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Molecular dynamics simulations are a powerful tool to characterize liquid-solid friction. A slab configuration
with periodic boundary conditions in the lateral dimensions is commonly used, where the measured friction
coefficient could be affected by the finite lateral size of the simulation box. Here we show that for a very wetting
liquid close to its melting temperature, strong finite size effects can persist up to large box sizes along the flow
direction, typically ∼30 particle diameters. We relate the observed decrease of friction in small boxes to changes
in the structure of the first adsorbed layer, which becomes less commensurable with the wall structure. Although
these effects disappear for lower wetting cases or at higher temperatures, we suggest that the possible effect of the
finite lateral box size on the friction coefficient should not be automatically set aside when exploring unknown
systems.

DOI: 10.1103/PhysRevE.100.023101

I. INTRODUCTION

Nanofluidic systems [1,2] show great promise for appli-
cations such as blue energy [3–5] and water desalination
[6–8]. When liquids are confined at nanometric scales, sur-
faces play an increasingly important role over bulk liquid
properties, and it is therefore critical to better understand and
control the behavior of liquid-solid interfaces. In particular,
both experiments and molecular simulations have shown that
liquids can slip on some surfaces at the nanoscale [9], which
can enhance the performance of nanofluidic systems [10–14].
Wall slip is controlled by the liquid-solid friction, as initially
discussed by Navier [15,16], who wrote that the viscous shear
stress in the liquid at the wall η∂zv|z=zw

(where η is the shear
viscosity, z is the direction normal to the interface, zw is the
wall position, and v is the tangential velocity) is equal to
an interfacial fluid friction stress, τ = λvs (where vs is the
slip velocity, the velocity jump at the interface, and λ is the
fluid-solid friction coefficient). This relation is different from
the Coulomb friction coefficient defined as the ratio of the
friction force to the normal force, usually applied in the
context of solid friction. Navier’s boundary condition can
be rewritten as the so-called partial slip boundary condition,
vs = b ∂zv, defining the slip length b, which can be expressed
as a function of the liquid viscosity and the interfacial friction
coefficient: b = η/λ.
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Because standard slip lengths lie in the nanometric range,
experimental characterization of slip is very challenging
[17–20]. Molecular dynamics (MD) simulations of liquids
confined between parallel walls (slab configuration) or in
cylindrical pores represent an interesting alternative for slip
or friction characterization [21–41], offering good control of
the simulated setups. Moreover, MD can help us to understand
the mechanisms underlying interfacial friction by providing
access to atomistic information [42–49], and quantum effects
on interfacial friction were also examined recently through
ab initio simulations with massive computing power [47].
However, MD simulations also pose a number of specific is-
sues. For instance, in direct simulations of transport properties
by nonequilibrium MD, the thermostating algorithm required
to maintain the system at constant temperature can affect the
results and must be carefully chosen [50–52].

Simulations are also limited by the finite size of the simu-
lation cells. Although the use of periodic boundary conditions
can, in some aspects, efficiently mimic a macroscopic system,
finite size effects can still impact the measured quantities.
For instance, the self-diffusion coefficient strongly depends
on the size of the simulation box because of hydrodynamic
interactions with periodic images, an effect well captured
by continuum hydrodynamics [53–56]. In slab simulations,
two types of finite size effects should be considered. On
the one hand, the effect of the confinement height has been
explored in previous work [27–29,36,37,43–45]. On the other
hand, the effect of the lateral size of the simulation box has
been little explored. Huang and Szlufarska [35] compared
the predictions of two methods to extract the friction coef-
ficient from equilibrium simulations, using different lateral
sizes. However, we are not aware of tests of the effect of
the lateral box size on the friction coefficient, regardless of
the measurement method. Previous MD work on liquid-solid
friction cited above typically used lateral box sizes ranging
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FIG. 1. (a) Density (black line) and velocity (red dots) profiles for three lateral box sizes, lx = 3.13, 6.27 and 18.8 nm; the red dotted line
is a linear fit of the velocity profile in the bulk region. As illustrated in the three panels, the slip velocity vs is measured as the liquid velocity
at the position of the first density peak. (b) Snapshots of the systems, from left to right: perspective view of the small system and side views of
three systems with increasing lateral size lx .

from ∼5σ to ∼50σ , with σ being the molecular size. In this
work we would like to assess the validity of such box sizes by
examining finite size effects on liquid-solid friction. To that
aim we will consider a model Lennard-Jones (LJ) system and
use nonequilibrium shear flow simulations. We will show that
significant finite size effects can persist up to large box sizes
for very wetting liquids close to the melting temperature, and
we will show the atomic origin of these effects.

II. SYSTEMS AND METHODS

We simulated a liquid slab confined between parallel walls
[see Fig. 1(b)]. The walls were fcc crystals, each made of eight
atomic layers and exposing a (001) face to the liquid. Every
pair of nearest neighbors in the walls was bound through
a harmonic potential �h(r) = k/2 (r − req)2, with r being
the interparticle distance, req = 0.277 nm, and k = 46.8 N/m.
Interactions between liquid particles and between liquid and
solid particles were modeled by a LJ potential �LJ(r) =
4εi j[(σi j/r)12 − (σi j/r)6], with i and j being L for liquid

particles and S for solid ones, where the LJ interaction was
truncated at a cutoff distance of rc = 3.5σ and quadratic func-
tions were added so that the potential and interaction force
smoothly vanished at rc [57]. We used the following param-
eters: σLL = 0.340 nm, σLS = 0.345 nm, εLL = 121 K × kB,
and εLS = α εLL, where the “wetting coefficient” α controls
the wetting properties and can be related to the contact angle
(see Appendix A). We used α = 0.774, corresponding to a
complete wetting case, unless otherwise specified. Finally, the
atomic masses were mL = 39.95 u and mS = 195.1 u.

The total system height (walls included) and the total
liquid height along the z direction were ∼10.8 and 8 nm,
respectively, to ensure that an ∼2-nm-thick region of bulk
liquid (with a constant density) existed in the center between
the layered liquid structures formed near the two walls. We
used periodic boundary conditions along the x and y lateral
directions. The box size along the y direction ly was 3.13 nm,
and we varied the size along the x direction lx between 3.13
and 25.04 nm. To that aim, we simply replicated the smallest
system along the x direction, so that for all systems the
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number of liquid particles per wall surface area was strictly
identical.

The liquid was sheared by imposing opposite velocities
of ±10 m/s along the x direction to wall particles belonging
to the outmost layer of both walls. The temperature was
set to 85 K = 0.703εLL/kB, i.e., very close to the melting
point. To that aim we applied a Langevin thermostat to wall
particles belonging to the second outmost layer, only to the y
degrees of freedom perpendicular to confinement and flow in
order to minimize the impact of the thermostating procedure
on the dynamics of the liquid and of the liquid-solid interface.
In particular, with the present cutoff distance, liquid particles
do not directly interact with the thermostated wall particles.
We checked that the liquid temperature remained within 1 K
of the set value. To control the system pressure at 4 MPa, we
used the following procedure: first, we used the top wall as
a piston, without shear; second, we applied shear, still using
the top wall as a piston, and finally, we fixed the vertical wall
position and continued shearing the system. The equations of
motion were integrated using the velocity-Verlet algorithm,
with a time step of 5 fs. The production run lasted between 50
and 250 ns depending on the measured quantity.

III. RESULTS AND DISCUSSION

Figure 1(a) shows the density and velocity profiles ob-
tained for different lateral sizes lx. The density profiles are
independent of the box size and indicate that for the tem-
perature and the liquid-solid interaction energy we chose, the
liquid is strongly layered at the walls: the maximum density
in the first adsorption layer (hereafter called the contact layer)
is ∼7 times the bulk value, and at each surface around eight
peaks can be observed before the density reaches the bulk
value. Note that because we used the top wall as a piston
during the preparation stage, the position at which the top
wall was fixed during the production stage varied slightly from
one simulation to the other. However, the resulting difference
was negligibly small, e.g., about 4×10−3 nm between systems
with lx = 3.13 nm and lx = 18.8 nm.

The shear velocity profiles are linear throughout almost
all the liquid’s thickness, except in the contact layer, where
the shear rate slightly decreases, which can be understood as
a small increase of the local viscosity due to the large local
density [58,59]. In this work, we determined the slip velocity
vs as the difference between the wall velocity and the liquid
velocity at the position of the first adsorption peak. In Fig. 1
it is already clear that vs changes with the box lateral size. In
order to extract the friction coefficient from the simulations,
we also measured the friction stress τ as the friction force
Fx between the liquid and the wall (top or bottom) divided
by the interface area: τ = Fx/(lxly), where Fx was calculated
as the total force in the x direction between wall particles
of all atomic layers and fluid particles. Note that with the
present cutoff distance mentioned in Sec. II, there was no
direct interaction between liquid particles and thermostated
wall particles or with outermost wall particles moving at a
constant velocity. The friction coefficient was then given by
λ = τ/vs.

Figure 2 displays the relation between the lateral size lx
and friction coefficient λ. It shows that the system lateral
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FIG. 2. Evolution of the friction coefficient λ (averaged over
the two confining walls) as a function of the box size lx along the
flow direction. The main curve (solid black points) was obtained for
T = 85 K and α = 0.774 (highly wetting case). For comparison, a
second curve (open red squares) was obtained for T = 90 K, and a
third (open blue diamonds) was obtained for a wetting coefficient
α = 0.387.

size has a dramatic impact on the friction coefficient for the
present system of interest at T = 85 K and α = 0.774: first,
the amplitude of the effect is large (λ decreases by a factor
of ∼6 in the smallest box), and second, the effect remains
significant up to quite large simulation boxes (∼10 nm, i.e.,
∼30 particle diameters). As detailed later, this dependence
disappeared for systems with a smaller wetting coefficient or
at higher temperature.

In order to understand the mechanism underlying the lat-
eral size dependence of friction, we investigated the evolution
of the distribution of surface density of the contact layer for
different box sizes. The surface density ρads

n was computed
by counting the number Nads of particles between the wall
and the first minimum of the liquid density profile (separating
the first and second adsorption layers) and dividing it by
the interface area: ρads

n = Nads/(lxly). Note that at each time
Nads is an integer, so that the instantaneous surface density
can take only discrete values. The probability distribution
of the surface density is shown in Fig. 3 for different box
sizes. While the average surface density remains constant, as
expected from the similar vertical density profiles (Fig. 1),
the probability distribution of surface density is qualitatively
different between the largest box and boxes with sizes be-
low ∼10 nm. In the largest box, the probability follows a
Gaussian-like smooth bell curve centered around the average
value; in contrast, in the small boxes the probability is strongly
peaked at a value higher than the average surface density.

To connect the structural differences reported in Fig. 3
and the differences in friction coefficient presented in Fig. 2,
we focused on the smallest system (lx = 3.13 nm), and we
explored the correlation between the instantaneous friction
coefficient and the instantaneous surface density. To that
aim we extracted from the simulation the average values of
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FIG. 3. Probability distribution of the surface density of the
contact layer (the first adsorption layer) for three lateral box sizes.
The surface density can take only discrete values, corresponding
to an integer number of particles in the contact layer (see text for
details).

friction stress and slip velocity for the different values of
the instantaneous surface density, 〈τ (ρads

n )〉 and 〈vs(ρads
n )〉,

and we computed the friction coefficient at a given surface
density from their ratio: λ(ρads

n ) = 〈τ (ρads
n )〉/〈vs(ρads

n )〉. The
result is presented in Fig. 4. The liquid-solid friction is much
lower at the largest surface densities, which are more probable
for small systems, explaining why the friction coefficient is
overall lower in small systems.
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FIG. 4. (a) Evolution of the friction coefficient with the instanta-
neous surface density of the contact layer (see text for details on how
this is calculated) for the smallest system (lx = 3.13 nm); left and
right snapshots illustrate the organization of particles in the contact
layer for a surface density of 7.33 and 7.64 nm−2, respectively.
(b) Probability distribution of the surface density in the same system.
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FIG. 5. Comparison of the structures of the contact layer at the
two most probable surface densities, 7.33 and 7.64 nm−2, for a sys-
tem size lx = 3.13 nm. (a) Snapshots of the contact layer. (b) Average
two-dimensional Fourier transform of the contact layer structure.
(c) Average of the instantaneous Fourier transforms after a rotation
procedure to orient them along the same principal axis.

As a final step to explain the correlation between fric-
tion and surface density, we computed the two-dimensional
Fourier transform of the structure of the contact layer at the
two most probable surface densities (7.33 and 7.64 nm−2) for
the smallest system:

|c(k, t )| =
∣∣∣∣∣∣

1

lxly

N (t )∑

j=1

exp[−ik · x j (t )]

∣∣∣∣∣∣
, (1)

with k being a two-dimensional wave vector and x j (t ) being
the two-dimensional position of atom j in the contact layer,
among a total of N (t ) atoms. Figure 5(b) presents the time
average of |c(k, t )|. However, averaging in time smooths out
some information on the two-dimensional structure of the
liquid in the contact layer because the structure has a rota-
tional degree of freedom. Therefore, we also applied a rotation
procedure to synchronize the instantaneous |c(k, t )| before
averaging them so that the instantaneous Fourier transform at
each step could have the same principal axes [Fig. 5(c)].

Figure 5(c), highlighting the averaged intrinsic structure of
the contact layer with rotational diffusion removed, shows that
at both surface densities particles arrange along a hexagonal
lattice, although the peaks in the Fourier transform are less
pronounced for the low density, indicating that the structure
has more defects. This is confirmed by visual examination of
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snapshots of the contact layer shown in Fig. 5(a). Generally,
we found that higher densities corresponded to more ordered
structures, with thinner peaks in the Fourier transform. In the
hexagonal packing observed at large surface density, the first-
neighbor distance between fluid molecules estimated from the
wave vector of the peaks in the Fourier transform [Fig. 5(c)]
was ∼0.391 nm; this distance is commensurate with the
box lateral size and suggests that the hexagonal structure is
promoted by the finite size of the simulation cell.

The decrease in friction when the surface density goes from
7.33 to 7.64 nm−2 can then be explained by the dependence
of friction on commensurability between the solid surface
structure and the contact layer structure [45]. Since the intrin-
sic contact layer structure is hexagonal and the wall surface
structure has a square symmetry, they are incommensurable,
and disorder can only increase the commensurability. As a
consequence, the high density contact layer with fewer defects
generated a smaller friction than the low density contact
layer. The key role of commensurability can also be seen in
Fig. 5(b), which represents the directly averaged structure of
the contact layer. It appears that the defects in the hexagonal
structure of the contact layer at small surface densities let
the contact layer adapt to some extent to the underlying
wall structure, so that new peaks appear in 〈|c(k, t )|〉 with
the square symmetry of the wall surface; indeed, the new
peaks in the Fourier transform of the low surface density
structure [Fig. 5(b)] correspond to the lattice parameter of the
underlying solid fcc crystal, i.e.,

√
2req. In contrast, at large

density the hexagonal symmetry of the contact layer structure
is preserved. As a last hint pointing to the lower commensu-
rability at high surface densities, we observed that the contact
layer was slightly farther from the wall at high densities (see
Appendix B), which also contributes to a decrease in friction
since the amplitude of friction decreases very fast as a function
of the distance to the wall [46,60,61].

Finally, we explored the robustness of the observed finite
size effects by changing the temperature and the wetting prop-
erties. Indeed, we saw that slightly increasing the temperature
(from 85 to 90 K) or decreasing the wetting coefficient (from
0.774 to 0.387) could kill the size dependence of friction
(see Fig. 2). In Appendix C, we also show that reducing the
wetting coefficient has a consistent impact on the probability
distribution of surface densities, which goes from a peaked
distribution to a smooth bell curve. Therefore, while finite size
effects on friction can be very large and persist even for long
boxes, it is reassuring to see that in most cases, where the
liquid is far from its melting temperature or when the surface
is not very wetting, such finite size effects should be negligible
in practice.

IV. CONCLUSION

To measure liquid-solid friction in molecular dynamics
simulations, a slab configuration is commonly used, where a
liquid is confined between parallel walls. Periodic boundary
conditions are used in the lateral directions to mimic an
infinite slab, but the finite lateral size of the simulation box
in the periodic directions could still impact, in principle, the
measured friction coefficient.

Here we explored such finite size effects by simulating a
generic Lennard-Jones liquid confined between parallel walls.

We focused on the case of a very wetting liquid close to its
melting temperature. We observed a large effect of the box
size along the flow direction on the measured friction coeffi-
cient, persisting up to a box size of ∼30 particle diameters.

We have then connected the change in friction to the
surface density of the first adsorption layer. While the box
size has no significant effect on the average surface density,
we have shown that in small boxes the distribution of surface
density in the first liquid adsorption layer became peaked at
values larger than the average. We have also highlighted that,
for these larger values of surface density, the first adsorption
layer became more structured and less commensurable with
the wall structure, thus explaining the decrease in friction.

Finally, we have shown that for less wetting cases or liquids
further from their melting temperature, the strong finite size
effects observed here disappeared and that boxes down to
∼9 particle diameters could be safely used. Nevertheless, we
suggest that when exploring unknown liquid-solid interfaces,
care should be taken with possible effects of the lateral box
size on the measured friction.
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APPENDIX A: CONTACT ANGLE

The contact angles corresponding to different values of the
wetting coefficient α were estimated by cylindrical sessile
droplet simulations, following the procedure described in
Refs. [57,62]. We employed equilibrium simulation systems
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FIG. 6. Cosine of the contact angle, estimated by sessile droplet
simulations, as a function of the wetting coefficient α. Three density
distributions of the droplet for cosθ < 0, ≈0, and >0 are also shown.
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of a hemicylindrical droplet on a flat solid surface, where the
potential model including the wetting coefficient α, the solid
wall with fcc structure, its lattice parameter, and the exposing
face of (001) were the same as in the present shear-flow
system in Fig. 1. Eight layers of solid wall were located on
the bottom (−z direction) of the rectangular simulation cell of
lx × ly × lz = 39.2×3.92×16.0 nm3 with periodic boundary
conditions set in the x and y directions and a mirror boundary
condition at the top boundary in the z direction. The tempera-
ture of wall particles in the second layer from the bottom was
controlled by using the Langevin thermostat in all directions
at the same control temperature of 85 K = 0.703εLL/kB as
the present shear-flow system. A hemicylindrically shaped
droplet was formed on the solid surface with the droplet axis
parallel to the y axis as an equilibrium state under liquid-vapor
coexistence. The cylindrical liquid droplet was first equili-
brated away from the solid surface, and after its automatic
adsorption onto a solid surface followed by a further equi-
libration run of 20 ns, an initial equilibrium hemicylindrical
droplet was obtained. The average of 40 ns thereafter was used
for the analysis, where we obtained two-dimensional density
distributions in the frame of reference relative to the center
of mass of the droplet, considering that the droplet showed a
random Brownian motion on the smooth and flat solid surface
in this study.

The density distributions for three α values are shown in
Fig. 6. As observed before [57,62–64], multiple adsorption
layers with a thickness about 1–2 nm were formed at the
liquid-solid interface, and a hemicylindrical liquid-vapor in-
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FIG. 8. Probability distribution of surface density for the small-
est system (lx = 3.13 nm) and for two different wetting coeffi-
cients α.

terface with a uniform curvature was observed above. This
indicated that the liquid-vapor interfacial tension was uniform
except around the contact line. The contact angle θ of the
droplet was defined by the angle between the least-squares
fitting circle to a density contour line of ρ = 400 kg/m3 and
the fluid-solid interface, where for the former, we used the
density contour only above the height where the density in the
droplet was considered constant and the liquid-vapor interface
did not overlap the adsorption layers. The details of the choice
of the fluid-solid interface position based on a mechanical
interpretation is described in Ref. [62]. As seen in Fig. 6, cos θ

increased linearly to the increase of α.

APPENDIX B: DENSITY PROFILE
OF THE CONTACT LAYER

Figure 7 represents the vertical density profiles in the
contact layer for the two most probable surface densities in
the smallest system, with lx = 3.13 nm. For the largest surface
density, the contact layer is slightly farther away from the
wall, consistent with its lower commensurability with the
surface.

APPENDIX C: EFFECT OF WETTING

Figure 8 represents the probability distribution of surface
density for the smallest system (lx = 3.13 nm) and for two
different wetting coefficients α. For α = 0.774, the proba-
bility is asymmetrical and highly peaked, as discussed in the
main text. In contrast, for α = 0.387, the probability assumes
a symmetrical bell curve, reminiscent of the probability dis-
tributions observed at much larger box sizes for α = 0.774.
Consequently, one can expect that finite size effects on friction
will be negligible for α = 0.387, as observed in the main text.
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