)2

MLF1 fH(x) = (1 + x/20) sin(x) [0, 20]
ε(x) = (1 + x/20) cos(x)

Far1 fH(x) = −2e(15(−(x1−0.1)2−x
2
2 )) − e(20(−(x1−0.6)2−(x2−0.6)2))

+e(20(−(x1+0.6)2−(x2−0.6)2)) + e(20(−(x1−0.6)2−(x2+0.6)2))

+e(20(−(x1+0.6)2−(x2+0.6)2)) [−0.4, 1.2]

ε(x) = 2e(20(−(x1+0.1)2−(x2−0.3)2)) + e(20(−(x1−0.4)2−(x2−0.6)2))

−e(20(−(x1+0.5)2−(x2−0.7)2)) − e(20(−(x1−0.5)2−(x2+0.7)2))

+e(20(−(x1+0.4)2−(x2+0.8)2))
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Figure 9. NACA 4-digit hydrofoil.

(moderately) happen when different physical models
(such as potential fl w and RANS) are used to solve
the same fluid dynamic problem.

5.2. CFD-based design optimisation problems

Two CFD-based design optimisation problems are
considered, namely the drag coeffici t reduction of
a NACA hydrofoil and the total resistance reduction
of the DTMB 5415 model (a destroyer-type vessel).
Details of the optimisation problems are provided in
the following subsections, whereas details on the CFD
solver and simulations are provided in Section 6.

5.2.1. NACA hydrofoil

The following minimisation problem is solved

minimise CD(x)

subject to CL(x) = 0.6

and to l ≤ x ≤ u

(12)

where x is the design variable vector, CD and CL are
respectively the drag and lift coeffici t of a four-digit
NACA hydrofoil, and l and u are the lower and upper
bound of x. The equality constraint on the lift coeffi-
cient is necessary for the optimisation of lifting hydro-
foils, in order to compare diff rent geometries at the
same lift force, rather than the same angle of attack.
The goal of the foil is to create a specifie lift (typi-
cally equal to the weight of the object), whereas the
drag depends strongly on the lift and the foil geome-
try. Section 6.3.1 explains how to handle the equality
constraint on the lift coeffici t.

The hydrofoil shape (see Figure 9) is defined by the
general equation for four-digit NACA foils. The upper
(yu) and lower (yl) hydrofoil surfaces are computed as

ξu = ξ − yt sin θ

ξl = ξ + yt sin θ

yu = yc + yt cos θ

yl = yc − yt cos θ with

yc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

p2

[
2p

ξ

c
−

(
ξ

c

)2
]

, 0 ≤ ξ < pc

m

(1 − p)2

×

[
(1 − 2p) + 2p

ξ

c
−

(
ξ

c

)2
]

, pc ≤ ξ ≤ c

(13)

where ξ is the position along the chord, c the chord
length, yc the mean camber line, p the location of
the maximum camber,m the maximum camber value,
t the maximum thickness, and yt the half thickness
distribution given by

yt = 5t
(
0.2969

√
ξ − 0.1260ξ

− 0.3516ξ 2 + 0.2843ξ 3 − 0.1015ξ 4) (14)

In this work, the design variables vector is defined as
x = {t,m} with t ∈ [0.030, 0.120] and m ∈

[0.025, 0.070]. The maximum camber position is fi ed
at p = 0.4. The simulation conditions are: velocity
U = 10 m/s, chord c = 1 m, fluid density ρ = 1, 026
kg/m3, and Reynolds number Re = 8.41 · 106 based
on the chord length.

5.2.2. DTMB 5415model

The DTMB 5415 model (see Figure 10) is an open-
to-public early concept of a USS Arleigh Burke-
class destroyer, widely used for towing tank experi-
ments (Irvine, Longo, and Stern 2008), CFD studies
(Stern et al. 2001) and hull-form optimisation (Serani
et al. 2016a).

The following minimisation problem is solved

minimise RT(x)

subject to l ≤ x ≤ u
(15)

where RT is the calm water total resistance for free-
surface flow at Fr = 0.30 and Re = 1.18 · 107 based on
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Figure 10. A geosym replica of the DTMB 5415 (CNR-INSEANmodel 2340).

the length between perpendiculars, with the ship fi ed
in its design position (even keel).

The modifie hull designs (g) are produced by the
linear superposition ofN orthonormal basis functions
(ψ) on the original geometry (g0):

g(ξ , x) = g0(ξ) + δ(ξ , x), with

δ(ξ , x) =

N∑

k=1
xkψk(ξ), (16)

where ξ are Cartesian coordinates, whereas {xk}
N
k=1

and {ψk}
N
k=1 are the design variables and the basis

functions, provided by a design-space augmented
dimensionality reduction (ADR) procedure described
in Serani and Diez (2018). Herein, for the sake of sim-
plicity and demonstration, N = 2 design variables are
used with xk ∈ [−1.25, 1.25].

6. CFD solver and problem setups

CFD simulations are performed with the unstruc-
tured finite-volume Navier-Stokes solver ISIS-CFD
developed at ECN – CNRS (Queutey and Vison-
neau 2007), available in the FINETM/Marine comput-
ing suite from NUMECA Int. Computational grids are
created through adaptive grid refineme t and mesh
deformation to take into account the need for high
and low fidel ty, as well as the different geometries
needed for shape optimisation. The following subsec-
tion describes the treatment of computational grids for
ISIS-CFD and some methods necessary for both the
CFD-based design optimisation problems: (a) hydro-
foil dynamic positioning; (b) free-surface meshing
improvement and (c) limiting refineme t behind the
stern for the vessel.

6.1. Adaptive grid refinement

The adaptive grid refineme t method adjusts the
computational grid locally, during the computation,
by dividing the cells of an original coarse grid, to

improve the precision (Wackers et al. 2014, 2017). This
method performs isotropic and anisotropic refineme t
of unstructured hexahedral meshes, by dividing the
cells of the original grid into fine cells; this division
can be repeated several times until the desired cell
sizes are obtained. The decision where to refin comes
from a refineme t criterion, a tensor field C(x, y, z)
computed from the flow. The tensor is based on the
water surface position and on second derivatives of
pressure and velocity. The mesh is refin d until the
dimensions di,j (j = 1, 2, 3) of each hexahedral cell i
satisfy

‖Cidi,j‖ = Tr (17)

As shown by Wackers et al. (2017), the refineme t cri-
terion based on the second derivatives of the flow is
not very sensitive to grid refineme t, so the cell sizes
everywhere are proportional to the constant threshold
Tr. The cost of the mesh adaptation is moderate; the
added computation time for refinement is less than 5%
for a typical simulation.

For multi-fidelity optimisation, the interest of this
procedure is that high- and low-fidelity results can be
obtained by running the same simulation with two
diff rent thresholds Tr (see Figure 11).

6.2. Computational grid deformation

The unstructured hexahedral original grids for the
adaptive refineme t are generated using HEXPRESS
from NUMECA Int. Since unstructured grids may be
quite different for geometries that are nearly iden-
tical, numerical noise may appear in the simulation
results: similar geometries may have different fl w
solutions. To prevent this, the simulations of all the
candidate geometries are performed with the same
original grid (see Figure 12(a)), which is deformed
to fit each geometry (see Figure 12(b)). The defor-
mation algorithm (Durand 2012) divides the grid in
layers of cells around the geometry. For each geom-
etry face, the displacement of the faces with respect
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Figure 11. Coarse and fine computational grid example for the DTMB 5415 problem. The figure shows the mesh in the plane z = 0,
coloured by the water volume fraction. (a) Coarse grid, Tr = 0.0145 (b) Fine grid, Tr = 0.0072

Figure 12. Example of grid deformation and adaptive refinement for the DTMB 5415 problem. (a) Original grid (b) After deformation (c)
After refinement

to the parent one is propagated through these lay-
ers. Two smoothing mechanisms are applied: (i) the
displacements are diffused over the faces of a single
layer, so the grid deformation becomes more uniform;
(ii) the displacements are multiplied with a weight-
ing factor which goes from 1 on the geometry to 0
on the outer boundaries, so that the latter are not
deformed.

An advantage of the combined deformation and
adaptive refineme t is that the grid deformation (see
Figure 12(b)) can be performed on the coarse ini-
tial grid, instead of a fine grid where small errors in
the placement of the nodes can lead to inverted cells.
The final grid is then created using adaptive refine-
ment (see Figure 12(c)). This procedure is more robust
than attempting to deform fine grids. Furthermore, the
adaptive refineme t ensures that the cells are placed
effici tly for capturing the fl w around the object and
in the wake, independently of the amount of mesh
deformation.

6.3. NACA hydrofoil

The initial computational grid for both high- and low-
fidel ty has 2654 cells, the refineme t threshold value
Tr is set equal to 0.1 and 0.4 for high- and low-
fidel ty, respectively. This results in a cell size ratio
of 4:1 between the refine fin and coarse grids. The
actual computational grids have 11 k and 3.6 k cells,
respectively (see Figure 13(a,b)).

The domain runs from 11c in front of the lead-
ing edge to 16c behind the hydrofoil and from −10c
to 10c vertically. Dirichlet conditions on the velocity
are imposed, except on the outfl w side which has an
imposed pressure condition. The hydrofoil surface is
treated with a wall law, which is the engineering state-
of-the art for this type of simulation, with y+ = 60
for the fi st layer. Turbulence is modelled with the
standard k − ω SST model. The fl w is computed by
time-integrating the time-dependent fl w equations
towards a steady state; 4000 time steps are run for each
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Figure 13. NACA hydrofoil computational grids. (a) Coarse grid, 3.6 k cells (b) Fine grid, 11 k cells

computation. The forces are then evaluated by inte-
grating the pressure and skin friction over the profile
and averaging this result over the final 500 time steps.

HF and LF simulations require, respectively, about
13 and 5 minutes of wall-clock time to converge. The
resulting computational cost ratio is β = 0.3. Results
for similar foils in Wackers et al. (2017) suggest a
numerical uncertainty of around 2% for the fin grids.

A budget of 150 simulations is provided for the
adaptive sampling methods, considering both HF and
LF simulations. The initial training set for the problem
is a set of 2N + 1 points including the domain centre
and min/max coordinates for each variable.

6.3.1. Dynamic positioning

To maintain a constant lift (see Equation (12)), the
angle of incidence α for the hydrofoil is adjusted
dynamically during the simulations. At regular inter-
vals in a simulation, the difference between the tar-
get and the actual lift is evaluated. This difference is
divided by the theoretical lift slope of 2D foils (�CL =

2π�α), to give a change in angle of attack �α. This
change is applied over a few time steps, using grid
deformation. Then, the fl w is allowed to settle and
another �α is computed. The procedure converged
to within 0.1% of the target lift in all cases. Con-
trary to the deformations to fit different geometries,
the computational grid is deformed with an analytical
weighting technique (Leroyer and Visonneau 2005) to
accommodate the rotation.

6.4. DTMB 5415model

The initial computational grid for both high- and low-
fidel ty has 130k cells, which allows to capture the base
flow features. As for the NACA hydrofoil problem, a

4:1 cell size ratio between the HF (Tr = 0.0145) and
LF (Tr = 0.0036) computational grid is selected. The
actual computational grids have approximately 4.3M
and 260 k cells, respectively. This ratio appears ideal
for the present problem: for higher ratios, either the
HF computations are too costly or the LF grids are so
coarse that they cannot capture the ship geometry.

Simulations are performed on the half geometry, in
model scale with L = 5.72m. The domain runs from
1.5 L (withL the vessel length) in front of the bow to 3 L
behind the stern, up to 2 L laterally, and from −1.5 L
to 0.5 L vertically. Dirichlet conditions on the velocity
are imposed on the inflow and side faces, pressure is
imposed on the top, bottom, and outflow side. Once
again, the hull is treated with a wall law, y+ = 60 for
the first layer, and turbulence is modelled with k − ω

SST. The free-surface deformation for wavemaking is
treatedwith a surface-capturing approach that resolves
both water and air flow. As usual for free-surface flows,
the flow is solved through time integration; 2000 time
steps are used. The forces are averaged over the fin l
250 time steps.

On a 20-core workstation the HF and LF simula-
tions take about 24 and 1.5 hours, respectively, corre-
sponding to a computational cost ratio β = 0.063.

The initial training set for MF-DRBF is a set of
2N + 1 points including the domain centre and with
each single design variables at either +1 or −1. Adap-
tive sampling is then run until 80 computations, HF
and LF combined, are reached.

6.4.1. Improving the free-surfacemeshing

To provide adequate surface capturing even on a
deformed computational grid, the fine grid around the
free surface is created entirely by adaptive refinement
(see Figure 12(c)); the original grid has no specifi
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Figure 14. Example of undisturbed free-surface grid (shown in x-cut planes) for DTMB 5415 problem, depending on the computational
grid deformation algorithm (Red is water, blue is air). (a) Undeformed (b) Deformed with Durand (2012) weighting (c) Deformed with
power 3.0 weighting

refineme t around the free surface at all. This implies
that the cells of the original mesh have to be divided
many times by the grid adaptation. However, thanks
to the anisotropic nature of the refinement algorithm
(Wackers et al. 2014), only refineme t normal to the
free surface is requested. On undeformed grids (see
Figure 14(a)) this works well: where the surface is at
rest, the computational grid is refined only in vertical
direction, resulting of good quality. When the compu-
tational grid is deformed (see Figure 14(b)) the cells of
the original grid are stretched and rotated. As a con-
sequence, the cells are no longer aligned with the free
surface, so they are refined inmore than one direction,
which leads to unnecessary refineme t and mediocre
grid quality. This problem is alleviated by changing
the weighting factor. Instead of the weighting defined
by Durand (2012), which is based on the linear and

squared distance to the body, a weighting based on
the distance to the power 3.0 is chosen. Since this
weighting law goes to zero rapidly when the distance
to the body increases, the grid far from the body is less
deformed. As a result, the refined mesh is improved
(see Figure 14(c)).

6.4.2. Limiting refinement behind the stern

When simulating ships with adaptive refinement,
unrestricted application of the velocity/pressure
refineme t criterion leads to the accurate resolution of
the near and the far wake (Wackers, Guilmineau, and
Visonneau 2017). However, the far wake may not be
required for drag evaluation. Therefore, tests were run
where refineme t is forbidden from a certain distance
behind the stern; thus, the far-wake region retains a
coarse mesh.

Figure 15. Computational grid refinement behind the stern for DTMB 5415 problem, conditional to the refinement limit. (a)−0.05 L (b)
−0.25 L (c)−1.75 L

Figure 16. Total resistance when horizontal refinement is forbidden beyond a limit behind the stern, for three geometries.
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Figure 15 shows the grid at the undisturbed water
level for three cases: the refinement is suppressed from
0.05 L, 0.25 L, and 1.75 L behind the stern respec-
tively. To study the effect on the computed drag,
such series were computed for two geometries cre-
ated by varying the optimisation design variable x2,
as well as the undisturbed case (see Figure 16). The
results for the middle limit (0.25 L) are quite close to
the largest one (1.75 L), with the biggest discrepancy
occurring for x2 = −1.25. The shortest limit (0.05 L)
however, changes the drag signifi antly when themesh
is deformed to x2 = 1, probably because the sternwave
pattern is modified; the case x2 = 1 has the steepest
stern wave of the three. As a compromise between
the computational cost and the accuracy of the total
resistance estimation in all deformation cases, the res-
olution of the near wake (0.25 L) is chosen.

7. Numerical results

The following subsections present the results of the
analytical benchmarks and the CFD-based design
optimisation problems. For practical purposes, solving
the Equations (6), (8)–(10), a distance-based penal-
isation is applied if the new candidate sample has a
distance lower than 0.001 (considering a normalised
design variable range) from other points of the train-
ing set. The penalisation aims at preventing sam-
ple clusterisation and ill-conditioning problems. The
above minimum distance between training points is
also used as stopping criterion. The number of sam-
ples (NP) computed at once by the MCAS sampling
method is set to NP = 4. Furthermore, a threshold
U⋆

f̂
= 0.5%R is used for theMCAS (see Equation (10)).
The computational cost is normalised with the HF

cost: one HF evaluation costs 1, whereas the LF cost is
equal to β , for a total cost equal to NH + βNL, where
NH and NL are the numbers of high- and low-fidelity
computations, respectively.

7.1. Analytical benchmark

Analytical benchmark results are assessed with two
metrics: (1) the objective function value for the cur-
rent optimum (high-fidel ty evaluated) and (2) the
normalised root mean square error (NMRSE) of the
multi-fidel ty prediction versus the analytical func-
tion (normalisation is based on the initial HF train-
ing set range). The NRMSE is computed on a set

of 50N evenly-spaced points. The available compu-
tational budget is set equal to a maximum cost of
50N. Due to the analytical nature of the test func-
tions, the computational costs are not significant; a
computational cost ratio β = 0.1 between low- and
high-fidel ty is artifici lly assumed.

Figure 17 shows the convergence of themetamodel-
based optimisation towards the objective minimum
and the corresponding NMRSE conditional to the
adaptive samplingmethods for problems SK1, SSFYY2,
MLF1, and Far1. All methods achieve the minimum,
excluding the MFEI sampling for the MLF1 problem
(note that MFEI faces premature convergence since
it has activated the clustering stopping criterion). It
is worth noting that the ACAS shows better conver-
gence to the minimum than other methods. Differ-
ently, considering the global approximation, the fastest
and most signific nt NMRSE reduction is achieved by
the MUAS. The MCAS has similar performance to
MUAS.

Since ACAS shows the best performance from
the optimisation viewpoint, a parametric analy-
sis for ACAS only is conducted considering β =

{0.05, 0.1, 0.2, 0.4, 0.8}.Moreover, a single-fidel tyDRBF
trained only by HF evaluations is used to assess and
compare the MF-DRBF efficie y. The correspond-
ing results for the analytical benchmarks are shown
in Figure 18. The MF approach achieves faster con-
vergence towards the minimum and lower NRMSE
than using single HF-based metamodel for problems
SK1, SSFYY2, and MLF1, regardless of β . For problem
MLF1, the HF-based metamodel does not achieve the
objective minimum. The Far1 problem shows compa-
rable convergence towards the objective minimum of
MF and HF-based DRBF, whereas in terms of NRMSE
the HF-based DRBF achieved the lowest value.

7.2. NACA hydrofoil

The drag optimisation of the NACA four-digit hydro-
foil Equation (12) is a two-parameter problem like
Far1, but it only has a single, global minimum. There-
fore, a convergence like for the SSFYY2 problem can
be expected. A particular diffic ty of this problem is
that, while the minimum lies on the domain bound-
ary, it is located close to high drag values which may
prevent the sampling of points close by. The adaptive
MF-DRBF-based optimisation results are compared
to an optimal benchmark solution for Equation (12)
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Figure 17. Analytical benchmark problems: adaptive sampling performance comparison for β = 0.1.

Figure 18. Analytical benchmark problems: ACAS performance conditional to β (only HF is used when β = 1).

identifie by an earlier single-fidel ty metamodel-
based optimisation trained by 150 HF simulations
(Ploé et al. 2017).

Figure 19 shows the convergences of the maxi-
mum prediction uncertainty, the drag coeffici t min-
imum, and the corresponding design variables. MUAS
and MCAS have achieved lower values of the maxi-
mum prediction uncertainty than MFEI and ACAS.
On the contrary, only MFEI and ACAS have reached
a minimum close to the benchmark. Overall, MFEI
has provided the fastest convergence towards the
minimum.

Figure 20 shows the MF-DRBF prediction and the
corresponding training set at the final iteration of
the four sampling strategies. The MUAS and MCAS

strategies have provided a global exploration of the
domain. On the contrary, the MFEI and ACAS meth-
ods have clustered training points in a small region,
close to the global minimum. All the sampling strate-
gies have used a similar number of HF evaluations (see
Table 2), with MUAS and MCAS spreading the HF
evaluations over the whole design space. Furthermore,
both MUAS and MCAS have requested HF training
points in the design space corners. The MFEI and
ACAS strategies have focused the HF evaluations only
in the minimum region.

Furthermore, Figure 19 shows that the convergence
of the uncertainty prediction of MUAS is noisy. This
happens since MUAS aims at the minimisation of the
maximum uncertainty, therefore clusters the training
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Figure 19. NACA hydrofoil problem: convergence of adaptive MF-DRBF maximum uncertainty, drag coefficient minimum, and corre-
sponding coordinates x1 and x2.

Figure 20. NACAhydrofoil problem: training sets and drag coefficientMF-DRBF prediction at the final iteration of the adaptive sampling
procedures.

points in regions where the uncertainty is high (see
Figure 20). However, the MF-DRBF uncertainty is
affected by a small-scale noise found in the numerical
simulations, in regions with clustered training points.
(This noise is due to different geometries produc-
ing different grids, so two almost similar geometries
may have different numerical errors in the solution.
Another source is the small variations in lift coming

from the dynamic positioning.) Therefore, MUAS has
added training points in regions where the uncertainty
is due to the numerical noise and not to the global
objective function shape. The effects of the numerical
noise are evident in Figures 20(a). MUAS has clustered
samples in the neighbourhood of x = {4.0, 4.0} ×

10−2 (see Figure 20(a)) mainly LF training points; this
region has the highest numerical uncertainty in the

Table 2. Summary of the adaptive sampling methods performance on the NACA hydrofoil prob-

lem. The table provides both the metamodel-predicted ĈD and an actual simulated CD in the
computed optimum.

m̧inimum position m̧inimum value

NH [−] NL [−] x1 [−] x2 [−] ĈD [−] CD [−]

MUAS 14 136 3.8878E−2 3.0000E−2 7.1759E−3 7.2582E−3
MFEI 15 135 4.1691E−2 3.0000E−2 7.1545E−3 7.2371E−3
ACAS 12 138 4.1290E−2 3.0009E−2 7.1754E−3 7.2403E−3
MCAS 11 137 3.9810E−2 3.0000E−2 7.2816E−3 7.2606E−3
Benchmark 150 4.0993E-2 3.0027E-2 7.2340E-3
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Figure 21. Hydrofoil optimisation: velocity contour for the optimal configuration identified with the sampling methods. (a) MUAS
(b) MFEI (c) ACAS (d) MCAS

Figure 22. DTMB 5415 problem: training sets and total resistance MF-DRBF prediction at the final iteration of the adaptive sampling
procedures.

simulations. The clustering observed for the MFEI,
ACAS, and MCAS methods is around the MF-DRBF
optimum, since they are based on the objective func-
tion value. For those methods, the LF points are
accompanied by a less signific nt clusterisation of HF
training points.

Finally, Figure 21 shows the velocity contours of
the optimal NACA hydrofoil shape identified by the
adaptive sampling strategies. The differences of the
hydrofoil shapes are not evident, although the velocity
contours are different near the leading edge.

The results of the adaptive sampling strategies
are summarised in Table 2, showing that the MFEI
method is the most effective adaptive sampling
technique for the present problem, followed closely
by ACAS.

7.3. DTMB 5415model

Figure 22 shows theMF-DRBF prediction and the cor-
responding training set at the final iteration of the
four sampling strategies. The figu e shows that, even if
the design optimisation is a challenging problem from

the CFD perspective, the objective function shape is
actually simpler than for the previous problems, since
it is unimodal and has a single minimum. Thus, all
sampling methods produce similar MF-DRBF meta-
models and the optima found are close. Nevertheless,
the samples spreading are completely diff rent. The
MUAS has concentrated samples on the corners of the
design space, following almost a symmetric pattern.
Apart from the 5 initial training points, HF samples
have been added in the bottom corners. The MFEI
shows some erratic sampling; as noted before (see
Figure 17) the expected improvement goes to zero at a
given moment, meaning that the samples placement is
stopped before exhausting the budget. However, with
three HF samples lying close to the optimum (one hid-
den by LF samples in Figure 22) the error metamodel
is locally reliable. The ACAS has concentrated all the
samples around the optimum. Only one HF sample
has been added, close to the optimum location (hid-
den behind the LF samples in Figure 22). As for the
NACA problem, MCAS takes a middle road, adding
samples around the optimum but also in the corners.
Regarding HF samples, all additional samples are in
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Table 3. Summary of the performance of the adaptive sampling strategies on the DTMB 5415
problem.

m̧inimum position m̧inimum value

NH [−] NL [−] x1 [−] x2 [−] R̂T [N] RT [N]

MUAS 8 72 0.4425E−2 −7.8258E−1 48.4044 48.5456
MFEI 7 73 0.3725E−2 −9.9753E−1 48.5508 48.6088
ACAS 6 74 −1.0500E−2 −7.4843E−1 48.3062 48.6236
MCAS 8 70 0.3750E−2 −7.3195E−1 48.4409 48.7344
Original 0.0 0.0 50.6465

Figure 23. Initial (top) and optimised (bottom) geometry and wavepattern (z-coordinate of the free-surface position).

the design space corners. Finally, considering the MF-
DRBF uncertainty, only MUAS and ACAS achieve a
uniform low uncertainty around the optimum.

Table 3 summarises the locations of the optimum
and the optimised resistance for the sampling strate-
gies. Apart fromMFEI, the optimum locations lie close
together. ACAS has achieved the lowest predicted total
resistance. The actual resistance improvement is about
4% for all methods: the MUAS is best overall, whereas
the MFEI has the lowest validation error (about 0.1%)
with respect to the original DTMB 5415 geometry.
This can be explained by the error metamodel. Since
β = 0.0625 is low for this problem, few HF samples
are added in the training set, meaning that the error
metamodel is not define very accurately close to
the optimum, resulting in a discrepancy between the
predicted and the actual optima. Since MFEI has three
HF points around the optimum, the error metamodel
is well defin d in this region and theMF-DRBF predic-
tion with MFEI sampling is the most reliable for this
problem.

Figure 23 shows the initial and the MFEI opti-
mal geometry (this is similar to the other optimised
geometries). The optimum, compared to the original

geometry, has a more slender aftship which reduces
the width of the stern wave, and a slight bulge aft of
the bow. This bulge creates a second bow wave out of
phase with the firs one. By superposition, these two
waves cancel so the total bow wave is reduced. Since
this interference depends on the wave lengths, which
are determined by the ship’s velocity, the total resis-
tance reduction is expected to be effective only around
the target velocity.

8. Conclusions and future work

Four adaptive sampling methods for MF-DRBF meta-
models have been presented. These are assessed
by four analytical benchmarks and applied to two
CFD-based design optimisation problems, pertaining
to the resistance reduction of a NACA hydrofoil and a
destroyer-type vessel (DTMB 5415). The MF approxi-
mation is obtained as the sum of a low-fidel ty-trained
metamodel and the metamodel of the error (differ-
ence) between high- and low-fidel ty evaluations. The
stochastic RBFprovides themetamodel prediction and
the associated uncertainty. The prediction uncertainty
of both the low-fidelity and the error metamodel is
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used for the adaptive refineme t of the low-fidel ty and
the error training sets. The ratio of the computational
cost of high- and low-fidel ty evaluations affects the
choice of the fidelity to sample.

The criteria for the refinement of the multi-fidelity
training set are: (i) the minimisation of the maxi-
mum uncertainty of the MF metamodel prediction
(MUAS), (ii) the maximisation of the multi-fidel ty
expected improvement (MFEI), (iii) the minimisation
of an aggregated merit factor of the prediction uncer-
tainty and the predicted objective function (ACAS),
and (iv) a multi-objective optimisation aiming at max-
imising the prediction uncertainty andminimising the
predicted objective function (MCAS). The MF-DRBF
performance has been assessed in terms of conver-
gence towards the minimum. In addition, MF-DRBF
maximum uncertainty and NRMSE are used for fur-
ther comparisons.

The analytical benchmarks results have shown that
the ACAS (closely followed by the MFEI sampling)
is the most effective method for the MF-DRBF, from
the optimisation point of view. For this reason, a
further analysis for the ACAS conditional to the
computational-cost ratio (β) has been conducted. The
ACAS strategy combined with the MF formulation
has shown better performance than using a single HF
metamodel, regardless of β .

The CFD-based design optimisation problems are
challenging for the MF metamodel. The existence of
numerical noise affects the RBF interpolation, result-
ing in large uncertainty of the MF prediction in noisy
regions of the domain. Therefore, sampling methods
that directly take into account the prediction uncer-
tainty are ‘trapped’ in such regions. For both CFD-
based problems ACAS and MFEI are found the most
effective sampling strategies.

In order to overcome thedifficulties arising from the
presence of numerical noise (associated to CFD simu-
lation residuals), future work will consider the use of
regularisation approaches, approximation/regression
methods (e.g. least square fit) as opposed to exact
interpolation, as well as extensions to the use of
Gaussian process. Preliminary studies by the authors
can be found in Wackers et al. (2019) and Antog-
noli et al. (2019). Moreover, the possibility to gen-
eralise the MF concept to more than two fidelities
(multi-level) is currently being investigated (Serani
et al. 2019) and will be further developed in future
studies.
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