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ABSTRACT
Edge Computing (EC) consists in deploying computational resources,

e.g., memory, CPUs, at the Edge of the network, e.g., base stations,

access points, and run there a part of the computation currently

running on the Cloud. This approach promises to reduce latency,

inter-domain traffic and enhance user experience. Since resources

at the Edge are scarce, resource allocation is crucial for EC. While

most of the studies assume users interact directly with the Edge

submitting a sequence of tasks, we instead consider that users will

interact with different Service Providers (SPs), as they currently do

in the Web. We therefore consider the case of a Network Operator

(NO) that owns the resources at the Edge and must decide how

much resource to allocate to the different tenants (SPs).

We propose MORA, a polynomial time strategy which allows

the NO to maximize its utility, which can be inter-domain traffic

savings, improved users’ QoE or other metrics of interest. The core

of MORA is that (i) it exploits service elasticity, i.e., the fact that
services can adapt to the resources allocated by the NO and rely on

a remote Cloud for the excess of computation, (ii) it is suitable for

micro-services architecture, which decomposes a single service in a

set of components, which MORA places in the different computa-

tional nodes of the Edge and (iii) it copes with multi-dimensional
resources, e.g., memory and CPUs. After analyzing the properties

of the algorithm, we show numerically that it performs close to the

optimum. To guarantee reproducibility, the numerical evaluation is

performed on publicly available traces from Google and Alibaba

clusters and in synthetic scenarios and our code is open source.
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1 INTRODUCTION
Under the paradigm of Edge Computing (EC), computational ca-

pabilities, e.g., memory and processing elements, are deployed di-

rectly in the access networks, close to the users. This enables low

latency applications, reduces the traffic going out from the access

networks and can improve user experience. EC is complementary to

Cloud [30]. In the Cloud, resources are usually assumed elastic, i.e.,
they are always available, as long the third party Service Provider

(SP) is willing to pay. On the contrary, contention emerges in the

Edge between SPs sharing limited resources and the problem arises

of how to allocate them between SPs.

The problem we solve in this work is the one of a Network Op-

erator (NO), owning limited computational resources in its Edge

network, which must decide how to distribute them to different SPs.

The goal of the NO is to maximize its own utility, which can repre-

sent bandwidth or operational cost saving or improved experience

for his users [7, 15].

The core of our approach is that we exploit service elasticity: a
service can run at the Edge under different configurations. Today,

these scenarios are common in services as video streaming, in which

the SP has to deliver different encodings of the same video and can

choose whether to pre-package all these representations and store

them, which requires a high amount of memory. Alternatively, with

Just In Time Packaging (JITP) SPs can store just few representations

and package the missing ones on-the-fly, only when needed, which

saves memory space but incurs more CPU usage [15]. In the Edge,

we do not have resource elasticity as in the Cloud, but at least we

can exploit service elasticity, which is the aim of MORA. We show

that, by doing so, the NO can increase its utility with respect to the

classical case of one monolithic configuration per SP.

Furthermore, we consider the distributed nature of Edge re-

sources, which can be scattered across different nodes and the

fact that services follow a microservice architectural style (Sec. V.B

of [26]): a service is composed of different microservices running

https://doi.org/10.1145/3341105.3374026
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on containers. This allows fine-grained and responsive service adap-
tivity and resource exploitation, which makes containers attractive

for Edge computing [12].

Another important aspect of MORA is its polynomial time effi-

ciency. Since user demand is expected to change in fast time-scales

and so are the resources required by the SPs, the allocation must

be calculated ideally within few seconds. For example, a Content

Delivery Network usually recalculates the association between de-

mand and computing nodes every 10 to 30 seconds [22]. Some work

assumes even higher re-allocation frequency [30].

The paper is organized as follows: §2 discuss the related work;

§3 describes the architecture we have in mind; §4 reports an Inte-

ger Linear Programming (ILP) formulation of the multiple-tenant

multiple-configuration allocation problem; §5 describes MORA, its

computational complexity and gives a bound to the optimal so-

lution; §6 reports the numerical results on synthetic data and on

publicly available traces.

2 RELATEDWORK
We study the case of Metro Edge Cloud and Mobile Edge Comput-

ing [12, 27], in which there are computation nodes concentrated

in small data-centers located into the Network Operator Central

Office (CO) or co-located in the base station. While there is vast

literature on EC [12, 26, 27], we focus in this section just on work

concerning resource allocation. We survey applications of this prob-

lem on EC and also on completely different domains, if the applied

methodology gives useful insight for our problem. To the best of

our knowledge no previous work has attempted to exploit service

elasticity (§ 1), which we show instead in this paper to improve

resource exploitation in a resource constrained environment like

EC. This is, we think, the main merit of our work.

2.1 Resource allocation for container-based EC
The problem of containers resource allocation has been investigated

using time-slicing [25], Fuzzy [29], linear programming models

[32], reinforcement learning [24]. Others authors also employ non-

standard techniques like vertical elasticity [5]. Most work considers

only a single type of resource to allocate, i.e., CPU [25], with few

exceptions [24, 29]. Some work considers all resources aggregated

in one single pool [24], while others [5, 29] consider that they are

distributed across different nodes, which complicates the allocation

problem. The objective is generally to minimize network traffic,

energy [32] or execution time [24].

As for the information to support the allocation decision, most

work is based on a “monitor-and-decide” approach [5, 24, 29], but

it is becoming common to also use detailed information on the

workloads by the users [4, 11, 29]. When implementing allocation

strategies, a Docker scheduler [5, 25] is mostly assumed.

2.2 Edge-Cloud hierarchy
EC is complementary to Cloud, i.e., the usual assumption is that a

part of service computation is peformed at the Edge and the rest on

the Cloud and similarly a part of the required data seats at the Edge

and the rest on the Cloud. In a sense, the Edge-Cloud infrastructure

is hierarchical [13, 23, 30], where Edge resources are the leaves

and the upper nodes are Cloud clusters. In [30] the decision of

how much capacity must be provisioned across the levels of the

hierarchy. Similar to our proposal, workloads have requirements

and can fit into a node if its capacity is not violated, but resources

are mono-dimensional. A similar problem is tackled by [23], but

nodes are modeled as queues and CPU and network traffic are

jointly considered. Queueing models are also employed in [13],

which focuses on load balancing between Edge and Cloud. The

set up all this work is different from ours, as they do not consider

contention between multiple tenants, i.e., the SPs of our set up.

2.3 Other resource allocation problems
Game theory is used to allocate resources between tasks submitted

by users [16]. In our work, instead, contention does not emerge

between user tasks, but between third party services. Recent litera-

ture exists on cache allocation, in which the NO allocates memory

to third party SPs to minimize bandwidth consumption [7] or QoS

and fairness [10] (CPU is ignored). Similar to our proposal, but in

a simpler context, the tasks modeled in [20] can run in different

configurations, each using a different combination of resources

and resulting in a different perceived utility for the users. Their

model explicitly represent the relation between resource usage, an

indication of the “quality” achieved and some “utility”. However, in

their numerical experiments simulation input datas are randomly

generated. We thus preferred to associate a certain resource usage

to a utility for the Network Operator directly, assuming this rela-

tion can be obtained by measurements (of bandwidth consumed, of

users’ QoE [9]). Moreover, [20] do not consider multiple-servers and

multiple-containers. Authors of [31] assume users send a sequence

of tasks and each can run under different configurations, requiring

a combination of different resource types. They assume users want

to run as many tasks as possible and their utility is number of tasks

run. While this task-centric vision is more suitable for Grid-like

environments, we instead adopt the assumption services and users

behave like in current applications in the web environment: instead

of submitting task, users instantiate connections with services and

use them along a span of time. Therefore, while in [31] resources

are consumed every time a task is submitted, we instead assume,

as in current Internet services, that resource consumption is not

tight to the single task submitted. Take, for example, the case of

a video streaming service which requires memory to cache the

most popular videos: memory is consumed in a "persistent" way,

i.e., independent of the single task submitted by users. We assume

however that SP declares the resources needed based on its pre-

dicted demand. To summarize, differently from [31], our resource

consumption does not come from single user’s tasks, but from the

needs of SPs. Furthermore, utility is not the one of users, but the

one of the NO. Therefore, while [31] maximize the user utility or

the product of users’ utility, we maximize instead the NO utility, as

the NO invested for Edge resources and wants to capitalize them.

As a consequence, our problem is different and requires a different

strategy.

3 ARCHITECTURE AND INTERACTIONS
3.1 Limits of current architectures
Edge Computing is already being employed by big players in the

Internet. As an example, Netflix deploys its own hardware, called
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Figure 1: Architecture of MORA .

Open Connect Appliances (OCAs) [3], into Internet access networks

and serves a fraction of users’ traffic directly from there. This gener-

ates a utility to the NO, in terms of inter-domain traffic saving. On

the other hand, Netflix has all its business assets (content and user

information) in its boxes and does not need to share it with NOs.

The limit of this solution is its limited permeability: it is unfeasible
in terms of cost and physical space to install hardware appliances

to the very edge of the network, i.e., in many base stations, central

offices, access points, etc. Moreover, many other SPs, in addition

to Netflix, would benefit from having their hardware installed in

access networks, but it would be impractical for NOs to install them

all. Furthermore, SPs with less bargaining power than Netflix would

have no strength to convince NOs to deploy their hardware appli-

ances. These limits can be overcome if appliances are virtualized,

as it is already done in Cloud environments. We thus propose that

an NO deploys computational resources at the edge, e.g., memory

and processing units, and then allocates slices of them to several

third party SPs. The SP can then use its assigned slice as it were

a dedicated hardware. Memory encryption technologies [8] can

guarantee that data and processing remain inaccessible to the NO,

even if they run in its premises. The problem we investigate in

this paper is how to allocate resources to each SP in this setting.

Note that, while big players may continue to use their hardware

appliances, our virtualized solution is probably the only way small

or medium SPs can reach the Edge of the network.

3.2 MORA architecture
The goal of MORA algorithm is to choose, for each SP, one of the

possible configuration options in which the service can run at the

edge. We show here how our framework could be deployed in Edge

Computing. The entities and the interactions taking place periodi-

cally, i.e., every 5 minutes, between them are depicted in Fig.1. Edge

resources are handled by an Edge Master, e.g., a Kubernetes Master,

managed by the NO. One SP Proxy runs for each SP, which sends 1○
a request to the Edge Master, similar to Kubernetes Deployment

files. A request reports different configuration options at which the

SP can run its service at the Edge. In particular, an option is a set of

containers. Therefore, in the request the requirements, e.g. memory

and CPU, of all containers are reported. The request also reports

the utility associated to each option, e.g., the bandwidth saved by

that configuration option with respect to the case where the SP

has no containers running at the Edge. The Edge Master collects

the requests from the different SPs; runs MORA algorithm 2○ to

Table 1: Summary of the notation.

Parameters
M Number of nodes

N Number of service providers

J i Number of options by SP i
Z i, j

Number of containers for option j of SP i
cl,m Amount of resource l in nodem

w i, j
l,z

Amount of resource l required by the container z of

option j by SP i
ui, j Utility given by choosing option j of SP i

Decision variables

x i, j
Binary variable, 1 if the option j by SP i is chosen, 0

otherwise

yi, jz,m
Binary variable, 1 if the container z of option j by SP i

runs on nodem, 0 otherwise

select an option for each SP; communicates 3○ the decision to all

SP Proxies; and deploys 4○ the containers of the chosen options,

using the appropriate container images, pre-stored in a repository.

Connections from users to a certain SP are intercepted 5○ by the SP

Proxy [21], which decides whether to associate users locally to the

Edge 6○, if the resources of the deployed containers are sufficient.

Otherwise, the users are associated to a remote Cloud 7○, similarly

to [13].

4 SYSTEM MODEL
We consider the case of a Network Operator (NO) owning an Edge

Computing infrastructure, composed ofm = 1, . . . ,M nodes. Re-

sources are of type l = 1, . . . ,L. In the numerical results we will

consider L = 2 resource types, namely memory and processing,

which are considered by modern orchestration frameworks as Ku-

bernetes.
1

Each nodem has a capacity cl,m , which is the amount of

resource of type l available. We have i = 1, . . . ,N services compet-

ing to use the resources available at the edge. Similar to [14], we

consider that there is no unique way to run a service at the edge.

If abundant resources are available, a service can be configured in

order to exploit them all, thus almost completely running at the

edge. If less resources are available, the service may configure itself

so to adapt to those and to move some of the computation and data

to some remote servers or cloud computing infrastructures (§ 1).

We represent this possibility by specifying different configurations

(or options) j = 0, 1, . . . , J
i
for the same service. In short we will

denote with ij the j-th option of service provider i . We assume

services are “containerized” [26]. Therefore, each configuration j

is composed of a set of containers z = 1, . . . ,Z
i, j
, each of which

requiresw
i, j
l,z units of resource type l . The multiple configurations

in which a Service Provider (SP) can run its service at the edge

denotes its capability to adapt to different amounts of resources

available. Each configuration results in a certain utility u
i,z

for

the Network Operator (NO), which in the simplest case represent

bandwidth saving [7], which is what we consider in our results with

Alibaba cluster traces. Utility can in genral be cost savings [15],

1
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QoS or fairness [10], elaboration time savings [16], depending on

the application and the information available. As commonly done

in the literature [10, 15, 17], we adopt a “snapshot” approach by

assuming that the resources needed for the configurations and the

other characteristics of the configurations are known at the moment

of taking the resource allocation decision. In our case, we assume

they are declared by the SP itself, which is the only one knowing

exactly the algorithms and the data involved in its computation.

This is in line with today containerized environments. For example,

in Kubernates it is possible to define memory, CPU and bandwidth

limits when Deployment files are submitted. As commonly done in

the literature [17, 22] we assume that there are mechanisms able to

provide good estimates of resources and utility, which fall outside

the scope of this paper. Note also that we do not consider the cost of

instantiating and realising containers, since the snapshot approach

cannot capture this kind of dynamics. We plan to fill this gap in

future work.

The decision of the NO about which option from each SP should

be accepted in the Edge and where to place the correspondent con-

tainers can be formulated in the following Integer Linear Program

(ILP) as proposed in a previous work [6]. The binary decisions vari-

able are x
i, j
, which is 1 if the j-th option of the SP i is chosen, and

y
i, j
z,m , which is 1 if the z-th container of the j-th option of SP i is
placed on nodem.

The symbols used in the paper are reported in table 1.

max

N

∑
i=1

Ni
∑
j=1

ui, j ⋅ x i, j (1)

s .t .
M

∑
m=1

yi, jz,m = x i, j
i = 1 . . . N
j = 1 . . . J i

z = 1 . . . Z i, j (2)

N

∑
i=1

J i

∑
j=1

Z i, j

∑
z=1

yi, jz,m ⋅w i, j
l,z ≤ cl,m

l = 1 . . . L
m = 1 . . .M

(3)

J i

∑
j=1

x i, j ≤ 1

i = 1 . . . N
(4)

x i, j , yi, jz,m ∈ {0, 1}
i = 1 . . . N
j = 1 . . . J i

z = 1 . . . Z i, j

m = 1 . . .M

(5)

The objective is to maximize the utility (1), setting the binary

variables x
i, j
. Constraints (2) guarantee that each container z of

the chosen option j of SP i (x
i, j

= 1) is deployed (∃m ∈ {1 . . .M} ∶
y
i, j
z,m = 1). Constraints (3) guarantee that the sum of the require-

ments for the set of containers deployed on the same nodem for

each resource l is less than the total amount of available resources

in nodem so that these containers can actually run on the node.

Finally, constraints (4) ensure that a SP can deploy at most one

option in the Edge cluster.

Proposition 1. Problem P is NP-hard.

Proof. P reduces to a Knapsack ProblemwithL = 1,M = 1, J
i
=

1, i = 1, . . . ,N and Z
i, j

= 1, i = 1, . . . ,N ; j = 1, . . . , J
i
, which is

NP-hard. □

Reducing to 1 some of the dimensions L,M, J
i
,Z , we can reduce

the problem to Set-union Knapsack, Multiple-Choice Knapsack

or Knapsack Problems. Our problem is complex and we rule out

the possibility to construct Fully Polynomial Time Approximation

Schemes, as §9.4.1 of [18] shows that they cannot exist (unless

P=NP), already for the simpler case of M = 1,Z
i, j

= 1 and J
i
=

1, i = 1, . . . ,N , which is known as l-KP. All we can do is then to

propose a heuristic and show it is close to the optimum numerically.

5 MORA
We now introduce MORA, our proposed strategy.

5.1 Preliminary definitions
The MORA heuristic uses aggregate values for the resource re-

quirements and availability, in order to neglect, at a first stage, the

complexity represented by the fact that resources available are scat-

tered across different nodes, resource required are split in different

container requirements and requirements are multi-dimensional.

To this aim, we need to define the overall resource requirements

of an option j of a SP i as

w i, j
l =

Z i, j

∑
z=1

w i, j
l,z . (6)

We introduce a number hl ≥ 0, that we call “relevance value”, since

its role is similar to the relevance values in §9.5.1 of [18]. We also

define the generalized resource utilization of an option j of a SP i
as:

w i, j
=

L

∑
l=1

hl ⋅w
i, j
l (7)

To ease computation, MORA heuristic algorithm does not consider

all the possible options, but it first removes the dominated options
and then LP-dominated options, defined as follows, which do not

provide significant utility gain with respect to the resources they

require.

Definition 1. For any SP i , an option j is dominated by another

option j
′
≠ j iff (i) ui, j

′

> u
i, j and wi, j ′

≤ w
i, j or (ii) ui, j

′

≥ u
i, j

andwi, j ′
< w

i, j . An option is dominated, if it is dominated by some
other option.

Before giving the definition of LP-dominance, we need to define

the efficiency of a jump as follows.

Definition 2. For a service provider i = 1, . . . ,N , the efficiency

of a jump j → j
′, wherewi, j ′

> w
i, j is:

e i, j→j ′
=

ui, j
′
− ui, j

w i, j ′ −w i, j
(8)

Definition 3. A non dominated option j of a SP i is LP-dominated,

if there exist other non dominated options j ′, j ′′ such thatui, j
′

< u
i, j

<

u
i, j ′′ , wi, j ′

< w
i, j

< w
i, j ′′ and ei, j

′
→j ′′

≥ e
i, j ′→j The option j is an

LP-extreme if it is neither dominated nor LP-dominated.

The names “LP-dominance” and “LP-extremes” come from the

fact that the concept is related to the LP-relaxation of the Mutliple

Choice Knaspack Problem, but this is not relevant for our scope.
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Figure 2: Example of set of options of a SP i. The options con-
nected by the line constitute the ordered list of LP-extremes.

Fig. 2 illustrates the concept of LP-extremes, similarly to Fig. 11.1

of [18]. We order the LP-extreme options in the list defined as

follows.

Definition 4. For each SP i , we denote with j
i the list of its LP-

extreme options. We denote with j
i [k] the option at its k-th position.

This list is ordered in increasing values ofwi, j , such thatwi, j i [k]
≤

w
i, j i [k+1]. In the first position of such list we add a fictitious “null”

option, such thatwi, j i [0]
= u

i, j i [0]
≜ 0.

Proposition 2. For any SP i , the list ji of LP-extremes can be

computed in O(∣J i ∣ ⋅ Ri), where Ri is the number of LP-extremes.

Proof. Ch. 11 of [18] shows that LP-extremes correspond to

the convex hull of the set of options j = 1, . . . , J
i
. To compute the

convex hull we use [19], which has the complexity above. □

5.2 MORA Algorithm
The Multiple Option Resource Allocation (MORA) algorithm is

shown in Algorithm 1. It takes as input the set of parameters of the

ILP (9)-(4) describing the scenario plus a configuration parameter

hl for l = 1, . . . ,L. The algorithm returns a solution, i.e. values for

any decision variable. The algorithm solves two decision problems

that the NO must solve: (i) Option selection: which option (or config-

uration) per SP must be accepted (variables y
i, j
z,m ) and (ii) Container

placement: in which Edge nodes we should place the containers of

the selected options (variables y
i, j
z,m ). The pseudo code of Alg. 1 is

mainly devoted to option selection and calls Alg. 2 for the container

placement.

5.2.1 Option selection. MORA is iterative. In each iteration,

each SP i has a current position k
i
, which corresponds to the op-

tion j
i [ki ]. Each SP i has also a jump efficiency E

i
(line 6), which

denotes the efficiency achieved when advancing its position, i.e.,

the utility gain obtained going from option j
i [ki ] to j

i [ki + 1] di-
vided by the additional generalized resource utilized. Observe that

u
i, j i [k]

< u
i, j i [k+1]

and w
i, j i [k]

< w
i, j i [k+1]

by construction,

and thus E
i
> 0.

Then, in each iteration t , we select a SP and we check whether

we can change its current option j
i [ki ] to j

i [ki + 1]. We say that

service provider i performs a jump j
i [ki ] → j

i [ki + 1]. As one

can expect, we select the SP whose jump efficiency is the highest

(line 12). We call this SP the jumping SP of iteration t , as it is

the one that changes option (the options of the other SPs remain

unchanged).

We then try to place the containers of the jumping SP i
∗
(line 13).

If we succeed, we advance its current option, thus allowing i
∗
to

jump from j
i∗[ki

∗

] to ji
∗

[ki
∗

+ 1] (line 15). Otherwise, we remove

the option j
i∗[ki

∗

+ 1] that we have not been able to place. We

update the jump efficiency of i
∗
.

The algorithm terminates when the lists j
i
of all the SPs have

been visited (line 10).

5.2.2 Container placement. The placement operations are de-

scribed in Alg. 2. We will refer to placement as a mapping of a

container to an edge node. The algorithm works by constructing

a tentative placement ŷi, jz,m ,∀i, j, z,m. If we are able to construct a

feasible tentative placement, i.e., we are able to place all the above-

mentioned containers in the available nodes without violating the

resource constraints, we update the actual placement y
i, j
z,m accord-

ingly (Line 21). Otherwise, we ignore the tentative placement and

we leave the actual placement unchanged.

The tentative placement is practically identical to the actual

placement (Line 1), except for the containers of the jumping SP

i
∗
. Since we want to place the containers of the new option j

∗

of SP i
∗
, we first reset all its previously selected options (Line 2).

Then, we iterate through the containers of option j
∗
of SP i

∗
, and

we try to place them one by one. In order to place a container z,
we first check what are the nodesℳ(z) whose residual capacity
is enough to host it (Line 7) and we chose one of them (Line 10).

Similarly to Sec.III.C of [28], this choice is based on the product of

residual capacities, but we use arg max while [28] chooses arg min.

Since the performance of our algorithms are already good with this

current rule, we defer the exploration of other rules in future work.

To summarize, at each iteration we take a hierarchical decision:

we first select an option of a service provider, based on the best

jump concept. Then, we try to place the composing containers in

the available nodes. Note that the operations within each iteration

does not correspond to any change to the actual resource allocation.

The algorithm is always executed until the terminating condition,

and only after that the result is taken to decide the actual resource

allocation.

5.3 Properties of MORA
We now characterize MORA in terms of time complexity, we find

an upper bound of the problem and we discuss the impact of the

algorithm parameters hl .

5.3.1 Computational Complexity. MORA is a polynomial time

algorithm. We omit the following proof for lack of space.

Proposition 3. The time complexity of MORA isO(N 2

JRZML)),
where J is the maximum amount of options per SP and Z is the
maximum number of containers per option and R the maximum
number of LP-extremes per SP.

5.3.2 Upper bound. Knowing the upper bound of P is important,

since we can compare it with the utility provided by the MORA
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Algorithm 1MORA algorithm.

Input: ui, j , w i, j
l,z, cm,l , hl .

Output: x i, j , yi, jz,m , upper bound û .
// Initialization

1: Set x i, j ∶= yi, jl,m ∶= 0 for all l,m and all options i, j
2: for all SP i ∶= 1, . . . , N do
3: Compute w i, j

, j = 1, . . . , J i , as in (7).

4: Compute the ordered list j i of options of SP i as in Def. 4.

5: Initialize the current position k i ∶= 0 on such list.

6: Compute

Ei ∶= {e
i, ji [ki ]→ji [ki+1]

if k i + 1 ≠ end of the list

−∞ otherwise

7: end for
// Main loop

8: for Iteration t ∶= 0, 1, . . . do
9: if Ei = −∞ for i ∶= 1, . . . , N then
10: break // We arrived at the end of all lists j i .
11: else
12: i∗ ∶= arg maxi E

i
// Jumping SP

13: success := placeContainers(i∗, j i [k i ] + 1) // see Alg. 2
14: if success = True then
15: k i

∗
∶= k i

∗
+ 1 // Advance current option

16: else
17: Remove the k i

∗
+ 1-th element of the list j i

∗
.

// Note that, now the option that was in the

// k i
∗
+ 2-th position (if any), now goes to the

// k i
∗
+ 1-th position.

18: end if
19: Update

Ei
∗
∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e i

∗
, ji

∗
[ki

∗
]→ji

∗
[ki

∗
+1]

if k i
∗
+ 1 ≠ end of the list

−∞ otherwise

20: end if
21: end for

//Translate to ILP notation

Set x i, j ∶= 1 for j = j i [k i ] if k i > 0, for any SP i .

22: return x i, j , yi, jz,m .

heuristic and verify how far it is from the optimum. Moreover,

MORA is anytime, i.e., if we terminate it at any iteration, it returns

a valid allocation. The distance from the upper bound can guide

us in the decision whether to continue the iterations or not, which

can potentially save computation time. In order to do so, we fisrt

fix any values for hl , l = 1, . . . ,L, computew
i, j

as in (7) and ctot ≜

∑M
m=1

∑L
l=1

hl ⋅ cl,m . Then, we resort to a problem known in the

literature as Multiple Choice Knapsack Problem (MCKP):

max

N

∑
i=1

Ni
∑
j=1

ui, j ⋅ x i, j (MCKP) (9)

subject to

N

∑
i=1

J i

∑
j=1

x i, j ⋅w i, j
≤ c

tot
;

J i

∑
j=1

x i, j ≤ 1; x i, j ∈ {0, 1}
l = 1 . . . L
i = 1 . . . N
j = 1 . . . J i

(10)

Since a solution that satisfies (2)-(4) also satisfies (10), the optimal

solution of MCKP is an upper bound to the optimal solution of P.We

Algorithm 2 Container placement algorithm.

Input: i∗, j∗

Output: boolean success.
1: ŷi, jz,m ∶= yi, jl,m, ∀z, j, l,m

// Release the containers of the current option of i∗:

2: ŷi
∗
, j

z,m ∶= 0, ∀j, z,m
// Compute the residual capacity given by the tentative placement:

3: ĉl,m ∶= cl,m −∑N
i=1

∑J i

j=1
∑Z i, j

z=1
ŷi, jl,m ⋅wl,z

4: success := True

5: for all z ∶= 1, ...Z i∗, j∗ do
6: // See which nodes can host container z :

7: ℳ(z) ∶= {m ∈ {1, . . . , M}∣w i∗, j∗

l,z < ĉm,l , l = 1, . . . , L}
8: if ℳ(z) ≠ ∅ then
9: // Select one of those nodes:

10: m(z) ∶= arg maxm∈ℳ(z) ∏L
l=1

ĉl,m

11: ŷi
∗
, j∗

z,m(z) ∶= 1 // Assign the container to the selected node

12: ĉl,m ∶= ĉl,m −w i∗, j∗

l,z // Update the residual capacity

13: else
14: // It is not possible to place container z ,

// and thus the entire option

15: success := False

16: break
17: end if
18: end for
19: if success = True then
20: // The tentative placement is accepted as actual placement

21: yi
∗
, j∗

z,m ∶= ŷi
∗
, j∗

z,m , ∀z,m
22: end if

// Else, we leave the actual placement unchanged

23: return success

resort to an algorithm from Dyer and Zemel (Fig. 11.5 of [18]) that

computes in linear time the optimal solution of the LP-relaxation

of MCKP, which is an upper bound of MCKP, and thus is an upper

bound of our original problem P. We can thus claim the following

Proposition 4. An upper bound û of the original problem P can
be found in O(∑N

i=1
J
i).

5.3.3 Impact of the relevance values. The relevance values

hl , l = 1, . . . ,L are algorithm parameters that change the results

we obtain. Indeed, if we change hl , the values of w
i, j

change for

all js (see (7)) and thus the list j
i
changes as well. This value serves

to weight resource types among them. If, for example, a certain

resource type l , say memory, is scarce in the Edge, we should tend

not to select options that consume a lot of resource l . This can be

achieved by setting a high value of hl . By doing this, an option i, j

that consumes a lot of l-resource would have a highw
i, j
, and thus

would have less chances to be in the LP-extremes list j
i
(it would

tend to be on the right of Fig. 2). Moreover, jumping from another

option j
′
to j would likely result in a low efficiency e

i, j ′→j
and

Alg. 1 would prefer other jumps. Observe also that different values

of hl would result in different upper bounds û. In this way, one can

compute different upper bounds and just consider the minimum

value.
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6 NUMERICAL RESULTS
We evaluate MORA in (i) synthetic scenarios that we construct

ourselves and on (ii) publicly available traces from Google and

Alibaba clusters. While (i) allow to study the sensitivity of MORA

to selected parameters, (ii) allow to assess performance in real-

world cases. We compare MORA to the optimal solution (computed

via (1)-(4) using GLPK) and to a Naive strategy. The latter iterates
over the available SPs and for each one chooses a random option

to be deployed. It then tries to deploy each container of the chosen

option in the first node that fits the requirements of the container

itself. Whenever the first SP cannot be placed in the Edge cluster the

naive algorithm stops. The bad performance that will be shown for

Naive demonstrates that is important to select the “right” option

per SP and the “right” node per container. In all plots, we keep

all the parameters at their default values (Tab. 2) and we make

vary only the parameter(s) explicitly specified. In what follows we

study the computation time (§6.1.1), the utility achieved and the

resources left unused after the allocation (§6.1.2-6.1.5). We also

study how resources are distributed among SPs (§6.1.6). In the real

traces results, we show the achieved utility varies with number

of SPs (§6.2.1). Since MORA is an anytime algorithm, we report

how the utility evolves during its iterations (§6.2.2). All results on

synthetic scenarios are averaged across 20 runs and 95% confidence

intervals are reported, which may not be visible when they are

too small. They are calculated on a Intel Xeon CPU E5-4610 v2 @

2.30GHz with 256GB RAM. The model of the ILP in glpk and the

python code of MORA are available as open-source on GitHub
2

.

6.1 Results on synthetic scenarios
We consider an Edge Cloud [27] consisting ofM identical Intel Xeon

nodes with 4 sockets and 4 cores with hyper-threading enabled.

Therefore we can consider each node with 16 cores hyper-threaded

and we associate 32GB RAM to each of them. For each scenario we

consider N SPs, each declaring the same number J of configuration
options. Each configuration option is described in terms of the

required Z containers. The memory and the processing required by

a container z of the j-th option of service i are drawn from uniform

random distributions with mean w̄l , with l = {RAM,CPU }. They
are expressed as dimensionless values for CPUs while the memory

is expressed in GB. A fractional value of CPU is to be interpreted

as fraction of CPU time. For each scenario, the two values w̄RAM

and w̄CPU are calculated as follows. First, a load factor K is chosen,

and then w̄l computed as

w̄l ⋅ Z ⋅ N = K ⋅ cl, tot; l = {CPU,RAM} (11)
where cl,tot = ∑M

m=1
cl,m is the total amount of resource of type l

available at the edge. In other words, on average we allow services

to request K times the available resources. The default values are

reported in Table 2. In all the following plots, we will make only a

subset of parameters vary and keep the others at their default value.

As in [14, 20], the utility associated to each option is a random

variable in these synthetic scenarios (it will instead be a real value

directly taken from the traces in the Alibaba case). Moreover, we

follow the common assumption in the literature [7, 10] that there

is a concave relation between the resources used and the utility,

2

https://github.com/aleskandro/cloud-edge-offloading

Table 2: Default values of the reference scenario evaluated

Number of SPs N 50

Number of nodes M 8

Number of options J 5

Number of containers Z 8

Load factor K 1.8
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Figure 3: Time to compute solutions for ILP, MORA and
Naive strategies

which results in a diminishing return: the more resources are used

by a SP configuration, the larger one should expect the utility to

be, but the additional utility tends to decrease with the resources.

Using the notation (6) forw
i, j
CPU
,w

i, j
RAM

, the utility is the following

function of the required resources:

ui, j = α i, j ⋅ (
w i, j

CPU

c
CPU,tot

)
1

β
i, j
CPU + (1 − α i, j ) ⋅ (

w i, j
RAM

c
RAM,tot

)
1

β
i, j
RAM

(12)

where α
i, j
, β

i, j
CPU
, β

i, j
RAM

are sampled, for each option, from random

uniform distributions between 0 and 1 for α
i, j

and between 1 and

5 for β
i, j
CPU

and β
i, j
RAM

. Since these parameters are random variable,

(12) “loosely” show monotonicity and concavity, but is not exactly a

monotone and concave function. We did this on purpose since: (i) in

realistic scenarios this relation may not be as “clean” as assuming a

perfectly increasing and concave function; (ii) we want to check the

performance of our solution in pessimistic and ‘unclean” situations.

Note that our construction follows the assumptions usually adopted

in the literature [7, 10, 14, 20]. We will not need these assumptions

anymore when working with Alibaba traces.

Note that, for all feasible options, u
i,z

∈ [0, 1]. Since a feasible
solution selects at most one option per SP, we can be sure that

u
max

≔ N is an upper bound to u
tot

. We define the overall normal-
ized utility as u = u

tot/umax (13). By slight abuse of terminology,

in what follows we will shortly refer to “utility” to indicate the

overall normalized utility.

6.1.1 Time efficiency. Fig. 3 shows that the computation of the

Optimum from the ILP is too slow for the allocation frequency

envisaged in practical deployments, as discussed in §1. On the

contrary, MORA remains within 0.05s, as the Naive policy, while

also achieving almost optimal utility, as next sections will show..
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Figure 4: Benefits of multiple options.

6.1.2 Benefits of multiple options. Fig. 4 shows that utility in-

creases with the number of options per SP. Note that the classic

assumption corresponds to the first point of the plot, SP=1. While

varying the number of options from 1 to 8 the utility has a gain

almost equal to 60%, which would be lost with classic approaches

and which instead we can grasp by exploiting service elasticity.

This is equivalent to virtually increase the available resources, by

just using them better. Observe also that MORA uses resources as

the optimum, while Naive, despite providing poor utility, uses ~3.3

times more resources than optimal/MORA).

6.1.3 Insensitivity to scaling. We verified that, if we increase the

number of nodes available (thus increasing the overall resources)

and we increase accordingly the the option requirements, in order

to always keep a load factor K equal to the default value, the utility

is not affected. We omit the plot for lack of space. This tells us that

the results presented here are likely to be consistent even when

scaling the problem and would hold on tiny instances of EC as well

as in larger EC clusters.

6.1.4 The more you containerize, the better the utility. Fig. 5, re-
ports for MORA a 11% increase of utility when providing a service

through a set of micro-services [26] running on different containers

instead of a single one. Indeed, keeping the same overall resource

requirements, “smaller” containers are easier to place into Edge

nodes.

6.1.5 Effects of load (Fig. 6). Increasing the load K (11), we are

increasing the amount of resource contention among SPs. Recall

that K = 0.5 denotes requests with overall resource requirements

that are half of the available resources. In this case, the highest

utility-option of each SP is likely to be satisfied. For K ≤ 2, the

more theK , the more utility, from 28% to 40%. This is expected since

(i) increasing the K , we are increasing the resource requirements of

each option and (ii) the utility of each option is randomly generated

as an increasing function (12) of the resources. However, if the

load factor increases more than 2 the utility starts to decrease

both for the ILP and MORA and equals the naive policy. Further

investigation is required to explain this behavior in our future work.
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Figure 5: Effect of containerization.
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Figure 6: Effects of load.

Hypothesis are: (i) there is a concave relation between resources

and utilities (see (12)), which reflects in the diminishing returns

observed when increasing K , and the the resources utilized; (ii) as

resources demanded by the containers become larger asK increases,

it is more difficult to place them, which is confirmed by the fact that

the overall resources used withK = 2 andK = 3 remain unchanged.

From these results, at least in our scenarios, we observe that after

a certain load threshold the network operator should increase the

Edge resources in order to maintain utility levels. As expected, the

bottom figure shows that the NO needs to consume more resources

to satisfy higher loads.

6.1.6 Distribution of resources and utility among SPs . In this pa-

per we mainly consider that utility benefits NO, but in reality it

also benefits SPs. Therefore, it is important to check if resource

allocation is fair. Fig. 7 reports the result from one run with 50 SPs.

On the left, the points along each line represent the utility of the

different options declared by one SP. The “◆” is the option chosen

by MORA. Note that MORA only selects options for 11 SPs, and
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Figure 7: Distribution of resources and utility between 50
SPs. The x and y scale of the right plot are the total avail-
able RAM and CPUs.

thus the others do not get any resources since their contribution to

the overall utility would not be remarkable. In the right plot, the

points are the requirements of the options of the 11 SPs chosen to

be deployed in the Edge. From the plot, MORA allocates a similar

amount of resources to the selected SPs, which does not necessarily

reflect in equality of utilities selected.

6.2 Results on real traces
We now use Google [2] and Alibaba [1] cluster traces. We assume

8 nodes are available, as in table 2.

Google traces includes a list of jobs, each composed by a set of

tasks. We consider the requested RAM and CPU associated to each

task when the correspondent at time of job’s submission. These

values are expressed as a fraction of the available resources. To

represent a SP i , we randomly select J jobs and we interpret each as

an option i, j . Each task composing that job is mapped to a container

z. We used (12) to compute the utility of each option.

Alibaba traces include a list of applications, each comprised of

several containers sharing the same application index. We map an

Alibaba application to an option. As in the Google case, We generate

each SP by randomly select a set of options (Alibaba applications).

In Alibaba traces, RAM requirements are expressed as percentage of

RAM available in one node while CPU requirements are expressed

as percentage of usage of one single core. Each machine in Alibaba

cluster has 96 cores. We set the nodes in the simulations to reflect

these requirements.

The trace also reports the bandwidth associated to a container.

We calculate the bandwidth of each option as the sum of the band-

width of the containers of the corresponding application. This is

the value of utility that we use. The rational is that we assume that

a SP generates a certain traffic toward users. If we select a certain

option of a SP, the correspondent bandwidth is served locally at

the edge and only the remaining part part must be served by the

Cloud, an assumption common in the literature [13]. Therefore, the

value of the utility indicates the bandwidth saving in this case.

6.2.1 Effects of number of SPs. Fig. 9 and 8 confirm what was

observed in the synthetic scenario. Both in the Google and the

Figure 8: Utility while varying the number of SPs and the
number of options provided using Alibaba Traces

Figure 9: Relative utility while varying the number of SPs
and the number of options provided using Google Traces

Alibaba case the utility increase when exploiting service elasticity

increasing the number of options per SP. We also vary the number

of SPs considered, which result in an increase in the load, which we

quantify with K̄CPU and K̄RAM, reported in the figure and calculated

as:

K̄l = W̄l ⋅ N ⋅ Z̄/
M

∑
m=1

cl,m

where W̄l is the average requirement of resource l through all the

containers and Z̄ is the average number of containers per option, l is
{RAM,CPU }. In the Alibaba figure, as expected, the more SPs join

the Edge, the more the utility (bandwidth saving) is achievable. In

the Google figure, instead, we report the normalized utility (13) (the

total utility can be obtained by multiplying it by N ). Observe that

the values of load KCPU and KRAM are very different. And different
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are also the Google, Alibaba and synthetic scenarios. However, the

benefits of service elasticity consistently show themselves.

6.2.2 MORA as anytime algorithm. We use here Alibaba traces,

assuming 8 nodes and 20 SPs. We show in Fig. 10 the utility of

the solution computed at every iteration t . By construction, the

efficiency E
i
of the best jump (bottom plot) is decreasing with t .

This ensures that most of the utility is already achieved in the first

iterations (top plot) and allows us to prematurely stop the algorithm

if the time available to compute the allocation is scarce, still having

a good solution at hands. The upper bound to the optimal solution

(§5.3.2) reported in the figure also confirms that we are already

close to the optimum in the first iterations. By exploiting the fact

the monotonicity of E
i
we can also easily calculate, at any iteration

t , the Expected utility, i.e., the utility that we can achieve at most if

we continue the algorithm until the end instead of interrupting at

t . We omit the details of this calculation for lack of space, but we

report it in the figure to show that it can also be a useful guidance

to decide whether to stop MORA before its end for a faster result.

7 CONCLUSIONS AND FUTUREWORK
This paper presented MORA, a strategy for resource allocation

for Edge Computing (EC), where tenants are third party Service

Providers (SPs). The novelty of this work is that it exploits service

elasticity: by allowing SPs to declare the different configurations

(aka options) in which they can run, we show that the Network

Operator (NO) owning EC resources can greatly increase utility.

Relying on service elasticity is crucial in resource-constrained en-

vironments as EC.

Our future work will be devoted to scenarios where SPs arrive

at different times, exploiting a time-batched implementation of the

heuristic. We plan to realize a testbed using Docker and Kubernetes.

Moreover, the architecture and the heuristic itself have to be ex-

panded in order to take into account different NOs (Edge roaming).

We consider using Game Theory to design mechanisms to ensure

truthful declaration of options by SPs, which could also be enforced

by appropriate resource and utility monitoring. We are also inter-

ested in studying allocation strategies in presence of noise in the

values of resource usage and utility.
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