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The Poisson transform for unnormalised
statistical models

Simon Barthelmé, Nicolas Chopin

Abstract

Contrary to standard statistical models, unnormalised statistical models only spe-
cify the likelihood function up to a constant. While such models are natural and
popular, the lack of normalisation makes inference much more difficult. Extending
classical results on the multinomial-Poisson transform (Baker, 1994), we show that
inferring the parameters of a unnormalised model on a space Ω can be mapped onto
an equivalent problem of estimating the intensity of a Poisson point process on Ω.
The unnormalised statistical model now specifies an intensity function that does not
need to be normalised. Effectively, the normalisation constant may now be inferred
as just another parameter, at no loss of information. The result can be extended to
cover non-IID models, which includes for example unnormalised models for sequences
of graphs (dynamical graphs), or for sequences of binary vectors. As a consequence, we
prove that unnormalised parameteric inference in non-IID models can be turned into
a semi-parametric estimation problem. Moreover, we show that the noise-contrastive
estimation method of Gutmann and Hyvärinen (2012) can be understood as an ap-
proximation of the Poisson transform, and extended to non-IID settings. We use
our results to fit spatial Markov chain models of eye movements, where the Poisson
transform allows us to turn a highly non-standard model into vanilla semi-parametric
logistic regression.

Unnormalised statistical models are a core tool in modern machine learning,
especially deep learning (Salakhutdinov and Hinton, 2009), computer vision
(Markov random fields, Wang et al., 2013) and statistics for point processes
(Gu and Zhu, 2001), network models (Caimo and Friel, 2011), directional data
(Walker, 2011). They appear naturally whenever one can best describe data as
having to conform to certain features: we may then define an energy function
that measures how well the data conform to these constraints. While this way
of formulating statistical models is extremely general and useful, immense tech-
nical difficulties may arise whenever the energy function involves some unknown
parameters which have to be estimated from data. The reason is that the nor-
malisation constant (which ensures that the distribution integrates to one) is in
most cases impossible to compute. This prevents direct application of classical
methods of maximum likelihood or Bayesian inference, which all depend on the
unknown normalisation constant.

Many techniques have been developed in recent years for such problems,
including contrastive divergence (Hinton, 2002; Bengio and Delalleau, 2009),
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2 1 Relationship to prior work

noise-contrastive estimation (Gutmann and Hyvärinen, 2012) and various forms
of MCMC for Bayesian inference (Møller et al., 2006; Murray et al., 2012; Giro-
lami et al., 2013). The difficulty is compounded when unnormalised models are
used for non-IID data, either sequential data, or data that include covariates.
If the data form a sequence of length n, there are now n normalisation con-
stants to approximate. In our application we look at models of spatial Markov
chains, where the transition density of the chain is specified up to a normalisa-
tion constant, and again one normalisation constant needs to be estimated per
observation.

In the first Section, we show that unnormalised estimation is tightly related
to the estimation of point process intensities, and formulate a Poisson transform
that maps the log-likelihood of a model L (θ) into an equivalent cost function
M (θ,ν) defined in an expanded space, where the latent variables ν effectively
estimate the normalisation constants. In the case of non-IID unnormalised
models we show further that optimisation of M (θ,ν) can be turned into a
semi-parametric problem and adressed using standard kernel methods. In the
second section, we show that the noise-contrastive divergence described in of
Gutmann and Hyvärinen (2012) arises naturally as a tractable approximation
of the Poisson transform, and that this new interpretation lets us extend its
use to non-IID models. (Gutmann and Hyvärinen (2012) call the technique
“noise-contrastive estimation”, but we use the term noise-contrastive divergence
to designate the corresponding cost function.) Finally, we apply these results
to a class of unnormalised spatial Markov chains that are natural descriptions
of eye movement sequences.

1 Relationship to prior work

Some of the ideas we use here have appeared under different forms in classical
statistics, machine learning and spatial statistics. The Poisson transform gener-
alises the multinomial-Poisson transform developed by Baker (1994). It is also a
special case of a general family of Bregman divergences introduced by Gutmann
and ichiro Hirayama (2011), a special case of another family by Pihlaja et al.
(2010), and finally can also be viewed as an empirical version of the generalised
Kullback-Leibler divergence for unnormalised measures (Minka, 2005).

Noise-contrastive learning is studied in Gutmann and ichiro Hirayama (2011),
although the relationship between logistic regression and estimation has been
noted in other places (for example, in the spatial statistics literature, see Bad-
deley et al., 2010, Baddeley et al., 2014). We go further here in showing that
the divergence defined by NCL converges uniformly to the Poisson transform,
giving it a new interpretation as an approximate likelihood rather than just a
divergence.

Mnih and Kavukcuoglu (2013) and Mnih and Teh (2012a) use the NCL
technique in a class of non-IID unnormalised models. However, in the interest of
computation time, they ignore normalisation constants. The results given here
indicate clearly that neglecting normalisation constants leads in the general case
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to non-convergent estimators, as illustrated in Section 4.1. Instead we develop
a semi-parametric framework for non-IID estimation, which is both much faster
than purely parametric techniques, as well as convergent.

2 The Poisson transform

In this section we show how unnormalised likelihoods can be turned into Poisson
process likelihoods at no loss of information. We call the procedure the Poisson
transform, as it generalises the Poisson-multinomial transform (Baker, 1994).
We give two interpretations, one in terms of upper-bound maximisation, and
one in terms of generalised KL divergences. We begin with the IID case, with
the generalisation to non-IID data treated further into the text.

2.1 Background on Poisson point processes

Poisson point processes are described at length in Kingman (1993), and we only
give here the merest outline. A Inhomogeneous Poisson point process (IPP)
with intensity function λ (y) ≥ 0 over space Ω defines a distribution over the
set of countable subsets S of Ω, in such a way that, for any measurable subset
A ⊆ Ω,

# {S ∩ A} ∼ Poi (λA) , λA =

ˆ
A
λ (y) dy,

assuming λA < +∞. In words, the number of points to be found in subset A has
a Poisson distribution, with expectation given by the integral of the intensity
function within A; in discrete spaces the integral may of course be interpreted
as a sum. In particular, provided

´
λ (y) dy < +∞, the cardinal n of S is

finite, and has a Poisson distribution with expectation equal to the integral of
λ (y) over the domain (the fact follows from taking A = Ω). Assuming again´

Ω
λ (y) dy < +∞, the log-likelihood of observing set S given the intensity

function λ is given by:

log p (S|λ) =
∑
yi∈S

log λ (yi)−
ˆ

Ω

λ (y) dy. (2.1)

2.2 The Poisson transform in the IID case

The Poisson transform is simply stated: when we have n observations from an
unnormalised model on Ω, we may treat them as the realisation of a certain
point process at no loss of information. This results in a mapping from a likeli-
hood function L (θ) to another, which we noteM (θ, ν), in an expanded space.
M (θ, ν) has the same global maximum as L (θ) and confidence intervals are
preserved.
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First, the log-likelihood function for n IID observations yi from an unnorm-
alised model p(y|θ) ∝ exp {fθ(y)} can be written as:

L(θ) =

n∑
i=1

fθ(yi)− n log

(ˆ
Ω

exp {fθ (y)} dy
)

(2.2)

and the ML estimate of θ is the maximum of L (θ). We introduce the following
alternative likelihood function:

M (θ, ν) =

n∑
i=1

{fθ(yi) + ν} − n
ˆ

Ω

exp {fθ(y) + ν} dy (2.3)

which by (2.1) is, up to additive constant n log(n), the IPP likelihood on Ω for
intensity function

λ (y) = exp {fθ(y) + ν + log(n)} .

Our first theorem shows that maximum likelihood estimation of θ via L (θ) or
viaM (θ, ν) is equivalent.

Theorem 1. The set of points θ? such that θ? ∈ arg max
θ∈Θ

L (θ) matches the

set of points θ̃ such that (θ̃, ν̃) ∈ arg max
θ∈Θ,ν∈R

M (θ, ν) for some ν̃. In particular, if

arg max
θ∈Θ

L (θ) is a singleton, then so is arg max
θ∈Θ,ν∈R

M (θ, ν).

Proof. For a fixed θ, M (θ, ν) admits a unique maximum in ν at ν?(θ) =
− log

´
Ω
exp {fθ(y)} dy, henceM (θ, ν) ≤M(θ, ν?(θ)) = L (θ)− n.

There are several remarks to make at this stage. First, since ν?(θ) =
− log

´
Ω
exp {fθ(y)}dy, maximising M(θ, ν) can be interpreted as estimating

the normalisation constant along with the parameters. There is no estimation
cost incurred in treating the normalisation constant as a free parameter, since
the global maxima of L (θ) andM (θ, ν) are the same.

Second, the usual way of computing confidence intervals for θ is to invert
the Hessian of L (θ) at the mode. We show in the Appendix that the same
confidence intervals can be obtained from the Hessian ofM (θ, ν) at the mode, so
that the Poisson transform does not introduce any over or under-confidence. In
addition, the Poisson-transformed likelihood can be used for penalised likelihood
maximisation (see Application), does not introduce any spurious maxima, and in
exponential families it can even be shown to preserve concavity (see Appendix).

Third, at this point we do not yet have a practical way of computingM(θ, ν),
since we have assumed that integrals of the form

´
Ω
exp {fθ(y) + ν} dy are in-

tractable. The problem of approximating M(θ, ν) is dealt with in Section 3,
where we will see that among other possibilities it can be approximated by
logistic regression via noise-contrastive divergence.

Before we deal with practical ways of approximatingM(θ, ν), we first gen-
eralise the Poisson transform to non-IID data.
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2.3 The Poisson transform in the non-IID case

In the non-IID case we still have n datapoints y1 . . .yn ∈ Ωn but their distri-
bution is allowed to vary. For example the n datapoints might form a Markov
chain with (unnormalised) transition density

pθ(yt|yt−1) ∝ exp {fθ(yt|yt−1)}

which leads to the log-likelihood

L(θ) =

n∑
t=1

[
fθ(yt|yt−1)− log

ˆ
Ω

exp {fθ (y|yt−1)} dy
]
. (2.4)

(The initial point y0 is treated as a constant.) Another example is models with
covariates xi, expressed as p(yi|xi,θ) ∝ exp {fθ(yi|xi)}. These two cases are
highly similar and for brevity we focus on the sequential case, which we use in
our application.

Our first step is to extend the Poisson transform (2.3) to yield a function
M (θ,ν) where ν is now a vector of dimension n (one per conditional distribu-
tion), ν = (ν1, . . . , νn) and

M (θ,ν) =

n∑
t=1

{fθ(yt|yt−1) + νt−1}

−
ˆ

Ω

[
n∑
t=1

exp {fθ (y|yt−1) + νt−1}

]
dy. (2.5)

Theorem 2. The set of points θ? such that θ? ∈ arg max
θ∈Θ

L (θ) matches the set

of points θ̃ such that
(
θ̃,ν?

)
= arg max

θ∈Θ,ν∈Rn

M (θ,ν).

Proof. The proof is along the same lines as that of the Theorem 1: max-
imising M (θ,ν) in νt−1 gives ν?t−1(θ) = − log

´
Ω

exp {fθ(y|yt−1)dy}, and
M(θ,ν?(θ)) = L(θ)− n.

Note that while L (θ) involves the sum of n separate integrals, M (θ,ν)
involves a single integral over a sum. Further, since

ν?t−1 (θ) = − log

(ˆ
Ω

exp {fθ (y|yt−1)} dy
)

the optimal value of νt−1 is a function of yt−1 only. This means that we
can think of the integration constants as (hopefully smooth) functions of the
previous point yt−1. This leads to the following result: let F denote an ap-
propriate function space that contains the function χ : Ω → R such that
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χ(u) = − log
´

Ω
exp {fθ (y|u)} dy. We introduce the following functional

Mχ (θ, χ) =

n∑
t=1

{fθ(yt|yt−1) + χ(yt−1)}

−
ˆ

Ω

∑
t

exp {fθ (y|yt−1) + χ(yt−1)}dy. (2.6)

Corollary 3. The set of points θ? such that θ? ∈ arg max
θ∈Θ

L (θ) matches the

set of points θ̃ such that
(
θ̃, χ

)
∈ argmax

θ∈Θ,χ∈F
Mχ (θ, χ).

We can use this Corollary to turn inference on unnormalised models into a
semiparametric problem, where θ is estimated parametrically and the normal-
isation constants are estimated as a non-parametric function χ(yt−1).

In the formulation used by Corollary 3 there exists possibly (uncountably)
many optimal normalisation functions χ, ie. functions that solve argmax

θ∈Θ,χ∈F
Mχ (θ, χ).

All that is required is that they interpolate the values of the normalisations con-
stants for the various yt−1 in the dataset. To get a unique optimal normalisation
function we need to regularise the non-parametric part.

A classical way to solve non-parametric regression problems is to model
the non-parametric part as belonging to a Reproducible Kernel Hilbert Space
(RKHS), and to add regularisation by including a penalty. The following result
shows that penalised non-parametric estimation can be made consistent, and
the optimal normalisation function becomes uniquely defined.

Proposition 4. Let H denote a RKHS, with kernel function k(y,y′) and |f |
H

the corresponding norm. Suppose H contains one optimal normalisation func-
tion, i.e. there exists an χ∗(u) ∈ H, with |χ?|H < ∞ Then there exists a
value λ0 > 0 such that the set of maximum likelihood points θ? ∈ arg max

θ∈Θ
L (θ)

matches the set of points penalised estimates θ̃ defined by:(
θ̃, χ

)
∈ argmax

θ∈Θ,χ∈H
Mχ (θ, χ)− λ |χ|2H (2.7)

i.e., the penalised non-parametric Poisson estimator is equivalent to the
maximum-likelihood estimator.

Proof. The penalised problem is equivalent to the following constrained optim-
isation problem:

argmax
θ∈Θ,χ∈H

Mχ (θ, χ)

subject to |χ|2H ≤ ρ

for some value ρ dependent on λ (this follows from writing the Lagrangian).
By the assumption that there exists an optimal normalisation function in H
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with finite norm, there exists a ρ0 < ∞ such that the constraint is irrelevant
and solving the constrained problen above is equivalent to solving the non-
penalised problem argmax

θ∈Θ,χ∈F
Mχ (θ, χ) from Lemma 3. Correspondingly there

exists a penalisation parameter λ0 > 0 such that the penalised estimate (2.7)
matches the non-penalised estimate.

Remark 5. For fixed θ, argmax
χ∈H

Mχ (θ, χ) − λ |χ|2H has a unique solution that

can be expressed as χ (u) =
∑
αt−1k(u,yt−1)

Proof. The result follows from a straightforward application of the Representer
Theorem (see Schölkopf and Smola, 2001, page 90).

We have only established so far that there exists a value λ0 so that the pen-
alised non-parametric estimator is equivalent to the ML estimator. We cannot
expect to know that value in advance, and so λ0 needs to be estimated from the
data. The following Corrolary comes to the rescue:

Corollary 6. Note θ (λ) , χ (λ) the solution for the penalised problem (eq. (2.7))
with regularisation parameter λ. For all λ ≤ λ0,Mχ (θ (λ) , χ (λ)) =Mχ (θ (λ0) , χ (λ0)),
i.e. there is no further improvement to the optimal value of the Poisson trans-
form by relaxing the penalty beyond λ0.

Proof. The proof follows again from the constrained formulation. By λ0 we have
already found the optimal solution and there is no point relaxing the constraint
further.

What the result suggests is that we could start with a high value for λ, per-
form the optimisation, and reduce the value of λ until the value ofMχ (θ (λ) , χ (λ))
stops improving. We will then have found the most “simple” function that in-
terpolates the normalisation constants. Unfortunately Corrolary 6 does not
hold for noise-contrastive divergence, and so a different strategy (such as cross-
validation) has to be used for selecting λ. We return to the issue in the examples.

3 Practical approximations for the Poisson transform

The Poisson transform gives us an alternative likelihood function for estima-
tion, but one that still involves an intractable integral. In this section we briefly
describe some practical approximations. One is based on importance sampling
and leads to an unbiased estimate of the gradient (meaning that novel stochastic
gradient and approximate Langevin sampling methods are possible). The second
is based on logistic regression: we show that the noise-contrastive divergence of
Gutmann and Hyvärinen (2012) approximates the Poisson-transformed likeli-
hood. Using that connection, estimation in any non-IID setting can be turned
into a semiparametric classification problem.
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3.1 Unbiased estimation of the gradient

The first derivatives ofM (θ, ν) (eq. 2.3) equal:

1

n

∂

∂θ
M (θ, ν) =

1

n

n∑
i=1

∂

∂θ
fθ(yi)−

ˆ
Ω

∂

∂θ
fθ(yi)exp {fθ(y) + ν} dy

1

n

∂

∂ν
M (θ, ν) = 1−

ˆ
Ω

exp {fθ(y) + ν}dy

The integrals on the right hand side can be estimated unbiasedly by Monte
Carlo, which is not true in general for the untransformed likelihood. The avail-
ability of an unbiased estimator for the gradient means that stochastic gradi-
ent algorithms (and their MCMC counterpart, approximate Langevin sampling,
Welling and Teh, 2011) can be applied directly. The resulting method has a
straightforward interpretation, since we simply adjust ν until exp {fθ(y) + ν}
normalises to 1 on average.

3.2 Logistic likelihood as an approximation: IID case

In this section we show how to approximate Poisson-transformed likelihoods,
see (2.3) and (2.4), using logistic regression. Reductions to logistic regression
appear in many places in the statistical literature. In the context of estimation
it is described in the well-known textbook of Hastie et al. (2003) and in detail
in Baddeley et al. (2010). The use of logistic regression to estimate normalisa-
tion constants is described in Geyer (1994). Recently Gutmann and Hyvärinen
(2012) introduced a more general theory which they call “noise-contrastive di-
vergence”, and show that logistic regression can be used for joint estimation of
parameters and normalisation constants.

The essence of noise-contrastive divergence is to try and teach a logistic
classifier to tell true data S = {y1, . . . ,yn}, generated from pθ(y), from random
reference data R = {r1, . . . , rm}, generated from some distribution with density
q(r). Picking a point u at random from S∪R, and denoting z = 1 (resp. z = 0)
the event that u comes from S (resp. R), one obtains the following log odds
ratio:

log
p (z = 1|u)

p (z = 0|u)
= log pθ (u)− log q(u) + log (n/m) . (3.1)

If we assume additionally that pθ(y) is unnormalised, pθ(y) ∝ exp {fθ(y)},
one may replace above, in the same spirit as in our Poisson transform, the term
log pθ(u) by fθ(u) + ν, leading to

log
p (z = 1|u)

p (z = 0|u)
= fθ(u) + ν − log q(u) + log(n/m). (3.2)

This leads to following simple recipe: generate reference data R, then es-
timate jointly (θ, ν) by fitting the logistic regression (3.2) to the dataset S ∪R,
with points in S (resp. R) labelled as zi = 1 (resp. zi = 0).
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The obvious connection between our Poisson transform and the noise-contrastive
approach is that in both cases the log normalising constant is treated as a free
parameter. The following result reveals that this connection is actually deeper.

Theorem 7. For fixed θ, ν, and S = {y1, . . . ,yn}, and under the assumption
that fθ(y) − log q(y) ≤ C(θ) for all y ∈ Ω, the log-likelihood of the logistic
regression defined above:

Rm(θ, ν) =

n∑
i=1

log

[
n exp {fθ(yi) + ν}

n exp {fθ(yi) + ν}+mq(yi)

]

+

m∑
j=1

log

[
mq(rj)

n exp {fθ(rj) + ν}+mq(rj)

]
is such that

Rm(θ, ν) + n log(m/n) +

n∑
i=1

log q(yi)→M(θ, ν) (3.3)

almost surely as m→ +∞, relative to the randomness induced by the reference
points R = {r1, . . . , rm}.

Proof. See Appendix.

The theorem above establishes thatRm(θ, ν) converges toM(θ, ν) pointwise
(up to a constant). Uniform convergence (with respect to θ) may be proved
under stronger conditions. As a corollary, one obtains that the MLE based on
Rm(θ, ν) converges to the intractable MLE ofM(θ, ν) as m→ +∞.

Theorem 8. Assume that (i) Θ is a bounded set, that (ii) |fθ(y)− log q(y)| ≤
C for some C > 0 and all y ∈ Ω, that (iii) |fθ(y)− fθ′(y)| ≤ κ(y) ‖θ − θ′‖
for all y ∈ Ω and θ,θ′ ∈ Θ, with Eq[κ] < ∞, that (iv) there exists θ̂ such that
L
(
θ̂
)
> supd(θ̂,θ)≥ε L (θ), for any ε > 0. Then for fixed S = {y1, . . . ,yn}, and(

θ̃m, ν̃m

)
such that Rm(θ̃m, ν̃m) = sup(θ,ν)∈Θ×RRm(θ, ν), one has

θ̃m → θ̂ a.s.

as m → +∞, relative to the randomness induced by the reference points R =
{r1, . . . , rm}.

Proof. See Appendix.

In particular, the limit of θ̃m as m → +∞ has the same properties as the
MLE of L(θ), and thus is consistent, and asymptotically efficient. The theorem
above assumes implicitly that the MLE of the logistic regression (with log-
likelihood Rm(θ, ν)) is well defined, but this is a mild assumption: e.g. if the
considered model corresponds to an exponential family, fθ(y) = θTS(y), then
it is easy to check that Rm(θ, ν) is a concave function of (θ, ν).



10 4 Applications to spatial Markov chains

3.3 Logistic likelihood as an approximation: non IID case

Putting together Theorem 4 and the results in Section 2.3 leads to the following
extension of noise-contrastive divergence to non-IID problems. For an unnormal-
ised Markov model pθ(yt|yt−1) ∝ exp {fθ(yt|yt−1)}, for data S = {y1, . . . ,yn},
generate m = kn reference datapoints rjt from kernel q(rjt|yt−1), j = 1, . . . , k
(i.e. k points rj are generated from ancestor yt−1, for each t), then fit the semi-
parametric logistic regresssion model that corresponds to the log odds ratio
function:

log
p (z = 1|ut−1,ut)

p (z = 0|ut−1,ut)
= fθ(ut|ut−1) + χ(ut−1)− log q(ut|ut−1) + log(n/m)

(3.4)
where (ut−1,ut) represents a pair taken at random from {(yt−1,yt)}∪{(yt−1, rjt)}.
The parameters of this logistic model are vector θ, scalar ν, and function
χ : Y → R, which is why this model is indeed semi-parametric. In practice,
fitting such a model is easily achieved using an appropriate regulariser (we use
smoothing splines in our application).

The interpretation of the above procedure follows the same lines as in the
previous section: for m → +∞, the log-likelihood of this logistic model con-
verges to that of the semi-parametric Poisson model defined in Theorem 3; in
particular, χ must be seen as an estimator of the (typically smooth) function
yt−1 → − log

´
exp {fθ(y|yt−1)} dy.

More generally, one may extend this approach to other non-IID models. For
instance, if pθ(yt) ∝ exp {fθ(yt|xt)}, where xt are covariates, then fit the same
type of semi-parametric logistic regression as above, but with χ a function of
covariates xt.

4 Applications to spatial Markov chains

4.1 A toy example

We begin with a toy example that shows how inference based on the Pois-
son Transform can be implemented in the non-IID case, and show that semi-
parametric inference using non-contrastive divergence can be almost as efficient
as maximum-likelihood (and much more efficient than completely parametric
non-contrastive divergence). In addition, we will see that ignoring normalisa-
tion constants as done by Mnih and Teh (2012b) and Mnih and Kavukcuoglu
(2013) can lead to severe bias. We have made available a detailed companion
document for this section, which includes all the code necessary to replicate our
results in R.

Our toy example is a Markov chain in [−1, 1], with transition probability:

pθ(yt|yt−1) ∝ exp

{
θ1yt −

1

2
θ2 (yt − yt−1)2

}
I[−1,1](yt). (4.1)

We picked this example because it is a simplified version of the spatial
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Fig. 4.1: Two realisations from the toy model, a Markov chain constrained to
the interval [−1, 1] (eq. 4.1). Red, unfilled dots: θ1 = 0, θ2 = 2. Blue,
solid dots: θ1 = −2, θ2 = 10. As expected, the second chain shows a
bias towards negative values as well as stronger autocorrelation.

Markov chains we study in the following section. Two realisations from the
chain are shown on Fig. 4.1.

In this one-dimensional example it is of course easy to compute the norm-
alisation constant using numerical integration, and thus maximum likelihood
inference is possible. To use non-constrastive divergence, we need to pick a
reference kernel, and here a uniform, IID distribution does the job quite well:
q(y|yt−1) = 1

2 I[−1,1](y).
Positive examples for the logistic regression are formed from actual pairs

(yt, yt−1), negative examples are formed from pairs (rit, yt−1), i = 1, . . . , k, i.e.
one replaces the actual value of yt with k uniform variates. Thus, there are k
reference points per datapoint: m = kn.

We note (ut, ut−1) a generic point (either true data, or reference data). The
log-odds for the semi-parametric logistic regression are then, injecting (4.1) into
(3.4):

mθ (ut) = θ1ut −
1

2
θ2(ut − ut−1)2 + χ(ut−1) + log(n/m)− log (1/2) ,

= θ1ut + θ2dt + χ(ut−1) + cst. (4.2)

where dt = 1
2 (ut − ut−1)2. From a practical perspective, the logistic regression

can be performed with ut and dt entering as linear effects, and χ(ut−1) as a
smooth, nonlinear effect. The constant term may be added as an offset for com-
pleteness. (It makes no practical difference since it can be absorbed into χ (ut−1)
or the intercept. One needs to include it only if intercepts are penalised.).

The completely parametric variant of (4.2) corresponds to having a different
intercept for every value of ut−1. Alternatively, neglecting the normalisation
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constants means replacing χ(ut−1) with an intercept term (or, put another way,
forcing χ (ut−1) to be constant). Semiparametric inference can be performed
using R package mgcv (Wood, 2006).

To measure the efficiency of the various estimation methods, we simulated
realisations of the chain at a fixed parameter setting of θ1 = −2, θ2 = 50 for
increasing n. We also used two different values of k (the ratio of reference points
to real data), k = 10 and k = 30. On each simulation we picked two parameter
values at random: θ1 ∼ U(−1, 1), θ2 ∼ U( 1

10 , 10), generated n datapoints, and
obtained the 4 different estimates. We used 300 repetitions for each value of n
and k. Results are shown on Fig. 4.2.

Semiparametric inference performs almost as well as ML. Fully parametric
inference is much more variable, although it becomes better for larger values of
k. Indeed, theory predicts that it for large enough k it becomes equivalent to
ML. The variant of non-contrastive divergence which neglects the normalisation
constants performs quite well for θ2 but shows asymptotic bias in θ1. The
bias comes from the missing non-linear effect χ (ut−1), which is projected on
the linear effect for ut. This happens because the two are correlated through
the dependencies in the chain. Neglecting the normalisation constants then
effectively leads to confounding.

Contrary to the ideal Poisson transform (see correlary 6), the non-contrastive
divergence approximation is noisy and it is possible to overfit the nonparametric
term χ (ut−1). Cross-validation is a valid way of selecting the penalisation level,
and here in practice related criteria such as Generalised Cross-Validation and
REML work just as well. The results in Fig. 4.2 are obtained using the default
criterion (GCV).

4.2 Spatial Markov chains for eye movement data

A perennial problem in spatial statistics is to predict where certain events are
likely to take place (for example, cases of malaria in a country) given past oc-
curences and a set of spatial predictors (for example, availability of mosquito
nets). Point process models can be used in such contexts, and one important
class of applications is to eye movement data (Barthelmé et al., 2013), where
the goal is to predict which locations people will look at in a given visual stim-
ulus (for example a photograph). Eye movements are reliably drawn to certain
features in a stimulus, but also exhibit dependencies (Engbert et al., 2014), and
the most important of these is that we tend not to move our eyes very much. If
we are currently fixating on the bottom-left corner of the screen, it will take a
few steps for us to go look in the upper right, even if there is something rather
interesting there.

The presence of dependencies motivates the introduction of models of eye
movements as spatial Markov chains. Here we note yt the fixation location at
time t, and use a log-linear form for the kernel:

p (yt|yt−1) ∝ exp {s (yt) + r (yt,yt−1)} (4.3)



4.2 Spatial Markov chains for eye movement data 13

Fig. 4.2: Estimation errors of ML vs three variants of NCD for the one-
dimensional Markov chain. The variants are: fully parametric (one
νi term per datapoint), semi-parametric (normalisation constants are
modelled as a smooth function), ignoring constants (logistic regres-
sion with a single intercept, as in Mnih and Teh, 2012a). The semi-
parametric estimate is almost as good as the ML estimate across the
board. The fully parametric estimate performs very poorly when there
are few reference points per datapoint (compare the red line across
the left and right panels). Finally, neglecting normalisation constants
leads to an non-convergent estimator of θ1, although performance on
θ2 is very good. See the companion document for a more thorough
discussion of this phenomenon.
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Fig. 4.3: A sequence of eye movements extracted from the dataset of Kienzle
et al. (2009). Fixation locations are in red and successive locations are
linked by a straight line.

where s(yt) represents purely spatial factors, and r (yt,yt−1) is an interaction
term that represents spatial dependencies. A well-known factor affecting fixa-
tion locations is the centrality bias (Tatler and Vincent, 2009), a preference for
looking at central locations, and we take s(yt) to be a smooth function of ||yt||
(the distance to the center): s(yt) = s(‖yt‖). Potential interactions between
successive locations include a tendency not to stray too far from the current
location (Engbert et al., 2014), and a tendency for making movements along
the cardinal axes (vertical and horizontal, Foulsham et al., 2008). We therefore
further decompose r (yt,yt−1) into

r (yt,yt−1) = rdist (||yt − yt−1||) + rang (∠ (yt − yt−1)) (4.4)

the sum of a distance and an angular component. We model the unknown func-
tions s, rdist and rang non-parametrically, using smoothing splines. The corres-
ponding estimators are therefore obtained by penalised likelihood maximisation,
and the Poisson transform extends straightforwardly to this case: replace the
maximisation of L(θ)−pen(θ) by the maximisation ofM(θ, χ)−pen(θ), where
θ = (s, rdist, rang), and χ is a non-parametric function used to estimate the
normalising constant, as explained in the previous section.

We use the data of Kienzle et al. (2009), who recorded eye movements while
subjects where exploring a set of photographs (Fig. 4.3). There are 14 subjects,
each contributing between 600 and 2,000 datapoints. Thanks to the techniques
described above, the model described by (4.3) can be turned into a logistic re-
gression, and the R package mgcv (Wood, 2006) can be used to estimate the
different components using smoothing splines. We used a uniform, IID refer-
ence kernel q(yt|yt−1) = |Ω|−1 to produce negative examples, with 20 times
as many negative examples as positive. Although the logistic approximation
introduces Monte Carlo variance, the estimates are very stable (see Appendix).
We fit separate functions for each subject to account for interindividual variab-
ility. The results are shown on Fig. 4.4. We replicate known effects from the
literature: central locations dominate (although some subjects may display an
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Fig. 4.4: Eye movement model. The smooth terms in eq. 4.3 and 4.4 are
estimated using smoothing splines by reducing the model to a non-
parametric logistic regression. The different panels display the estim-
ated effects of saccade angle (rang), distance to previous fixation (rdist)
and centrality bias (s). Individual subjects are in gray, and the group
average is in blue.

off-center bias), and dependencies include both a inhibitory effect of distance
and a preference for movements along cardinal orientations.

Once the data have been put into a suitable format, model fitting can be
performed in one line of R code (see Appendix) and takes around 5 minutes
on a normal desktop. The Poisson transform thus turns an otherwise highly
non-standard model into a convenient Generalised Additive Model.

5 Discussion

The Poisson transform suggests a new way of thinking about inference in un-
normalised models: if we think of the data as coming from a point process,
the integration constant becomes just another parameter to estimate. We have
shown that the same idea extends to unnormalised models in the sequential con-
text and in the presence of covariates, in which case parametric estimation may
be turned into a semi-parametric problem. Practical approximations of Poisson-
transformed likelihoods can be computed using Monte Carlo or using logistic
likelihoods that follow from a reinterpretation of noise-contrastive divergence.

Part of the challenge in applying the Poisson transform to models with high-
dimensional covariates or dependencies on a high-dimensional vector of past
values will be in the design of appropriate kernels for the non-parametric part,
which corresponds to conditional normalisation constants. The great advant-
age of the reduction to logistic regression is that we will be able to leverage
the existing literature on nonlinear classification and dimensionality reduction,
including recent developments in hashing (Li and König, 2011). Inference in
unnormalised models will probably always remain challenging, but we believe
the Poisson transform should alleviate some of the difficulties.
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A Derivatives of Poisson-transformed likelihoods

The first and second derivatives of L (θ) andM (θ, ν) are needed in the proofs
and we collect them here.

Derivatives of L (θ):

L(θ) =

n∑
i=1

fθ(yi)− n log

(ˆ
exp {fθ (s)} ds

)
:=

n∑
i=1

fθ(yi)− nφ (θ)

∂

∂θ
φ (θ) =

ˆ
∂

∂θ
fθ(s)exp {fθ (s)− φ (θ)}ds = Eθ

(
∂

∂θ
fθ

)
∂2

∂θ2
φ (θ) = Eθ

(
∂2

∂θ2
fθ

)
+ Eθ

((
∂

∂θ
fθ

)(
∂

∂θ
fθ

)t)
− Eθ

(
∂

∂θ
fθ

)
Eθ

(
∂

∂θ
fθ

)t
∂

∂θ
L =

n∑
i=1

∂

∂θ
fθ(yi)− n

d

dθ
φ (θ)

∂2

∂θ2
L (θ) =

∑ ∂2

∂θ2
fθ(yi)− n

d2

dθ2
φ (θ)

where we have used Eθ as shorthand for the expectation with respect to density
exp {fθ (s)− φ (θ)}.

Derivatives ofM (θ, ν):

M (θ, ν) =

n∑
i=1

{fθ(yi) + ν} − n
ˆ

exp {fθ (s) + ν}ds

∂

∂θ
M (θ, ν) =

n∑
i=1

∂

∂θ
fθ(yi)− nEθ,ν

(
∂

∂θ
fθ

)
∂

∂ν
M (θ, ν) = n− n

ˆ
exp {fθ (s) + ν} ds

∂2

∂θ2
M (θ, ν) =

∑ ∂2

∂θ2
fθ (yi)− n

(
Eθ,ν

(
∂2

∂2θ
fθ

)
+ Eθ,ν

((
∂

∂θ
fθ

)(
∂

∂θ
fθ

)t))
∂2

∂ν2
M (θ, ν) = −n

ˆ
exp {fθ (s) + ν} ds

∂

∂θ∂ν
M (θ, ν) = −nEθ,ν

(
∂

∂θ
fθ

)

where we have used Eθ,ν as shorthand for the linear operator Eθ,ν(ϕ) =
´
ϕ(s)exp {fθ (s) + ν} ds

(which is not an expectation in general).
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B Further properties of the Poisson transform

B.1 The Poisson transform preserves confidence intervals

The usual method for obtaining confidence intervals for θ is to invert the Hessian
matrix of L (θ) at the mode, θ?:

CL =

(
− d2

d2θ
L |θ=θ?

)−1

We can show that the same confidence intervals can be obtained fromM (θ, ν)
at the joint mode, θ?, ν?.

At the joint maximum, ν? normalises the intensity function, and the Hessian
ofM equals:

H =

[
Haa Hba

Hab Hbb

]
=

[
∂2

∂2θM (θ, ν) ∂
∂θ∂νM (θ, ν)

∂
∂ν∂θM (θ, ν) ∂2

∂2νM (θ, ν)

]

=

[ ∑
∂2

∂θ2 fθ (yi)− nEθ

(
∂2

∂2θf
)
− nEθ

((
∂
∂θfθ

) (
∂
∂θfθ

)t) −nEθ

(
∂
∂θfθ

)t
−nEθ

(
∂
∂θfθ

)
−n

]

where again E denotes the expectation with respect to density exp {fθ (s)− φ (θ)}.
Inverting −H also yields confidence intervals. By the inversion rule for block

matrices, the approximate covariance for θ usingM (θ, ν) equals

C−1
M = −

(
Haa −HbaH

−1
bb Hab

)
= −

(
Haa +

1

n
n2Eθ

(
∂

∂θ
fθ

)
Eθ

(
∂

∂θ
fθ

)t)

= −

[∑ ∂2

∂θ2
fθ (yi)− nEθ

(
∂2

∂2θ
f

)

−nEθ

((
∂

∂θ
fθ

)(
∂

∂θ
fθ

)t)
+ nEθ

(
∂

∂θ
fθ

)
E

(
∂

∂θ
fθ

)t ]
= C−1

L

B.2 Preservation of log-concavity in exponential families

In exponential families, the log-likelihood is concave, which facilitates inference.
The Poisson transform preserves this log-concavity.

In the natural parameterisation, exponential-family models are given by:

L (θ) = exp

{
n∑
i=1

s(yi)
tθ − φ (θ)

}
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with s(y) a vector of sufficient statistics. The second derivative of L (θ) simpli-
fies to:

− 1

n

∂

∂2θ
L (θ) =

ˆ
s(y)s(y)t exp

(
s(y)tθ − φ (θ)

)
= Eθ

{
s(y)s(y)t

}
a p.s.d. matrix, which establishes concavity.

The second derivatives ofM (θ, ν) (Section A) also simplify

− 1

n

∂2

∂θ2
M (θ, ν) = exp {ν − ν? (θ)}

ˆ
s(y)s(y)t exp

(
s(y)tθ − φ (θ)

)
− 1

n

∂2

∂ν∂θ
M (θ, ν) = exp {ν − ν? (θ)}

ˆ
s(y) exp

(
s(y)tθ − φ (θ)

)
− 1

n

∂2

∂ν2
M (θ, ν) = exp {ν − ν? (θ)}

so that the full Hessian H can be written in block-form as:

− 1

n
exp {ν? (θ)− ν}H =

 Eθ

{
s (y) s (y)

t
}

E (s (y))

Eθ

{
s (y)

t
}

1

 = A

and H is n.s.d if and only if for all x, c such that (x, c) 6= 0:

[
xt c

]
A

[
x
c

]
> 0

which the following establishes:

[
xt c

]  Eθ

{
s (y) s (y)

t
}

E {s (y)}

Eθ

{
s (y)

t
}

1

[ x
c

]

=
[
xt c

]  Eθ

{
s (y) s (y)

t
}
x + cEθ {s (y)}

Eθ

{
s (y)

t
}
x + c


=Eθ

{
xts (y) s (y)

t
x
}

+ 2Eθ

{
xts (y)

}
c+ c2

=Eθ

[(
s (y)

t
x + c

)2
]
> 0

assuming Eθ {s(y)s(y)t} is p.s.d. for all θ.

B.3 Noise-constrative divergence approximates the Poisson
transform (Theorem 7)

We have assumed that
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fθ(y)− log q(y) ≤ C(θ)

for a certain constant C(θ) that may depend on θ, and all y ∈ Ω. We rewrite
the log-odds ratio as h(y)− log(m) where

h(y) := fθ(y) + ν − log q(y) + log(n)

does not depend on m; note h(y) ≤ h̄ := C(θ) + ν + log(n). One has:

Rm(θ, ν) + log(m/n) =

n∑
i=1

log

[
m exp {fθ(yi) + ν}

n exp {fθ(yi) + ν}+mq(yi)

]

+

m∑
j=1

log

[
mq(rj)

n exp {fθ(rj) + ν}+mq(rj)

]
where the first term trivially converges (as m→ +∞) to

n∑
i=1

{fθ(yi) + ν − log q(yi)} .

Regarding the second term, one has:

log

[
mq(rj)

n exp {fθ(rj) + ν}+mq(rj)

]
= log

[
1− 1

1 +m exp {−h(rj)}

]
where

0 ≤ 1

1 +m exp {−h(rj)}
≤ 1

m
exp(h̄).

Since |log(1− x) + x| ≤ x2 for x ∈ [0, 1/2], we have, for m large enough, that∣∣∣∣log

[
mq(rj)

n exp {fθ(rj) + ν}+mq(rj)

]
+

1

1 +m exp {−h(rj)}

∣∣∣∣ ≤ exp(2h̄)

m2
(B.1)

and ∣∣∣∣ 1

1 +m exp {−h(rj)}
− 1

m
exp {h(rj)}

∣∣∣∣ ≤ exp(2h̄)

m2

and since, by the law of large numbers,

1

m

m∑
j=1

exp {h(ri)} → Eq[exp {h(ri)}] = n

ˆ
exp {fθ(y) + ν} dy < +∞ (B.2)

almost surely as m→ +∞, one also has:
m∑
j=1

log

[
mq(yi)

n exp {fθ(yi) + η}+mq(yi)

]
→ −n

ˆ
exp {fθ(y) + ν} dy

almost surely, since the difference between the two sums is bounded determin-
istically by exp(2h̄)/m.
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B.4 Uniform convergence of the noise-constrative
divergence (Theorem 8)

We first prove two intermediate results.

Lemma 9. Assuming that |fθ(y)− log q(y)| ≤ C for all y ∈ Ω, then there
exists a bounded interval I such that, for any θ, the maximum of both functions
ν →M(θ, ν) and ν → Rm(θ, ν) is attained in I.

Proof. Let θ some fixed value. M(θ, ν) is maximised at ν?(θ) = − log
´

Ω
exp {fθ(y)} dy ∈

[−C,C], since e−Cq ≤ fθ ≤ eCq. For Rm(θ, ν), using again e−Cq ≤ fθ ≤ eCq,
one sees that l(ν) ≤ Rm(θ, ν) ≤ u(ν), where l and u are functions of ν that
diverges at −∞ for both ν → +∞ and ν → −∞; i.e.

Rm(θ, ν) + log(m/n) ≤ u(ν) :=

n∑
i=1

log

[
m exp {C + ν}

n exp(−C + ν) +m

]

+

m∑
j=1

log

[
m

n exp {−C + ν}+m

]
and the lower bound l(ν) has a similar expression. Thus one may construct an
interval J such that the maximum of function ν → Rm(θ, ν) is attained in J
for all θ (e.g. take J such that for ν ∈ Jc, u(ν) ≤ Ml/2, l(ν) ≤ Ml/2, with
Ml = supν l) . To conclude, take I = J ∪ [−C,C].

We now establish uniform convergence, but, in light of the previous result,
we restrict ν to the interval I defined in Lemma 9.

Lemma 10. Under the Assumptions that (i) Θ is bounded, that (ii) |fθ(y)− log q(y)| ≤
C for all y ∈ Ω, that (iii) |fθ(y)− fθ′(y)| ≤ κ(y) ‖θ − θ′‖ with κ such that
Eq[κ] <∞, one has, for fixed S = {y1, . . . ,yn}:

sup
(θ,ν)∈Θ×I

∣∣∣∣∣Rm(θ, ν) + log(m/n) +

n∑
i=1

log q(yi)−M(θ, ν)

∣∣∣∣∣→ 0 (B.3)

almost surely, relative to the randomness induced by R = {r1, . . . , rm} .

Proof. Recall that the absolute difference above was bounded by the sum of
three terms in the previous Appendix. The first term was

n∑
i=1

[
log

[
m exp {fθ(yi) + ν}

n exp {fθ(yi) + ν}+mq(yi)

]
− {fθ(yi) + ν − log q(yi)}

]
which clearly converges deterministically to 0 as m → +∞. In addition, this
convergence is uniform with respect to (θ, ν) ∈ Θ × I, since |log x− log y| ≤
c |x− y| for x, y ≥ 1/c, and here, by Assumption (ii),

x :=
m exp {fθ(yi) + ν}

n exp {fθ(yi) + ν}+mq(yi)
≥ m exp {−C + ν}
n exp {C + ν}+m

≥ exp {−C + ν}
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and y = exp {fθ(yi) + ν − log q(yi)} ≥ exp {−C + ν}, so both x and y are lower
bounded since ν ∈ I. Similarly (x− y) is bounded by C ′/m, where C ′ is some
constant independent of θ.

The second term, see (B.1), was bounded by exp(2h̄)/m2, where h̄, an upper
bound of h, may now be replaced by a constant, since h(y) := fθ(y) + ν −
log q(y) + log(n) ≤ C + ν + log(n) and ν ∈ I, again by Assumption (ii).

The third term is related to the law of large numbers (B.2) for random
variable H(θ,η)(ri) := exp {h(ri)}, which depended implicitly on (θ, η):

H(θ,η)(ri) =
n exp {fθ(ri) + ν}

q(ri)
.

To obtain (almost surely) uniform convergence, we use the generalised version of
the Glivenko-Cantelli theorem; e.g. Theorem 19.4 p.270 in Van der Vaart (2007).
From Example 19.7 of the same book, one sees that a sufficient condition in our
case is that Θ is bounded (Assumption (i)), and that∣∣H(θ,η)(r)−H(θ′,η′)(r)

∣∣ ≤ m(r) ‖ξ − ξ′‖

for ξ = (θ, η), ξ′ = (θ′, η′), and m a function such that Eq[m] <∞. But

∣∣H(θ,η)(r)−H(θ′,η′)(r)
∣∣ =

n exp {fθ(r) + ν}
q(r)

|1− exp {fθ(r) + ν − fθ′(r)− ν′}|

≤ neC+ν |1− exp {fθ(r) + ν − fθ′(r)− ν′}|
≤ C ′ {κ(r) ‖θ − θ′‖+ |ν − ν′|}
≤ C ′ {κ(r) + 1} ‖ξ − ξ′‖

by Assumption (ii), and for some constant C ′ independent of θ, since |1− ex| ≤
Kx for x, y in a bounded set. One may conclude, since, by Assumption (ii),
Eq[κ] <∞.

We are now able to prove Theorem 8. Again, let ξ = (θ, ν), and rewrite
any function of (θ, ν) as a function of ξ, i.e. M(ξ), Rm(ξ). By e.g. Theorem
5.7 p.45 of Van der Vaart (2007), the uniform convergence B.3 implies that
that the maximiser ξ̂m of Rm(θ, ν) converges to the maximiser ξ̂ of M(θ, ν),
provided that (a) the maximisation is with respect to (θ, ν) ∈ Θ × I; and (b)
that supd(ξ,ξ̂)≥εM(ξ) < M(ξ̂). However, by Lemma 9 one sees that in (a)
the same estimators would be obtained by maximising instead with respect
to (θ, ν) ∈ Θ × R, and (b) is a direct consequence of Assumption (iv) of the
theorem, if one takes for d(ξ, ξ̂) the supremum norm of ξ − ξ̂.

C Additional information on the application

In our application we fit a spatial Markov chain model using logistic regression.
Since the procedure involves the generation of a random set of reference points,
we incur some Monte Carlo error in the estimates. Estimating the magnitude of
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Fig. C.1: Eye movement model: 5 independent replications of the estimates un-
der different sets of random reference points. We show here the es-
timated effect of saccade angle with an associated 95% pointwise con-
fidence interval. The 5 replicates are in different colours and overlap
each other almost completely, showing that 20 reference points per
true datapoint are more than enough to produce stable estimates.

the Monte Carlo error is just a matter of running the procedure several times to
look at variability in the estimates. We did so over 5 repetitions and report the
results in Fig. C.1. For each repetition we plot the estimated smooth effect of
saccade angle rang, along with a 95% confidence band. Since smoothing splines
are used, smoothing hyperparameters had to be inferred from the data (using
REML, Wood, 2011), and the reported confidence band is conditional on the
estimated value of the smoothing hyperparameters. The fits and confidence
bands are extremely stable over independent repetitions. The R command we
used was:

gam(class ~ s(delta,k=10)+s(dcenter,k=40)+s(fxc.prev,fyc.prev,k=40)
+s(angle,bs="cc",k=20),data=data,family=binomial,method=”REML”)
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