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The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm to sample from
the full posterior distribution of a state-space model. It does so by executing Gibbs sampling
steps on an extended target distribution defined on the space of the auxiliary variables generated
by an interacting particle system. This paper makes the following contributions to the theoretical
study of this algorithm. Firstly, we present a coupling construction between two particle Gibbs
updates from different starting points and we show that the coupling probability may be made
arbitrarily close to one by increasing the number of particles. We obtain as a direct corollary
that the particle Gibbs kernel is uniformly ergodic. Secondly, we show how the inclusion of
an additional Gibbs sampling step that reselects the ancestors of the particle Gibbs’ extended
target distribution, which is a popular approach in practice to improve mixing, does indeed
yield a theoretically more efficient algorithm as measured by the asymptotic variance. Thirdly,
we extend particle Gibbs to work with lower variance resampling schemes. A detailed numerical
study is provided to demonstrate the efficiency of particle Gibbs and the proposed variants.

Keywords: Feynman–Kac formulae; Gibbs sampling; particle filtering; particle Markov chain
Monte Carlo; sequential Monte Carlo

1. Introduction

PMCMC (particle Markov chain Monte Carlo [1]) is a new set of MCMC algorithms
devised for inference in state-space models which has attracted considerable attention
in statistics. It has in a short time triggered intense scientific activity spanning method-
ological [5, 15, 23, 27] and applied work, the latter in domains as diverse as ecology [20],
electricity forecasting [14], finance [21], systems biology [11], social networks [10] and
hydrology [25]. One appeal of PMCMC is that it makes it possible to perform “plug-and-
play” inference for complex hidden Markov models, that is, the only requirement is that
one needs to be able to sample from the Markov transition of the hidden chain, which
is in most cases non-demanding, in contrast to previous approaches based on standard
MCMC.
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Each PMCMC step generates an interacting particle system; see [8, 9] and [3] for gen-
eral references on particle algorithms (also known as Sequential Monte Carlo algorithms).
Several instances of PMCMC may be analysed as exact Monte Carlo approximations of
an ideal algorithm, that is, as a noisy version of an ideal algorithm where some intractable
quantity is replaced by an unbiased Monte Carlo estimate (computed from the interact-
ing particle system). Such algorithms are analysed in detail in [2]. The term ‘exact’ in
the phrase ‘exact Monte Carlo’ highlights the fact that, despite being an approximation
of an ideal algorithm, PMCMC samples exactly from the distribution of interest.
However, this interpretation does not seem applicable to variants of PMCMC involving

a particle Gibbs step. While particle Gibbs also generates a complete interacting particle
system at each iteration, it does so conditionally on the trajectory for one particle being
fixed, and it does not replace an intractable quantity of an ideal algorithm with an
unbiased estimator.
The objective of this paper is to undertake a theoretical study of particle Gibbs to

try to support its very favourable performance observed in practice. For this, we design
a coupling construction between two particle Gibbs updates that start from different
trajectories and establish that the coupling probability may be made arbitrarily large
by increasing the number of particles N . As a direct corollary, we conclude that the
transition kernel of particle Gibbs is uniformly ergodic (under suitable conditions). This
strong result supports why particle Gibbs can be expected, and does indeed, perform so
well in practice. Our coupling construction is maximal for some special cases and appears
unique in the literature on particle systems.
Secondly, we show how the inclusion of an additional backward sampling step that

reselects the ancestors of the particle Gibbs’ extended target distribution, first proposed
by [26] and now a popular approach in practice to improve mixing [16], does indeed yield
a theoretically more efficient algorithm as measured by the asymptotic variance of the
central limit theorem. Thirdly, and as another way to enhance mixing, we extend the
original particle Gibbs sampler (which is based on the multinomial resampling scheme as
presented in the original paper of [1]) to work with lower variance residual or systematic
resampling schemes. This variety of implementation of particle Gibbs raises an obvious
question: which variant performs best in practice? We present numerical comparisons
in a particular example, which suggests that the backward sampling strongly improves
the mixing of particle Gibbs, and, when it cannot be implemented, then residual and
systematic resampling leads to significantly better mixing than multinomial resampling.
The plan of the paper is the following. Section 2 sets up the notation and defines

the particle Gibbs algorithm. This section reviews the original particle Gibbs algorithm
of [1] and presents a reinterpretation of particle Gibbs as a Markov kernel to facilitate
the analysis to follow in the later sections. Some supporting technical results are also
presented. Section 3 proves that the particle Gibbs kernel is uniformly ergodic. To that
effect, a coupling construction is obtained such that the coupling probability between
two particle Gibbs updates may be made arbitrarily large for N large enough. Section 4
discusses the backward sampling step proposed by [26], and establishes dominance of
particle Gibbs with this backward sampling step over the version without. Section 5
discusses how to extend particle Gibbs to alternative resampling schemes. Section 6
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presents a numerical comparison of the variants of particle Gibbs discussed in the previous
sections. Section 7 concludes.

2. Definition of the particle Gibbs sampler

2.1. Notation

For m ≤ n, we denote by m :n the range of integers {m, . . . , n}, and we use ex-
tensively the semicolon short-hand for collections of random variables, for example,
X0:T = (X0, . . . ,XT ), X1:N

t = (X1
t , . . . ,X

N
t ), and even in an nested form, X1:N

0:T =
(X1:N

0 , . . . ,X1:N
T ); more generally Xv

t , where v is a vector in N+ will refer to the collec-
tion (Xn

t )n∈v. These short-hands are also used for realisations of these random variables,
which are in lower case, for example, x0:t or x1:N

t . The sub-vector containing the t first
components of some vector ZT is denoted by [ZT ]t.

For a vector r1:N of probabilities, rn ∈ [0,1] and
∑N

n=1 r
n = 1, we denote byM(r1:N )

the multinomial distribution which produces outcome n with probability rn, n ∈ 1 :N .
For reals x, y, let x ∨ y =max(x, y) and x ∧ y =min(x, y). The integer part of x is ⌊x⌋,
and the positive part is x+ = x ∨ 0. The cardinal of a finite set C is denoted as |C|.
For a complete separable metric space X , we denote by P(X ) the set of probability

distributions on X . For a probability measure µ ∈ P(X ), a kernel K :X → P(X ) and
a measurable function f defined on X , we use the following standard notation: µ(f) =
∫

X dµf , Kf is the application x→
∫

X K(x,dx′)f(x′), and µK is the probability measure
(µK)(A) =

∫

X
µ(dx)K(x,A). The atomic measure at a ∈ X is denoted by δa(dx). We

denote by µ⊗K the measure µ(dx)K(x,dx′) on the product space X ×X . Finally, we
shall often use the same symbol for distributions and densities; for example, m0(dx0) =
m0(x0) dx0 means that the distribution m0(dx0) admits the function x0→m0(x0) as a
probability density relative to some sigma-finite dominating measure dx0.

2.2. The target distribution

Let X be a complete separable metric space, and (Xt)t≥0 a discrete-time X -valued
Markov chain, with initial law m0(dx0) =m0(x0) dx0, and transition law mt(xt−1,dxt) =
mt(xt−1, xt) dxt, where dx0, dxt are appropriately chosen (possibly identical) sigma-finite
dominating measures. Let (Gt)t≥0 be a sequence of X →R+ potential functions. In the
context of hidden Markov models, typically Gt(xt) = g(xt, yt), the density (with respect
to some dominating measure dy) of observation yt of the Y-valued random variable Yt,
conditional on state Xt = xt.
It is convenient to work directly with the path model, that is, we define Zt =X0:t (and

zt = x0:t) taking values in X t+1, and slightly abusing notation, we extend the domain
of Gt from X to X t+1 as follows: Gt(zt) =Gt(xt). The Zt’s form a time inhomogeneous
Markov kernel, with initial law q0(dz0) =m0(dx0), and transition

qt(zt−1,dz
′
t) = δzt−1

(dx′
0:t−1)mt(xt−1, x

′
t)dx

′
t
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that is, keep all of zt−1 and append new state xt, from Markov transition mt(xt−1,dxt).
The associated (Feynman–Kac) path measures are

Qt(dzt) =Qt(dx0:t) =
1

Zt

G0(x0)m0(dx0)
t
∏

s=1

{Gs(xs)ms(xs−1,dxs)}, (1)

where Zt is defined as

Zt =

∫

X t+1

G0(x0)m0(dx0)

t
∏

s=1

{Gs(xs)ms(xs−1,dxs)}

assuming from now on that 0 < Zt < +∞. The target distribution to be sampled from
is QT (dzT ) for some fixed T , which can also be interpreted as the full posterior of a
state-space model.
The fact that we work directly with the path Zt, and path-valued potential functions

Gt(zt), reveals that our results could be extended easily to the situation where in the
original formulation for Xt, the potential function depended on past values, for example,
Gt(xt−1, xt). In that way, one may consider, for instance, more general algorithms where
particles are mutated according to a proposal kernel that may differ from the Markov
kernel of the considered model. However, in the only part of the paper (Section 4) where
we shall revert to the original formulation based on Xt, we will stick to the standard case
where Gt depends only on xt for the sake of clarity.
Andrieu et al. [1] introduced an MCMC algorithm that samples from (1) by defining

an extended target distribution (which admits (1) as its marginal) and then constructing
a Gibbs sampler for this extended target. In the next section, we review this construction
of theirs.

2.3. The extended target and the particle Gibbs sampler

The starting point in the definition of [1]’s extended target distribution that admits (1) as
its marginal is the joint distribution of all the random variables generated in the course
of the execution of an (interacting) particle algorithm that targets the path measures
given in (1). We refer the reader to [3, 8] for a review of particle algorithms that target
Feynman–Kac path measures.
The particle representation QN

t (dzt) is the empirical measure defined as, for t≥ 0,

QN
t (dzt) =

1

N

N
∑

n=1

δZn
t
(dzt),

where the particles Z1:N
t = (Z1

t , . . . , Z
N
t ) are defined recursively as follows. First, Z1:N

0 is
obtained by sampling N times independently from m0(x0) dx0. To progress from time t
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to time t+ 1, t≥ 0, the pair (A1:N
t , Z1:N

t+1 ) is generated jointly from

̺t(z
1:N
t ,da1:Nt )

N
∏

n=1

qt+1(z
an
t

t ,dznt+1),

conditionally on Z1:N
t = z1:Nt , where the An

t ’s, n ∈ 1 :N , jointly sampled from the resam-

pling distribution ̺t(z
1:N
t ,dA1:N

t ) are the ancestor variables, that is, An
t is the label of

the particle at time t which generated particle Zn
t+1 at time t+ 1. (Since the An

t ’s are
integer-valued, the dominating measure of kernel ̺t(z

1:N
t ,da1:Nt ) is simply the counting

measure.)
The law of the collection of random variables (Z1:N

0:T ,A1:N
0:T−1) generated from time 0 to

some final time T ≥ 1 is therefore

ϑN
T (dz1:N0:T ,da1:N0:T−1) =m⊗N

0 (dz1:N0 )

T
∏

t=1

{

̺t−1(z
1:N
t−1 ,da

1:N
t−1)

N
∏

n=1

[qt(z
an
t−1

t−1 ,dznt )]

}

.

The simplest choice for ̺t is what is usually referred to as the multinomial resampling
scheme, namely the An

t ’s are drawn independently from the multinomial distribution
M(W 1:N

t (z1:Nt )), where the Wn
t ’s are the normalised weights

Wn
t (z

1:N
t )

∆
=

Gt(z
n
t )

∑N
m=1Gt(zmt )

, n ∈ 1 :N. (2)

Then ̺t(z
1:N
t ,da1:Nt ), t≥ 0 equals

̺t(z
1:N
t ,da1:Nt ) =

{

N
∏

n=1

W
an
t

t (z1:Nt )

}

da1:Nt . (3)

For now, we assume this particular choice for ̺t, and our main results will therefore
be specific to multinomial resampling. Note, however, that we will discuss alternative
resampling schemes at the end of the paper; see Section 5.
We now state an intermediate result which is needed to ensure the validity of the

extended target (5) below.

Proposition 1. One has

EϑN
T

[

T
∏

t=0

{

1

N

N
∑

n=1

Gt(Z
n
t )

}]

=ZT . (4)

See, for example, Lemma 3 in [7]. In order to state the particle Gibbs sampler and
prove it leaves QT (dzT ) invariant, we commence first with the definition of the following
extended distribution πN

T of [1] whose sampling space is the sampling space of the measure
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ϑN
T augmented to include a discrete random variable N⋆ ∈ 1 :N ,

πN
T (dz1:N0:T ,da1:N0:T−1,dn

⋆)

=
1

ZT

ϑN
T (dz1:N0:T ,da1:N0:T−1)

[

T−1
∏

t=0

{

1

N

N
∑

n=1

Gt(Z
n
t )

}]

1

N
GT (z

n⋆

T )

=
1

ZT

m⊗N
0 (dz1:N0 ) (5)

×
T
∏

t=1

[{

1

N

N
∑

n=1

Gt−1(z
n
t−1)

}

N
∏

n=1

{W an
t−1

t−1 (z1:Nt−1) da
n
t−1qt(z

an
t−1

t−1 ,dznt )}
]

× 1

N
GT (z

n⋆

T ),

again assuming (3). The fact that the expression above does define a correct proba-
bility law (with a density that integrates to one) is an immediate consequence of the
unbiasedness property given in (4).

Proposition 2. The distribution πN
T is such that the marginal distribution of the random

variable Z⋆
T

∆
=ZN⋆

T is QT .

This proposition is proved in [1]. To verify this result, the expectation of functions
of Z⋆

T may be computed by integrating out the variables in the reverse order n⋆, x1:N
T ,

a1:NT , . . . , x1:N
1 , a1:N0 , x1:N

0 . We now proceed to state the Gibbs algorithm of [1].
Given a sample from πN

T , we can trace the ancestry of the variable Z⋆
T = ZN⋆

T as follows.
Let B⋆

t for t ∈ 0 :T be the index of the time t ancestor particle of trajectory Z⋆
T , which is

defined recursively backward as B⋆
T =N⋆, then B⋆

t =A
B⋆

t+1

t , for t= T − 1, . . . ,0. Finally,

let Z⋆
t = Z

B⋆
t

t for t ∈ 0 :T , so that Z⋆
t is precisely the first t+ 1 components of Z⋆

T , that
is, Z⋆

t = [Z⋆
T ]t+1.

Let Z
1:N\⋆
t be the ordered collection of the N − 1 trajectories Zn

t such that n 6= B⋆
t

(i.e., n 6=N⋆ when t= T ), and Z
1:N\⋆
0:T = (Z

1:N\⋆
0 , . . . , Z

1:N\⋆
T ). Define similarly A

1:N\⋆
0:T−1 =

(A
1:N\⋆
0 , . . . ,A

1:N\⋆
T−1 ), where A

1:N\⋆
t is A1:N

t excluding A
B⋆

t+1

t . It is convenient to apply

the following one-to-one transformation to the argument of πN
T :

(z1:N0:T , a1:N0:T−1, n
⋆)↔ (z

1:N\⋆
0:T , a

1:N\⋆
0:T−1, z

⋆
0:T , b

⋆
0:T−1, n

⋆).

With a slight abuse of notation, we identify the law induced by this transformation (going
to the representation with the b⋆t variables) as πN

T as well:

πN
T (dz

1:N\⋆
0:T ,da

1:N\⋆
0:T−1,dz

⋆
0:T ,db

⋆
0:T−1,dn

⋆)

=
1

NT+1
(db⋆0:T−1 dn

⋆)QT (dz
⋆
T )

T−1
∏

t=0

δ([z⋆
T
]t+1)(dz

⋆
t ) (6)
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×
∏

n6=b⋆
0

m0(dz
n
0 )

[

T
∏

t=1

∏

n6=b⋆t

W
an
t−1

t−1 (z1:Nt−1) da
n
t−1qt(z

an
t−1

t−1 ,dznt )

]

.

Passage from (5) to (6) is straightforward. It is worth noting that the marginal law of
(B⋆

0:T−1,N
⋆) is the uniform law on the product space (1 :N)T+1.

Given a sample ZT = zT from QT , consider the following three step sampling procedure
that transports ZT = zT to define a new random variable Z ′

T ∈ X T+1. Step 1 is to sample
the ancestors (B⋆

0:T−1,N
⋆) of the random variable Z⋆

0:T = z0:T from πN
T (db⋆0:T−1,dn

⋆);

step 2 is to generate the N − 1 remaining trajectories (Z
1:N\⋆
0:T ,A

1:N\⋆
0:T−1) conditional on

the trajectory (Z⋆
0:T ,B

⋆
0:T−1,N

⋆) from

πN
T (dz

1:N\⋆
0:T ,da

1:N\⋆
0:T−1|z⋆0:T , b⋆0:T−1, n

⋆).

(There is no specific difficulty in performing step 2, details to follow, which is pretty much
equivalent to the problem of generating a particle filter for T time steps.) Note that steps 1
and 2 are both Gibbs step with respect to (6). Step 3 is to resample the index N⋆ from (5);
hence N⋆ is sampled from πN

T (dn⋆|z1:N0:T , a1:N0:T−1) =M(W 1:N
T (z1:NT )), which is also a Gibbs

step, but this time with respect to (5); recall that Wn
T (z

1:N
T ) =GT (z

n
T )/

∑

mGT (z
m
T ). It

follows from Proposition 2 that the law of Z ′
T = ZN⋆

T is also QT .
Steps 1 to 3 therefore define a Markov kernel PN

T that maps X T+1→P(X T+1) and
has QT (dzT ) as its invariant measure. In practice, however, step 1 is redundant and we
may as well set (b⋆0:T−1, n

⋆) to the (arbitrary) value (1, . . . ,1) before applying steps 2 and
3, as per the following remark.

Remark 1. The image of z⋆T ∈X T+1 under PN
T is unchanged by the choice of (b⋆0:T−1, n

⋆)
for the realization of (B⋆

0:T−1,N
⋆) in the initialization of the CPF kernel.

This remark follows from the fact that the joint distribution of Z1:N
T in (5) is exchange-

able. On the other hand, we shall see in Section 4 that the equivalent representation of
the particle Gibbs kernel as an update that involves a step that re-simulates (B⋆

0:T−1,N
⋆)

will be useful to establish certain properties.
To conclude, and following [1], the CPF kernel may be defined as the succession of the

following two steps, from current value z⋆T ∈ X T+1.

CPF-1 Generate the N − 1 remaining trajectories of the particle system by sampling
from the conditional distribution (deduced from (6)):

πN
T (dz2:N0:T ,da2:N0:T−1|Z1

0:T = z⋆0:T ,A
1
0:T−1 = (1, . . . ,1),N⋆ = 1)

(7)

=m
⊗(N−1)
0 (dz2:N0 )

T
∏

t=1

[

N
∏

n=2

W
an
t−1

t−1 (z1:Nt−1) da
n
t−1qt(z

an
t−1

t−1 ,dznt )

]

sequentially, that is, sample independently Zn
0 ∼m0(dz0) for all n ∈ 2 :N , then

sample independently An
0 ∼M(W 1:N

0 (z1:N0 )) for all n ∈ 2 :N , and so on. (This
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is equivalent to running a particle algorithm, except that the trajectory with
labels (1, . . . ,1) is kept fixed.)

CPF-2 Sample N⋆ from M(W 1:N
T (z1:NT )), that is, perform a Gibbs update of N⋆

conditional on all the other variables, relative to (6), and return trajectory
ZN⋆

.

With all these considerations, one sees that the CPF algorithm defines the following
kernel PN

T :X T+1→P(X T+1): for z⋆T ∈ X T+1,

(PN
T ϕ)(z⋆T )

=

∫

PN
T (z⋆T ,dz

′
T )ϕ(z

′
T ) (8)

= EπN
T

{

GT (z
⋆
T )

GT (z⋆T ) +
∑N

m=2GT (Zm
T )

ϕ(z⋆T ) +

N
∑

n=2

GT (Z
n
T )

GT (z⋆T ) +
∑N

m=2GT (Zm
T )

ϕ(Zn
T )

}

.

3. A coupling of the particle Gibbs Markov kernel

This section is dedicated to establishing Theorem 3 below. We first make the following
assumption, which is a common assumption to establish the stability of a Feynman–Kac
system (e.g., [8]).

Assumption (G). There exists a sequence of finite positive numbers {gt}t≥0 such that
0<Gt(xt)≤ gt for all xt ∈ X , t≥ 0. Moreover,

∫

m0(dx0)G0(x0)≥
1

g0
, inf

xt−1∈X

∫

mt(xt−1,dxt)Gt(xt)≥
1

gt
, t > 0.

Loosely speaking this assumption prevents the reference trajectory of the particle Gibbs
kernel from dominating the other particles during resampling.

Theorem 3. Under Assumption (G), for any ε ∈ (0,1) and T ∈ N+, there exists N0 ∈
N+, such that, for all N ≥N0, x0:T , x̌0:T ∈ X T+1, and ϕ :X T+1→ [−1,1], one has

|PN
T (ϕ)(x0:T )− PN

T (ϕ)(x̌0:T )| ≤ ε.

The supremum with respect to ϕ of the bounded quantity is the total variation between
the two corresponding distributions (defined by kernel PN

T and the two starting points
x0:T , x̌0:T ). A direct corollary of Theorem 3 is that, for N large enough, the kernel PN

T is
arbitrarily close to the independent kernel that samples from QT . This means that, again
for N large enough, the kernel PN

T is uniformly ergodic (see, e.g., [22] for a definition),
with an arbitrarily small ergodicity coefficient.
The proof of Theorem 3 is based on coupling: let π̄(dz⋆t ,dž

⋆
t ) be a joint distribution

for the couple (Z⋆
t , Ž

⋆
t ), such that the marginal distribution of Z⋆

t , respectively. Ž
⋆
t , is
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PN
T (x0:T ,dz

⋆
T ), respectively, P

N
T (x̌0:T ,dž

⋆
T ). Then

PN
T (ϕ)(x0:T )− PN

T (ϕ)(x̌0:T ) = Eπ̄{ϕ(Z⋆
T )− ϕ(Ž⋆

T )}
= Eπ̄{(ϕ(Z⋆

T )− ϕ(Ž⋆
T ))I{ZT 6=ŽT }}

≤ 2Pπ̄(Z
⋆
T 6= Ž⋆

T ).

The following section describes the particular coupling construction we are using. Sec-
tion 3.2 then establishes that this particular coupling ensures that

Pπ̄(Z
⋆
T 6= Ž⋆

T )≤ ε/2 (9)

for N large enough, which concludes the proof.

3.1. Coupling construction

The coupling operates on the extended space corresponding to the support of the condi-
tional distribution (7). The idea is to construct two conditional particle systems generated
marginally from (7), that is, two systems of N − 1 trajectories, denoted, respectively,
(Z2:N

0:T ,A2:N
0:T−1) and (Ž2:N

0:T , Ǎ2:N
0:T−1), that complement, respectively, the trajectory x0:T

(first system) and x̌0:T (second system), in such a way that these trajectories coincide
as much as possible. We will denote by Ct ⊂ 1 :N the set which contains the particle
labels n such that Zn

t and Žn
t are coupled. Let Cct = (1 :N) \ Ct; by construction, Cct

always contains 1, since the frozen trajectory is relabelled as trajectory 1 in (7). Before
we define recursively Ct, (Z2:N

0:T ,A2:N
0:T−1) and (Ž2:N

0:T , Ǎ2:N
0:T−1), we need to introduce several

quantities, such as the following empirical measures, for t≥ 0,

ξCt
=
∑

n∈Ct

δZn
t
(dzt), ξCc

t
=
∑

n∈Cc
t

δZn
t
(dzt), ξ̌Cc

t
=
∑

n∈Cc
t

δŽn
t
(dzt),

the following probability measures, µ0(dz0) =m0(dz0), and for t≥ 1,

µt(dzt) =

∫

X t

ΨGt−1
(ξCt−1

)(dzt−1)qt(zt−1,dzt),

µc
t(dzt) =

∫

X t

ΨGt−1
(ξCc

t−1
)(dzt−1)qt(zt−1,dzt),

µ̌c
t(džt) =

∫

X t

ΨGt−1
(ξ̌Cc

t−1
)(džt−1)qt(zt−1,dzt),

where

ΨGt−1
(ξCt−1

)(dzt−1) =
ξCt−1

(dzt−1)Gt−1(zt−1)
∫

X t ξCt−1
(dzt−1)Gt−1(zt−1)

,
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the measures ΨGt−1
(ξCc

t−1
)(dzt−1) and ΨGt−1

(ξ̌Cc
t−1

)(dzt−1) being defined similarly, and

finally the constants

λt−1 =
ξCt−1

(Gt−1)

ξCt−1
(Gt−1) + ξCc

t−1
(Gt−1)

, λ̌t−1 =
ξCt−1

(Gt−1)

ξCt−1
(Gt−1) + ξ̌Cc

t−1
(Gt−1)

,

and the measures

νt =
|λt−1 − λ̌t−1|

1− λt−1 ∧ λ̌t−1

µt +
1− λt−1 ∨ λ̌t−1

1− λt−1 ∧ λ̌t−1

µc
t ,

ν̌t =
|λt−1 − λ̌t−1|

1− λt−1 ∧ λ̌t−1

µt +
1− λt−1 ∨ λ̌t−1

1− λt−1 ∧ λ̌t−1

µ̌c
t ,

κt(dzt,džt) = νt(dzt)µ̌
c
t(džt)I{λt−1>λ̌t−1}

+ µc
t(dzt)ν̌t(džt)I{λ̌t−1≥λt−1}

.

We now construct Ct and the two particle systems as follows. First, set C0 = 2 :N ,

hence Cc0 = {1}, draw Zn
0 independently from m0, and set Žn

0 = Zn
0 , for all n ∈ 2 :N .

Recall that Z1
0 = x0 and Ž1

0 = x̌0.

To progress from time t− 1 ≥ 0 to time t, we note that there is a λt−1 (resp., λ̌t−1)

probability that An
t−1 (resp., Ǎn

t−1) is drawn from Ct−1, for any n ∈ 2 :N . Hence, the

maximum coupling probability for (An
t−1, Ǎ

n
t−1) is λt−1 ∧ λ̌t−1. Thus, with probability

λt−1∧ λ̌t−1, we sample An
t−1 from Ct−1 (with probability proportional to Gt−1(Z

m
t−1), for

m ∈ Ct−1), Z
n
t ∼ qt(Z

An
t−1

t−1 ,dZt), and take (Ǎn
t−1, Ž

n
t ) = (An

t−1, Z
n
t ). Marginally, Zn

t = Žn
t

is drawn from µt, and we set n ∈ Ct.
Conditional on not being coupled (hence, we set n ∈ Cct ), (An

t−1, Z
n
t ) and (Ǎn

t−1, Ž
n
t−1)

may be sampled independently using the same ideas. Assume λt−1 ≤ λ̌t−1. With prob-

ability (λ̌t−1 − λt−1), one should sample An
t−1 from Cct−1 and Ǎn

t−1 from Ct−1. And

with probability 1 − λt−1 ∨ λ̌t−1, both An
t and Ǎn

t may be sampled from Cct . Either
way, Zn

t ∼ qt(Z
An

t−1

t−1 ,dZt), Ž
n
t ∼ qt(Ž

Ǎn
t−1

t−1 ,dZt), independently. By symmetry, the case

λt−1 ≥ λ̌t−1 works along the same lines. Marginally (when integrating out An
t−1 and

Ǎn
t−1), and conditional on not being coupled, the pair (Zn

t , Ž
n
t ) is drawn from κt. Clearly,

this construction maintains the correct marginal distribution for the two particle systems.

At the final time T , the trajectories Z⋆
T , Ž

⋆
T that are eventually selected, that is, the

output of Markov kernels PN
T (x0:T ,dz

⋆
T ) and PN

T (x̌0:T ,dž
⋆
T ) may be coupled exactly in

the same way: with probability λT ∧ λ̌T , they are taken to be equal, and ZT = Z⋆
T is

sampled from µT ; and with probability (1− λT ∧ λ̌T ), (Z
⋆
T , Ž

⋆
T ) is sampled from κT .

The motivation for this coupling construction is that it is themaximal coupling (see [17]

for a definition) for quantifying the total variation norm between CPF kernels PN
T (x0:T , ·)

and PN
T (x̌0:T , ·) when either T = 0 or T > 0 and mt is a Dirac measure for all t. Details

of proof of this fact can be obtained from the authors.
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3.2. Proof of inequality (9)

We now prove that the coupling construction described in the previous section is such
that inequality (9) holds for N large enough.
By construction, one has that P(Z⋆

T = Ž⋆
T )≥E(λT ∧ λ̌T ). Consider the event

A=

{

ξCT
(GT )

|CT |
≥ µT (GT )

2

}

.

Given Assumption (G), and the definition of λT , one has

1− λT ≤
gT |CcT |
ξCT

(GT )

and the same inequality holds for 1− λ̌T , which leads to

(1− λT ∧ λ̌T )× IA ≤ 2
|CcT |gT

|CT |µT (GT )
× IA ≤ 2

|CcT |g2T
|CT |

× IA,

where the second inequality is due to Assumption (G). Therefore, for k1, . . . , kT ∈ 1 :N ,

E{(λT ∧ λ̌T )× IA||C1|=N − k1, . . . , |CT |=N − kT }

≥
(

1− 2
kT

N − kT
g2T

)+

E{IA||C1|=N − k1, . . . , |CT |=N − kT }.

Conditional on Z1:N
T−1, and n ∈ CT , Zn

T is an independent draw from µT (dzT ). Thus, in
order to lower bound the probability of event A, we may apply Hoeffding’s inequality
[12] to the empirical mean ξCT

(GT )/|CT | as follows. Again per Assumption (G), noting
that 0<GT (z

n
T )≤ gT and the one-step predicted potential is bounded below uniformly

by g−1
T ,

E{(1− IA)||C1|=N − k1, . . . , |CT |=N − kT , Z
1:N
T−1 = z1:NT−1}

= P

(

ξCT
(GT )

|CT |
<

µT (GT )

2
||C1|=N − k1, . . . , |CT |=N − kT , Z

1:N
T−1 = z1:NT−1

)

≤ exp

(

−2(N − kT )
µT (GT )

2

4g2T

)

≤ exp

(

− (N − kT )

2g4T

)

.

Thus,

E{(λT ∧ λ̌T )× IA||C1|=N − k1, . . . , |CT |=N − kT }

≥
(

1− 2
kT

N − kT
g2T

)+{

1− exp

(

− (N − kT )

2g4T

)}

.
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Finally, for any sequence of integers L1:T ∈ (1 :N)T ,

E(λT ∧ λ̌T ) ≥
L1
∑

k1=1

· · ·
LT
∑

kT=1

E{(λT ∧ λ̌T )× IA||C1|=N − k1, . . . , |CT |=N − kT }

× P(|C1|=N − k1, . . . , |CT |=N − kT )

≥
(

1− 2
LT

N −LT

g2T

){

1− exp

(

− (N −LT )

2g4T

)}

×
L1
∑

k1=1

· · ·
LT
∑

kT=1

P(|C1|=N − k1, . . . , |CT |=N − kT )

provided N is large enough. To conclude, we resort to a technical lemma, proven in the
following section, that states it is possible to choose L1, . . . , LT large enough so as to
make the sum of probabilities in the last line above as large as needed. In addition, for
LT fixed and N large enough, the two factors in front of that sum are arbitrarily close
to one.

3.3. Technical lemma

Lemma 4. Under Assumption (G), and for any δ ∈ (0,1), T ∈N+, there exist positive
integers N0, L1, . . . , LT such that for any N ≥N0 and x0:T , x̌0:T ∈ X T+1,

L1
∑

k1=1

· · ·
LT
∑

kT=1

P(|C1|=N − k1, . . . , |CT |=N − kT )≥ (1− δ)3T .

Proof. Let ωt = λt ∧ λ̌t and recall that ωt is the probability (conditional on Z1:N
t ) that

n ∈ Ct+1, that is, that particles Z
n
t+1 and Žn

t+1 are coupled. Thus, and using the fact that
the particle system is exchangeable, one has

P(|C1|=N − k1, . . . , |CT |=N − kT )

=

{

T
∏

t=1

(

N − 1
N − kt

)

}

P(Cc1 = (1 :k1), . . . ,CcT = (1 :kT ))

(10)

=

∫ T−1
∏

t=0

(

N − 1
N − kt+1

)

{

kt
∏

n=2

κt(dz
n
t ,dž

n
t )

N
∏

n=kt+1

µt(dz
n
t )

}

(1−ωt)
(kt+1−1)ω

(N−kt+1)
t

≥
∫ T−1
∏

t=0

{

kt
∏

n=2

κt(dz
n
t ,dž

n
t )

N
∏

n=kt+1

µt(dz
n
t )

}

{

(N − 1)!(1− ωt)
(kt+1−1)

(N − kt+1)!

}{

ω
(N−kt+1)
t

(kt+1 − 1)!

}

IAt
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with the convention that k0 = 1, that µ0(dz0) =m0(dz0), and that empty products equal

one, and defining the event At as

At =

{

ξCt
(Gt)

|Ct|
≥ µt(Gt)

2

}

. (11)

Note that the two integrals above are with respect to a joint distribution which corre-
sponds to a chain rule decomposition that works forward in time: κ1 and µ1 are distribu-

tions conditional on Z1:N
0 and so on. In addition, these chained conditional distributions

are such that |Ct|=N − kt with probability one.
For the sake of transparency, we complete the proof for T = 2, but we note that exactly

the same steps employed may be extended to the general case where T > 2.
The key idea is to replace the two factors in the integrand of (10) with their large N

values which we now define. Let

Λt = |Ct| ×
ξCc

t
(Gt) ∨ ξ̌Cc

t
(Gt)

ξCt
(Gt)

for |Ct|> 0 (12)

and set Λt = 0 if |Ct|= 0. Using Lemma 5, stated and proved at the end of this section,
one has, for fixed k1, k2, δ, and N large enough, that the integral in (10) is larger than

(1− δ)2
∫

A0

{

N
∏

n=2

µ0(dz
n
0 )

}

e−Λ0Λk1−1
0

(k1 − 1)!
(13)

×
∫

A1

{

k1
∏

n=2

κ1(dz
n
1 ,dž

n
1 )

N
∏

n=k1+1

µ1(dz
n
1 )

}

e−Λ1Λk2−1
1

(k2 − 1)!
.

We now explain how to choose L1, L2 such that, for N large enough,

∫

A0

{

N
∏

n=2

µ0(dz
n
0 )

}

L1
∑

k1=1

e−Λ0Λk1−1
0

(k1 − 1)!

(14)

×
∫

A1

{

k1
∏

n=2

κ1(dz
n
1 ,dž

n
1 )

N
∏

n=k1+1

µ1(dz
n
1 )

}

L2
∑

k2=1

e−Λ1Λk2−1
1

(k2 − 1)!
≥ (1− δ)4.

First note that, given Assumption (G), and since |C0| = N − 1, |C1| = N − k1 (with

probability one under the conditional distribution that appears in (10), for t = 1, as
explained above), and since ξCt

(Gt) ≥ |Ct|µt(Gt)/2 (by event At), one has (again with
probability one under the same conditional distribution):

0≤ Λ0 × IA0
≤ 2g20 × IA0

, 0≤Λ1 × IA1
≤ 2g21k1 × IA1

(15)
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for N > k1 (otherwise the probability that |C1|=N −k1 would be zero). Choose L1, then

L2, such that

L1
∑

k1=1

e−2g2
0 (2g20)

k1−1

(k1 − 1)!
≥ 1− δ,

L2
∑

k2=1

e−(2g2
1L1)(2g21L1)

k2−1

(k2 − 1)!
≥ 1− δ.

Since x→ e−x
∑L

k=0 x
k/k! is a decreasing function for x > 0, this choice of L2 ensures

that

∫

A1

{

k1
∏

n=2

κ1(dz
n
1 ,dž

n
1 )

N
∏

n=k1+1

µ1(dz
n
1 )

}

L2
∑

k2=1

e−Λ1Λk2−1
1

(k2 − 1)!

≥ (1− δ)

∫

A1

{

k1
∏

n=2

κ1(dz
n
1 ,dž

n
1 )

N
∏

n=k1+1

µ1(dz
n
1 )

}

.

By Hoeffding’s inequality (in the same way as in the previous section),

∫

Ac
1

{

N
∏

n=k1+1

µ1(dz
n
1 )

}

≤ exp

{

−2(N − k1)
µ1(G1)

2

4g21

}

≤ exp

{

−(N − k1)
g−4
1

2

}

,

where the last inequality follows from Assumption (G). Using the same calculations for

the first integral in (14) (i.e., applying Hoeffding’s inequality to A0 again in the same

way), one obtains eventually

∫

A0

{

N
∏

n=2

µ0(dz
n
0 )

}

L1
∑

k1=1

e−Λ0Λk1−1
0

(k1 − 1)!

×
∫

A1

{

k1
∏

n=2

κ1(dz
n
1 ,dž

n
1 )

N
∏

n=k1+1

µ1(dz
n
1 )

}

L2
∑

k2=1

e−Λ1Λk2−1
1

(k2 − 1)!

≥ (1− δ)2
[

1− exp

{

−(N −L1)
g−4
1

2

}][

1− exp

{

−(N − 1)
g−4
0

2

}]

≥ (1− δ)4



On particle Gibbs sampling 15

for N large enough and, therefore, combining this with (13), one may conclude that

L1
∑

k1=1

L2
∑

k2=1

P(|C1|=N − k1, |C2|=N − k2)≥ (1− δ)6

provided N is taken to be large enough. �

To conclude the proof, we state and prove the following lemma, which we used in the
proof above in order to replace the two last factors in (10) by their large-N values.

Lemma 5. Assume (G). For any given δ > 0 and positive integers k1, . . . , kT , there exists
a positive integer N0 such that the following inequalities hold for all N ≥N0 and x0:T ,
x̌0:T ∈X T+1:

ω
(N−kt+1)
t exp(Λt)× IAt

≥ (1− δ)× IAt
,

(N − 1)!

(N − kt+1)!
(1− ωt)

(kt+1−1) 1

Λ
kt+1−1
t

× IAt
≥ (1− δ)× IAt

.

Proof. Given that |Ct|=N − kt and the respective definitions of ωt and Λt, one has

1−ωt

ωt

=
Λt

N − kt

and, therefore, for N large enough and kt fixed, and conditional on IAt
= 1, the prob-

ability 1 − ωt may be made arbitrarily small, given that ΛtIAt
is a bounded quantity;

see (15). Since log(1 + x) ≥ x− x2 for x ≥ −1/2, one has, for N large enough (so that
x= ωt − 1≥−1/2), and conditional on IAt

= 1,

Λt + (N − kt+1) logωt ≥ Λt

{

1− N − kt+1

N − kt
ωt −

N − kt+1

(N − kt)2
Λtω

2
t

}

,

which can be clearly made arbitrarily small (in absolute value) by taking N large enough,
since both ωt and Λt are bounded quantities. The second inequality may be proved along
the same lines. �

4. Backward sampling

This section discusses the backward sampling (BS) step proposed by [26] so as to improve
the mixing of particle Gibbs. It is convenient in this section to revert to standard notation
based on the initial process Xt, rather than on notation based on trajectories Zt =X0:t.
Thus, we now consider the following (extended) invariant distribution for the CPF kernel

πN
T (dx1:N

0:T ,da1:N0:T−1,dn
⋆)
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=
1

ZT

m⊗N
0 (dx1:N

0 )

(16)

×
T
∏

t=1

{[

1

N

N
∑

n=1

Gt−1(x
n
t−1)

]

N
∏

n=1

[W
an
t−1

t−1 (x1:N
t−1) da

n
t−1mt(x

an
t−1

t−1 ,dxn
t )]

}

× 1

N
GT (x

n⋆

T ),

where Wn
t (x

1:N
t ) =Gt(x

n
t )/

∑N
m=1Gt(x

m
t ); compared to (5), this equation represents a

simple change of variables.
In this new set of notation, the nth trajectory Zn

T becomes a deterministic func-
tion of the particle system (X1:N

0:T ,A1:N
0:T−1), that may be defined as follows: Zn

T =

(X
Bn

0

0 , . . . ,X
Bn

T

T ), where the indexes Bn
T ’s are defined recursively as: Bn

T = n, Bn
t =A

Bn
t+1

t ,

for t ∈ 0 : (T−1). Similarly, as noted before, Z⋆
T = ZN⋆

T = (X
B⋆

0

0 , . . . ,X
B⋆

T

T ), with B⋆
T =N⋆,

B⋆
t =A

B⋆
t+1

t , that is, Z⋆
T is a deterministic function of (X1:N

0:T ,A1:N
0:T−1,N

⋆).
Whiteley [26], in his discussion of [1] (see also [16]), suggested to add the following BS

(backward sampling) step to a particle Gibbs update.

CPF-3 Let B⋆
T = N⋆, then, recursively for t = T − 1 to t = 0, sample index B⋆

t =

A
B⋆

t+1

t ∈ 1 :N , conditionally on B⋆
t+1 = b, from the distribution

πN
T (Ab

t = abt |X1:N
0:T = x1:N

0:T ,A−b
t = a−b

t ,A1:N
0:t−1 = a1:N0:t−1,A

1:N
t+1:T = a1:Nt+1:T ,N

⋆ = n⋆)

(17)

∝W
ab
t

t mt+1(x
ab
t

t , xb
t+1)

and set X⋆
t = x

b⋆t
t . (Recall that Z⋆

T = (X
B⋆

0

0 , . . . ,X
B⋆

T

T ).)

In (17), A−b
t is A1:N

t minus Ab
t , a

−b
t is defined similarly, and mt+1(x

ab
t

t , xb
t+1) is the prob-

ability density (relative to measure dxt+1) of conditional distribution mt+1(x
ab
t

t ,dxt+1)
evaluated at point xb

t+1.
This extra step amounts to update the ancestral lineage of the selected trajectory up

to time t, recursively in time, from t= T − 1 to time t= 0. It is straightforward to show

that (17) is the conditional distribution of random variable B⋆
t =A

B⋆
t+1

t , conditional on
B⋆

t+1 = b and the other auxiliary variables of the particle system, relative to the joint

distribution (16). As such, this extra step leaves QT (dx0:T ) invariant.
It should be noted that the BS step may be implemented only when the density

mt+1(xt, xt+1) admits an explicit expression, which is unfortunately not the case for
several models of practical interest. Finally, Remark 1 also applies to the CPF-BS kernel.

Remark 2. Let PN,B
T denote the CPF-BS (CPF with backward sampling) Markov ker-

nel. Then the image of z⋆T ∈ X T+1 under PN,B
T is unchanged by the choice of (b⋆0:T−1, n

⋆)
for the realization of (B⋆

0:T−1,N
⋆) in the initialization, that is, step CPF-1.
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4.1. Reversibility, covariance ordering and asymptotic efficiency

To compare PG with backward sampling with PG without backward sampling, one might
be tempted to use Peskun ordering. The following counter-example shows that unfortu-
nately the former does not dominate the latter in the Peskun sense.

Example 6. Let X = R, (Xt)t≥0 be an i.i.d. sequence with marginal law m(dx), and
let the potentials be unit valued, that is, Gt(xt) = 1 for all t. Then one can show that
the CPF kernel with backward sampling does not dominate the CPF kernel in Peskun
sense. For example, let B = B0×· · ·×BT ⊂X T+1, where m(Bt) = ε for all t. If we choose
a reference trajectory x0:T /∈ B but xt ∈ Bt for t 6= T , then it is easy to show that (e.g.,
when T = 2 and N = 2) that the probability of hitting B when starting from x0:T , that
is, PN

T (x0:T ,B), is higher without backward sampling than with it. In this example, a
chosen trajectory that coalesces with the reference trajectory has more chance of hitting
set B.

One does observe in practice that Backward sampling (BS) brings improvement to
the decay of the autocorrelation function of successive samples of X0:T generated by the
particle Gibbs sampler, that is, more rapid decay compared to not implementing BS; see
[16] and our numerical experiments in (6). However, how much improvement depends on
the transition kernel mt(xt−1,dxt) of the hidden state process (Xt)t≥0. If only X0 ∼m0

is random while mt(xt−1,dxt) is a point mass at xt−1 for t≥ 1, then it is clear that BS
will bring no improvement. We can however prove that, regardless of mt, the empirical
average of the successive samples from a CPF kernel with BS will have an asymptotic
variance no larger than the asymptotic variance of the empirical average of successive
samples from the corresponding CPF kernel without BS. The asymptotic variance here is
the variance of the limiting Gaussian distribution characterised by the usual

√
n-central

limit theorem (CLT) for Markov chains; see, for example, [22].
The following result due to [24] (see also [19]), formalises this comparison, or ordering,

of two Markov transition kernels having the same stationary measure via the asymptotic
variance given by the CLT. We call this efficiency ordering.

Theorem 7 ([24]). For ξ0, ξ1, . . . successive samples from a reversible Markov transition
kernel H (on some general state space) with stationary measure π, where ξ0 ∼ π, and for
f ∈L2(π) = {f :

∫

π(dx)f(x)2 <∞} let

v(f,H) = lim
n→∞

1

n
Variance

(

n−1
∑

i=0

f(ξi)

)

.

Let P1 and P2 be two reversible Markov kernels with stationary measure π such that
Eπ⊗P1

{g(ξ0)g(ξ1)} ≤ Eπ⊗P2
{g(ξ0)g(ξ1)} for all g ∈ L2(π). Then v(f,P1) ≤ v(f,P2) for

all f ∈ L2(π) and P1 is said to dominate P2 in efficiency ordering.
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Note that in the original version of this theorem by [24] the requirement on P1 and
P2 for v(f,P1)≤ v(f,P2) for all f ∈ L2(π) is that P1 dominates P2 in Peskun ordering.
However, Tierney’s proof actually makes use of the weaker Peskun implied property of
lag-1 domination instead, as also noted in Theorem 4.2 of [19].
To prove efficiency ordering, we must prove first that the CPF kernel, with or without

BS, is reversible. Following reversibility, we then need to show that the CPF kernel
with BS has smaller lag 1 autocorrelation compared to the CPF kernel without BS; this
property if holds is called lag-one domination.

Proposition 8. The CPF kernel is reversible.

Proof. This result is based on the equivalent representation of the CPF kernel described
in Section 2 (see Remark 1) which regenerates both the labels (B⋆

0:T−1,N
⋆) of the frozen

trajectory, and the N−1 remaining trajectories (X
1:N\⋆
0:T ,A

1:N\⋆
0:T−1). Consider a measurable

function h :X T+1 ×X T+1→R and let (Z⋆
T , Ž

⋆
T ) = (X⋆

0:T , X̌
⋆
0:T )∼QT ⊗ PN

T then

E{h(Z⋆
T , Ž

⋆
T )} =

∫

QT (dx
⋆
0:T )

∫

πN
T (dx

1:N\⋆
0:T ,da

1:N\⋆
0:T−1,db

⋆
0:T−1,dn

⋆|x⋆
0:T )

×
∫

πN
T (dň⋆|x1:N

0:T , a1:N0:T−1)h(z
n⋆

T , zň
⋆

T )

=

∫

πN
T (dx1:N

0:T ,da1:N0:T−1,dn
⋆)

∫

πN
T (dň⋆|x1:N

0:T , a1:N0:T−1)h(z
n⋆

T , zň
⋆

T )

=

∫

πN
T (dx1:N

0:T ,da1:N0:T−1,dň
⋆)

∫

πN
T (dn⋆|x1:N

0:T , a1:N0:T−1)h(z
n⋆

T , zň
⋆

T )

= E{h(Ž⋆
T , Z

⋆
T )},

where the second equality uses Remark 1. We have also used a change of variables,
that is, zn

⋆

T , respectively, zň
⋆

T , must be understood as a certain deterministic function of
(x1:N

0:T , a1:N0:T−1, n
⋆), respectively, (x1:N

0:T , a1:N0:T−1, ň
⋆), in the equations above; see notation at

the beginning of this section, specifically in the paragraph before step CPF-3. �

We now prove a similar result for CPF-BS, the CPF kernel with backward sampling.

Proposition 9. The CPF-BS kernel (CPF with backward sampling) is reversible.

Proof. Consider a X T+1 × X T+1 → R measurable function h and let (Z⋆
T , Ž

⋆
T ) =

(X⋆
0:T , X̌

⋆
0:T ) ∼ QT ⊗ PN,B

T . To evaluate E{h(Z⋆
T , Ž

⋆
T )}, we first invoke Remark 2 and

then the following observation: the image of CPF-BS would be unchanged if step CPF-3
would be replaced by a Gibbs step that would update the complete genealogy, that is,
replace A1:N

0:T−1 by Ǎ1:N
0:T−1, a sample from πN

T (da1:N0:T−1|x1:N
0:T , n⋆). This is because the An

t ’s



On particle Gibbs sampling 19

are independent conditionally on (X1:N
0:T ,N⋆). Thus,

E{h(Z⋆
T , Ž

⋆
T )} =

∫

πN
T (dx1:N

0:T ,da1:N0:T−1,dn
⋆)

×
∫

πN
T (dň⋆|x1:N

0:T )

∫

πN
T (dǎ1:N0:T−1|x1:N

0:T , ň⋆)h(zn
⋆

T , zň
⋆

T )

=

∫

πN
T (dx1:N

0:T ,da1:N0:T−1)

∫

πN
T (dn⋆|x1:N

0:T )πN
T (da1:N0:T−1|x1:N

0:T , n⋆)

×
∫

πN
T (dň⋆|x1:N

0:T )

∫

πN
T (dǎ1:N0:T−1|x1:N

0:T , ň⋆)h(zn
⋆

T , zň
⋆

T )

= E{h(Ž⋆
T , Z

⋆
T )},

where the second equality is based on the fact that one may generate (X1:N
0:T ,A1:N

0:T−1,N
⋆)∼

πN
T as: (X1:N

0:T ,A
1:N

0:T−1,N
⋆)∼ πN

T , then update A
1:N

0:T−1 as A1:N
0:T−1 through the Gibbs step

πN
T (da1:N0:T−1|x1:N

0:T , n⋆), and the third equality is a simple change of variables. The sim-
plification of πN

T (dň⋆|x1:N
0:T , a1:N0:T−1) into πN

T (dň⋆|x1:N
0:T ) (first equality onward) reflects the

fact that step CPF-2 does not depend on a1:N0:T−1. �

The final result shows that the CPF-BS kernel dominates the CPF kernel in lag-one
autocorrelation.

Theorem 10. The CPF-BS kernel, denoted PN,B
T , dominates the CPF kernel in lag one

autocorrelation, that is, let h be square integrable function then

0≤ E
QT⊗P

N,B

T

{h(Z⋆
T )h(Ž

⋆
T )} ≤ EQT⊗PN

T
{h(Z⋆

T )h(Ž
⋆
T )}.

Proof. We use again the facts that πN
T (dň⋆|x1:N

0:T , a1:N0:T−1) reduces into πN
T (dň⋆|x1:N

0:T ),
and that, under multinomial resampling, step CPF-3 may be replaced by a Gibbs step
that updates the complete genealogy as in the proof of Proposition 9.

E
QT⊗P

N,B

T

{h(Z⋆
T )h(Ž

⋆
T )}

=

∫

πN
T (dx1:N

0:T )

∫

πN
T (dn⋆|x1:N

0:T )

∫

πN
T (da1:N0:T−1|x1:N

0:T , n⋆)

×
∫

πN
T (dň⋆|x1:N

0:T )

∫

πN
T (dǎ1:N0:T−1|x1:N

0:T , ň⋆)h(zn
⋆

T )h(zň
⋆

T )

=

∫

πN
T (dx1:N

0:T )

(
∫

πN
T (dn⋆|x1:N

0:T )

∫

πN
T (da1:N0:T−1|x1:N

0:T , n⋆)h(zn
⋆

T )

)2

≤
∫

πN
T (dx1:N

0:T )

∫

πN
T (da1:N0:T−1|dx1:N

0:T )

(
∫

πN
T (dn⋆|x1:N

0:T , a1:N0:T−1)h(z
n⋆

T )

)2

= EQT⊗PN
T
{h(Z⋆

T )h(Ž
⋆
T )}.
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The penultimate line uses Jensen inequality. The last line is indeed the same expectation
but under QT ⊗ PN

T (no BS step). �

We are now in position to state the main result of this section.

Theorem 11. The CPF-BS kernel dominates the CPF kernel in efficiency ordering.

Proof. This is a direct consequence of Theorem 7 and Propositions 8 and 9. �

5. Alternative resampling schemes

We mentioned in the previous section that the backward sampling step is not always
applicable, as it relies on the probability density of the Markov kernel mt being tractable.
In this section, we discuss another way to improve the performance of particle Gibbs
through the introduction of resampling schemes that are less noisy than multinomial
resampling. The intuition is that such resampling schemes tend to reduce path degeneracy
in particle systems, and thus should lead to better mixing for particle Gibbs; see, for
example, [13] for some results on path degeneracy.
We no longer assume that the resampling distribution ̺t is (3), and we rewrite πN

T

under the more general expression (using the same notation as in Section 2)

πN
T (dz1:N0:T ,da1:N0:T−1,dn

⋆)

=
1

ZT

m⊗N
0 (dz1:N0 ) (18)

×
T
∏

t=1

{[

1

N

N
∑

n=1

Gt−1(z
n
t−1)

]

̺t−1(z
1:N
t−1 ,da

1:N
t−1)

N
∏

n=1

[qt(z
an
t−1

t−1 ,dznt )]

}

1

N
GT (z

n⋆

T ).

Recall that to establish validity of particle Gibbs, we applied the following change of
variables:

(z1:N0:T , a1:N0:T−1, n
⋆)↔ (z

1:N\⋆
0:T , a

1:N\⋆
0:T−1, z

⋆
0:T , b

⋆
0:T−1, n

⋆),

to πN
T , which led to distribution (6), which is such that Z⋆

T = ZN⋆

T has marginal dis-
tribution QT (dzT ). To generalise (6) to resampling schemes other than multinomial re-
sampling, we assume that the resampling distribution is marginally unbiased : the joint
distribution ̺t(z

1:N
t ,da1:Nt ) (for fixed z1:Nt ) is such that the marginal distribution of a

single component An
t is the discrete distribution which assigns probability Wm

t to out-
come m ∈ 1 :N . (We shall see that, up to a trivial modification, standard resampling
schemes fulfil this condition.)
Under marginal unbiasedness, ̺t(z

1:N
t ,da1:Nt ) may be decomposed as follows, for any

n ∈ 1 :N :

̺t(z
1:N
t ,da1:Nt ) = {W an

t

t (z1:Nt )dant }̺ct(z1:Nt ,{da1:N\n
t |An

t = ant }),
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where the second factor above denotes the distribution of the (N − 1) labels A
1:N\n
t

conditional on An
t = ant which corresponds to the joint distribution ̺t(z

1:N
t ,da1:Nt ). Thus,

applying the change of variables above to πN
T gives

πN
T (dz

1:N\⋆
0:T ,da

1:N\⋆
0:T−1,dz

⋆
0:T ,db

⋆
0:T−1,dn

⋆)

=
1

NT+1
(db⋆0:T−1 dn

⋆)QT (dz
⋆
T )

T−1
∏

t=0

δ([z⋆
T
]t+1)(dz

⋆
t ) (19)

×
∏

n6=b⋆
0

m0(dz
n
0 )

[

T
∏

t=1

̺ct−1(z
1:N
t−1 ,{da

1:N\b⋆t
t−1 |Ab⋆t

t−1 = b⋆t−1})
∏

n6=b⋆t

qt(z
an
t−1

t−1 ,dznt )

]

.

Inspection of the distribution above reveals that step CPF-1 (as defined in Section 2),
that is, the Gibbs step that regenerates the complete particle system conditional on one
“frozen” trajectory z⋆0:T , now requires to sample at each iteration t from the conditional
resampling distribution ̺ct−1. The two next sections explains how to do so for two popular
resampling schemes, namely residual resampling and systematic resampling.
To simplify notation in the next sections, we will remove any dependency in t, and

consider the generic problem of deriving, from a certain distribution of N labels A1:N

based on normalised weights W 1:N , the conditional distribution of A1:N given that one
component is fixed.

5.1. Conditional residual resampling

The standard definition of residual resampling [18] is recalled as Algorithm 1. It is clear
that this resampling scheme is such that the number of off-springs of particles n is a ran-
dom variable with expectation NWn (assuming W 1:N is the vector of the N normalised
weights used as input). To obtain a resampling distribution that is marginally unbiased
(as defined in the previous section), we propose the following simple modification: we
run Algorithm 1, and then we permute randomly the output: A1:N = Āσ(1:N) where σ is
chosen uniformly among the N ! permutations on the set 1 :N .
Another advantage of randomly permuting the labels obtained by residual resampling

is that it makes the particle system exchangeable, as with multinomial resampling (as-

Algorithm 1 Residual resampling

Input: normalised weights W 1:N

Output: a vector of N random labels Ā1:N ∈ 1 :N

(a) Compute rn =NWn − ⌊NWn⌋ (for each n ∈ 1 :N) and R=
∑N

n=1 r
n.

(b) Construct Ā1:(N−R) as the ordered vector of size (N −R) that contains ⌊NWn⌋
copies of value n for each n ∈ 1 :N .

(c) For each n ∈ (N −R+ 1) :N , sample Ān ∼M(r1:N/R).
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Algorithm 2 Conditional residual resampling

Input: normalised weights W 1:N

Output: a vector of N random labels A1:N ∈ 1 :N such that A1 = 1

(a) Compute rn =NWn − ⌊NWn⌋ (for each n ∈ 1 :N) and R=
∑N

n=1 r
n.

(b) Generate U ∼ U [0,1].
(c) If U < ⌊NW 1⌋/NW 1, then generate Ā1:N using Algorithm 1;

Else generate Ā2:N exactly as in Algorithm 1, except that the number of multi-
nomial draws in step (c) is R − 1 instead of R. (Thus Ā2:N contains ⌊NWn⌋
deterministic copies of value n, for each n ∈ 1 :N , and (R− 1) random copies.)

(d) Let A1 = 1, and A2:N = Āσ(2:N), where σ is a random 2 :N → 2 :N permutation.

suming that residual resampling is applied at every iteration t of the particle algorithm).
Thus, using the same line of reasoning as in Section 2, we see that one may arbitrar-
ily relabel the frozen trajectory z⋆T as (1, . . . ,1) before applying step CPF-1. Therefore,
it is sufficient to derive an algorithm to sample from the distribution of labels A2:N ,
conditional on A1 = 1.
We observe that, under residual resampling (with randomly permuted output), the

probability that A1 is set to one of the ⌊NW 1⌋ “deterministic” copies of label 1 is
⌊NW 1⌋/NW 1. This remark leads to Algorithm 2, which generates a vector A1:N of N
labels such that A1 = 1.
In practice, assuming conditional residual resampling is applied at every iteration of

the particle algorithm (i.e., when generating (X2:N
0:T ,A2:N

0:T−1) conditional on X1
0:T ), step

(d) of Algorithm 2 may be omitted, as the actual order of particles with labels 2 :N do
not play any role in the following iterations (and, therefore, has no bearing on the image
of the CPF kernel).

5.2. Conditional systematic resampling

The systematic resampling algorithm of [4] consists in creating N off-springs, based on
the normalised weights W 1:N , as follows. Let U a uniform variate in [0,1], v0 = 0, vn =
∑n

m=1NWm, and set Ān =m for the N pairs (n,m) such that vm−1 ≤U + n− 1< vm.
The standard algorithm to perform systematic resampling (for a given U , sampled from
U([0,1]) beforehand) is recalled as Algorithm 3.
To obtain a resampling distribution that is marginally unbiased, we propose to ran-

domly cycle the output: A1:N = Āc(1:N), where c : (1 :N)→ (1 :N) is drawn uniformly
among the N cycles of length N . Recall that a cycle c is a permutation such that for
a certain c0 ∈ 1 :N and for all n ∈ 1 :N , c(n) = c0 + n if c0 + n≤N , c(n) = c0 + n−N
otherwise.
Cycle randomisation is slightly more convenient that permutation randomisation when

it comes to deriving the conditional systematic resampling algorithm. It is also slightly
cheaper in computational terms. Under cycle randomisation, the particle system is no
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Algorithm 3 Systematic resampling (for a given U )

Input: normalised weights W 1:N , and U ∈ [0,1]
Output: a vector of N random labels A1:N ∈ 1 :N

(a) Compute the cumulative weights as vn =
∑n

m=1NWm for n ∈ 1 :N .
(b) Set s←U , m← 1.
(c) For n= 1 :N

While vm < s do m←m+ 1.
Ān←m, and s← s+1.

End For

longer exchangeable (assuming systematic resampling is carried out at each iteration),
but it remains true that one has the liberty to relabel arbitrarily the frozen trajectory,
say with labels (1, . . . ,1), without changing the image of the PG kernel. (A proof may be
obtained from the corresponding author.) Thus, as in the previous section, it is sufficient
to derive the algorithm to simulate A2:N conditional on A1 = 1.
A distinctive property of systematic resampling is that the number of off-springs of

particle n is either ⌊NWn⌋ or ⌊NWn⌋+1. In particular, the algorithm starts by creating
⌊NW 1⌋ “deterministic” copies of particle 1, then adds one extra “random copy,” with
probability r1 = NW 1 − ⌊NW 1⌋, and so on. When N off-springs have been obtained,
the output is randomly cycled. Thus, conditional on A1 = 1, the probability that a de-
terministic copy of 1 was moved to position 1 is ⌊NW 1⌋/NW 1. This observation leads
to the Algorithm 4 for generating from A2:N conditional on A1 = 1.

5.3. Note on backward sampling for alternative resampling
schemes

It is possible to adapt the backward sampling step (see Section 4) to residual or systematic
resampling. Unfortunately, the corresponding algorithmic details are quite involved, and
the results are not very satisfactory (in the sense of not improving strongly the mixing

Algorithm 4 Conditional systematic resampling

Input: normalised weights W 1:N

Output: a vector of N random labels A1:N ∈ 1 :N such that A1 = 1

(a) If NW 1 ≤ 1, sample U ∼ U [0,NW 1].

Else Set r1 = NW 1 − ⌊NW 1⌋. With probability r1(⌊NW 1⌋+1)
NW 1 , sample U ∼

U [0, r1], otherwise sample U ∼ U [r1,1].
(b) Run Algorithm 3 with inputs W 1:N and U ; call Ā1:N the output.
(c) Choose C uniformly from the set of cycles such that ĀC(1) = 1 and set A1:N =

ĀC(1:N).
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of particle Gibbs relative to the version without a backward sampling step); see [6] for
details. This seems related to the strong dependence between the labels A1:N

t that is
induced by residual resampling and particularly systematic resampling, which therefore
makes it more difficult to update one single component of this vector.
As pointed out by a referee, it is straightforward to adapt ancestor sampling [15],

which is an alternative approach to backward sampling for rejuvenating the ancestry of
the frozen trajectory, to the alternative resampling schemes. The mixing gains of doing
so deserves further investigation.

6. Numerical experiments

The focus of our numerical experiments is on comparing the four variants of particle
Gibbs discussed in this paper, corresponding to the three different resampling schemes
(multinomial, residual, systematic), and whether the extra backward sampling is per-
formed or not (assuming multinomial resampling).
We consider the following state-space model:

X0 ∼N(µ,σ2), Xt+1|Xt = xt ∼N(µ+ ρ(xt − µ), σ2), Yt|Xt = xt ∼ Poisson(ext)

for t ∈ 0 :T , hence one may take Gt(xt) = exp{−ext +ytxt}, where yt is the observed value
of Yt. This model is motivated by [28] who consider a similar model for photon counts in
X-ray astrophysics. The parameters µ, ρ, σ are assumed to be unknown, and are assigned
the following (independent) prior distributions: ρ ∼ Uniform[−1,1], µ ∼N(mµ, s

2
µ) and

1/σ2 ∼Gamma(aσ, bσ); let θ = (µ, ρ, σ2). (We took mµ = 0, sµ = 10, aσ = bσ = 1 in our
simulations.) We run a Gibbs sampler that targets the posterior distribution of (θ,X0:T ),
conditional on Y0:T = y0:T , by iterating (a) the Gibbs step that samples from θ|X0:T , Y0:T ,
described below; and (b) the particle Gibbs step discussed in this paper, which samples
from X0:T |θ, Y0:T . Direct calculations show that step (a) may be decomposed into the
following successive three operations, which sample from the full conditional distribution
of each component of θ, conditional on the other components of θ and X0:T :

1/σ2|X0:T = x0:T , Y0:T , µ, ρ∼Gamma

(

aσ +
T + 1

2
, bσ +

1

2
x̃2
0 +

1

2

T−1
∑

t=0

(x̃t+1 − ρx̃t)
2

)

,

ρ|X0:T = x0:T , Y0:T , µ, σ ∼N[−1,1]

(∑T−1
t=0 x̃tx̃t+1
∑T−1

t=0 x̃2
t

,
σ2

∑T−1
t=0 x̃2

t

)

,

µ|X0:T = x0:T , Y0:T , ρ, σ ∼N

(

1

λµ

{

mµ

s2µ
+

x0 + (1− ρ)
∑T−1

t=0 (xt+1 − ρxt)

σ2

}

,
1

λµ

)

,

where we have used the short-hand notation x̃t = xt − µ,

λµ =
1

s2µ
+

1+ T (1− ρ)2

σ2
,
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and where N[−1,1](m,s2) denotes the Gaussian distribution truncated to the interval
[−1,1].
In each case, we run our Gibbs sampler for 105 iterations, and discard the first 104

iterations as a burn-in period. Apart from the resampling scheme, and whether or not
backward sampling is used, the only tuning parameter for the algorithm is the number
of particles N in the particle Gibbs step.

6.1. First dataset

The first dataset we consider is simulated from the model, with T + 1 = 400, µ = 0,
ρ= 0.9, σ = 0.5.
Figure 1 reports the ACF (Autocorrelation function) of certain components of (θ,X0:T )

for the four considered variants of our algorithm, for N = 200.
Clearly, the version which includes a backward sampling step performs best. The ver-

sion based on systematic resampling comes second. This suggests that, in situations
where backward sampling cannot be implemented, one may expect that using systematic
resampling should be beneficial.
It is also worthwhile to look at the update rates of Xt with respect to t which is

defined as the proportion of iterations where Xt changes value; see left panel of Figure 2.
This figure reveals that backward sampling increases very significantly the probability of
updating Xt to a new value, especially at small t values, to a point where this proportion
is close to one. This also suggests that good performance for backward sampling might
be obtained with a smaller value of N .
To test this idea, we ran the four variants of our Gibbs sampler, but with N = 20. The

right side of Figure 2 reveals the three non-backward sampling algorithms provide useless
results because components of X0:300 hardly ever change values. For the same reasons,
the ACFs of these variants do not decay at reasonable rate (which are not shown here).
To summarise, in this particular exercise, implementing backward sampling is very

beneficial, as it leads to good mixing even if N is small. If backward sampling could not
be implemented, then using systematic resampling may also improve performance, but
not to same extent as backward sampling, as it may still require to take N to a larger
value to obtain reasonable performance.

6.2. Second dataset

We consider a second dataset, simulated from the model with T +1= 200, µ= log(5000),
ρ= 0.5, σ = 0.1. (These values are close to the posterior expectation for the real dataset
of [28].)
The interest of this example relative to the first one is twofold. Firstly, the positive

impact of backward sampling is even bigger in this case. We have to increase N to
N = 1000 to obtain non-zero update rates for the three variants that do not use backward
sampling, whereas good update rates may be obtained for N = 20 for either multinomial
or residual resampling, when backward sampling is used; see Figure 3.
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Figure 1. First dataset: ACF for different components of (θ,X0:T ) and the four considered
variants of particle Gibbs (N = 200).
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Figure 2. First dataset and resulting update rates of Xt versus t ∈ 0 : 399. Left plot is for
N = 200 and right is for N = 20. For N = 20, forward only versions of systematic and residual
perform similarly.

Secondly, we observe that backward sampling leads to excellent performance even when

N is small, see also the ACF in Figure 4, which are close to the ACF of an independent

process. Thus, the performance of that variant of particle Gibbs seems to on par with the

algorithm of [28], which is specialised to this particular model (whereas particle Gibbs

may be used in a more general class of models).

Figure 3. Second dataset, same plots as Figure 2, with N = 1000 (left panel) and N = 20
(right panel). Same legend as Figure 1. In the left plot, residual and systematic are largely
indistinguishable. In the right plot, the three forward only schemes indistinguishable before
t≈ 190.
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Figure 4. Second dataset: ACF for certain components of (θ,X0:T ) for particle Gibbs with
backward sampling (N = 20).

7. Discussion and conclusions

We now discuss the main practical conclusions that one can draw from our numerical

studies.

First, they are many situations where backward resampling cannot be implemented,

in particular when the probability density of the Markov transition is not tractable. In

that case, our simulations suggests that one should run particle Gibbs with systematic

resampling, as this leads to better mixing. A possible explanation is that, when only

a forward pass is performed, the lower variability of systematic resampling makes it

less likely that the proposed trajectories in the particle system coalesce with the fixed

trajectory during the resampling steps. Therefore, the particle Gibbs step is more likely

to output a trajectory which is different than the previous one.

Second, when backward sampling can be implemented, it should be used, as this makes

it possible to set N to a significantly smaller value while maintaining good mixing; see

also [15, 16] for similar findings.

In all cases, we recommend inspecting (on top of ACF plots) the same type of plots as

in Figures 2 and 3, that is, update rate of Xt versus t, in order to assess the mixing of

the algorithm, and in particular to choose a value of N that is a good trade-off between

mixing properties and CPU cost. An interesting and important theoretical line of research

would be to explain why this update rate seems more or less constant when backward

sampling is used, while it deteriorates (while going backward in time) when backward

sampling is not implemented. Another line for further research would be to study the

effect of replacing the backward sampling step by a forward-only ancestor sampling step

as recently proposed by [15].
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