David Cohen-Steiner

André Lieutier

Julien Vuillamy

Lexicographic optimal homologous chains and applications to point cloud triangulations

This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP), where optimality is meant as a minimal lexicographic order on chains induced by a total order on simplices. The matrix reduction algorithm used for persistent homology is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual graph minimum cut formulation when the simplicial complex is a strongly connected pseudomanifold. We then show how this particular instance of the problem is relevant, by providing an application in the context of point cloud triangulation.

Introduction

The computation of minimal simplicial homology generators has been a wide subject of interest for its numerous applications related to shape analysis, computer graphics or computer-aided design. Coined in [START_REF] Tamal | Optimal homologous cycles, total unimodularity, and linear programming[END_REF], we recall the Optimal Homologous Chain Problem (OHCP): Problem 1.1 (OHCP). Given a p-chain A in a simplicial complex K and a set of weights given by a diagonal matrix W of appropriate dimension, find the 1-norm minimal chain Γ min homologous to A:

Γ min = min Γ,B ||W • Γ|| 1 such that Γ = A + ∂ d+1 B and Γ ∈ C p (K) , B ∈ C p+1 (K)
It has been shown that OHCP is NP-hard in the general case when using coefficients in Z 2 [START_REF] Chen | Hardness results for homology localization[END_REF][START_REF] Chambers | Minimum cuts and shortest homologous cycles[END_REF]. However, we consider a specialization of this problem: the Lexicographic Optimal Homologous Chain Problem (Lex-OHCP). Using coefficients in Z 2 , minimality is now meant according to a lexicographic order on chains induced by a total order on simplices. Formulated in the context of OHCP, this would require ordering the simplices using a total order and taking a weight matrix W with generic term W ii = 2 i , allowing the L 1 -norm minimization to be equivalent to a minimization along the lexicographic order.

After providing required definitions and notations (Section 2), we show how an algorithm based on the matrix reduction algorithm used for the computation of persistent homology [START_REF] Edelsbrunner | Computational Topology -an Introduction[END_REF] allows to solve this particular instance of OHCP in O(n 3) worst case complexity (Section 3). Using a very similar process, we show that the problem of finding a minimal d-chain bounding a given (d -1)-cycle admits a similar algorithm with the same algorithmic complexity (Section 4). Section 5 then considers Lex-OHCP in the case where the simplicial complex K is a strongly connected (d + 1)-pseudomanifold. By formulating it as a Lexicographic Minimum Cut (LMC) dual problem, the algorithm can be improved to a quasilinear complexity. The complexity of the graph minimum cut -or equivalently maximum flow -over arbitrary weights is O(E 2) for a graph with E edges [START_REF] Edmonds | Theoretical improvements in algorithmic efficiency for network flow problems[END_REF]. Its lexicographic variant can however be performed in O(E log E) complexity: the cost of sorting the graph edges and performing a O(Eα(E)) algorithm based on disjoint-sets, where α is the inverse Ackermann function. Section 6 legitimizes this restriction of OHCP by providing an application of the developed Lex-OHCP algorithms to point cloud triangulation. After defining a total order closely related to the Delaunay triangulation, we provide details on an open surface algorithm given a boundary and a watertight surface reconstruction algorithm given an interior and exterior information.

Several authors have studied algorithm complexities for the computation of L1-norm optimal cycles in homology classes [START_REF] Erickson | Greedy optimal homotopy and homology generators[END_REF][START_REF] Chen | Quantifying homology classes[END_REF][START_REF] Chambers | Minimum cuts and shortest homologous cycles[END_REF][START_REF] Chen | Measuring and computing natural generators for homology groups[END_REF][START_REF] Tamal | Approximating loops in a shortest homology basis from point data[END_REF][START_REF] Chen | Hardness results for homology localization[END_REF][START_REF] Tamal | Optimal homologous cycles, total unimodularity, and linear programming[END_REF][START_REF] Tamal | Computing minimal persistent cycles: Polynomial and hard cases[END_REF]. However, to the best of our knowledge, considering lexicographic-minimal chains in their homology classes is a new idea. When minimal cycles are of codimension 1 in a pseudo-manifold, the idea of considering the minimal cut problem on the dual graph has been previously studied. In particular, Chambers et al. [START_REF] Chambers | Minimum cuts and shortest homologous cycles[END_REF] have considered graph duality to derive complexity results for the computation of optimal homologous cycles on 2-manifolds. Chen et al. [START_REF] Chen | Hardness results for homology localization[END_REF] also use a reduction to a minimum cut problem on a dual graph to compute minimal non-null homologous cycles on n-complexes embedded in R n . Their polynomial algorithm (Theorem 5.2.3 in [START_REF] Chen | Hardness results for homology localization[END_REF]) for computing a homology class representative of minimal radius is reminiscent of our algorithm for computing lexicographic minimal representatives (Algorithm 4). In a recent work [START_REF] Tamal | Computing minimal persistent cycles: Polynomial and hard cases[END_REF], Dey et al. consider the dual graph of pseudo-manifolds in order to obtain polynomial time algorithms for computing minimal persistent cycles. Since they consider arbitrary weights, they obtain the O(n 2) complexity of best known minimum cut/maximum flow algorithms [START_REF] Orlin | Max flows in o(nm) time, or better[END_REF]. The lexicographic order introduced in our work can be derived from the idea of a variational formulation of the Delaunay triangulation, first introduced in [START_REF] Chen | Mesh smoothing schemes based on optimal delaunay triangulations[END_REF] and further studied in [START_REF] Alliez | Variational tetrahedral meshing[END_REF][START_REF] Chen | Efficient mesh optimization schemes based on optimal delaunay triangulations[END_REF]. Finally, many methods have been proposed to answer the problem of surface reconstruction in specific acquisition contexts [START_REF] Michael | Screened poisson surface reconstruction[END_REF][START_REF] Labatut | Robust and efficient surface reconstruction from range data[END_REF][START_REF] Li | Globfit: consistently fitting primitives by discovering global relations[END_REF]: [START_REF]Eurographics 2014 -State of the Art Reports[END_REF] classifies a large number of these methods according to the assumptions and information used in addition to geometry. In the family of purely geometric reconstruction based on a Delaunay triangulation, one very early contribution is the sculpting algorithm by Boissonnat [START_REF] Boissonnat | Geometric structures for three-dimensional shape representation[END_REF]. The crust algorithm by Amenta et al. [START_REF] Amenta | A new voronoi-based surface reconstruction algorithm[END_REF][START_REF] Amenta | A simple algorithm for homeomorphic surface reconstruction[END_REF] and an algorithm based on natural neighbors by Boissonnat et al. [START_REF] Boissonnat | Smooth surface reconstruction via natural neighbour interpolation of distance functions[END_REF] were the first algorithms to guarantee a triangulation of the manifold under sampling conditions. However, these general approaches usually have difficulties far from these sampling conditions, in applications where point clouds are noisy or under-sampled. This difficulty can be circumvented by providing additional information on the nature of the surface [START_REF] Tamal | Tight cocone: A water-tight surface reconstructor[END_REF][START_REF] Edelsbrunner | Surface Reconstruction by Wrapping Finite Sets in Space[END_REF]. Our contribution lies in this category of approaches. We provide some topological information of the surface: a boundary for the open surface reconstruction and an interior region and exterior region for the closed surface reconstruction.

Definitions

Simplicial complexes

Consider an independent family A = (a 0 , . . . , a d) of points of R N . We call a d-simplex σ spanned by A the set of all points: x = d i=0 t i a i , where ∀i ∈ [0, d], t i ≥ 0 and d i=0 t i = 1 Any simplex spanned by a subset of A is called a face of σ.

A simplicial complex K is a collection of simplices such that every face of a simplex of K is in K and the intersection of two simplices of K is either empty either a common face.

Simplicial chains.

Let K be a simplicial complex of dimension at least d. The notion of chains can be defined with coefficients in any ring but we restrict here the definition to coefficients in the field Z 2 = Z/2Z. A d-chain A with coefficients in Z 2 is a formal sum of d-simplices :

A = i x i σ i , with x i ∈ Z 2 and σ i ∈ K (1)
We denote C d (K) the vector space over the field Z 2 of d-chains in the complex K. Interpreting the coefficient x i ∈ Z 2 = {0, 1} in front of simplex σ i as indicating the existence of σ i in the chain A, we can view the d-chain A as a set of simplices : for a d-simplex σ and a d-chain A, we write that σ ∈ A if the coefficient for σ in A is 1. With this convention, the sum of two chains corresponds to the symmetric difference on their sets. In what follows, a d-simplex σ can also be interpreted as the d-chain containing only the d-simplex σ.

Boundary operator.

For a d-simplex σ = [a 0 , . . . , a d], the boundary operator is defined as the operator:

∂ d : C d (K) → C d-1 (K) ∂ d σ = def. d i=0 [

Lexicographic order.

We assume now a total order on the d-simplices of K, σ

1 < • • • < σ n , where n = dim C d (K).
From this order, we define a lexicographic total order on d-chains.

Definition 2.1 (Lexicographic total order).

For C 1 , C 2 ∈ C d (K): C 1 lex C 2 ⇐⇒ def.      C 1 + C 2 = 0 or σ max = max {σ ∈ C 1 + C 2 } ∈ C 2
This total order naturally extends to a strict total order lex on C d (K).

3 Lexicographic optimal homologous chain

Problem statement

In this section, we define the Lexicographic Optimal Homologous Chain Problem (Lex-OHCP), a particular instance of OHCP (Problem 1.1):

Problem 3.1 (Lex-OHCP). Given a simplicial complex K with a total order on the d-simplices and a d-chain A ∈ C d (K), find the unique chain Γ min defined by :

Γ min = min lex {Γ ∈ C d (K) | ∃B ∈ C d+1 (K) , Γ -A = ∂ d+1 B} Definition 3.1. A d-chain A ∈ C d (K) is said reducible if there is a d-chain Γ ∈ C d (K) (called reduction) and a (d + 1)-chain B ∈ C d+1 (K) such that: Γ lex A and Γ -A = ∂ d+1 B
If this property cannot be verified, the d-chain A is said irreducible. If A is reducible, we call total reduction of A the unique irreducible reduction of A. If A is irreducible, A is said to be its own total reduction. Problem 3.1 can be reformulated as finding the total reduction of A.

Boundary matrix reduction

With m = dim C d (K) and n = dim C d+1 (K), we now consider the m-by-n boundary matrix ∂ d+1 with entries in Z 2 . We enforce that rows of the matrix are ordered according to a given strict total order on d-simplices σ 1 < • • • < σ m , where the d-simplex σ i is the basis element corresponding to the i th row of the boundary matrix. The order of columns, corresponding to an order on (d + 1)-simplices, is not relevant for this section and can be chosen arbitrarily. For a matrix R, the index of the lowest non-zero coefficient of a column R j is denoted by low(j), or sometimes low(R j) when we want to explicit the considered matrix. This index is not defined for a column whose coefficients are all zero.

Algorithm 1 is a slightly modified version of the boundary reduction algorithm presented in [START_REF] Edelsbrunner | Computational Topology -an Introduction[END_REF]. Indeed, for our purpose, we do not need the boundary matrix storing all the simplices of all dimensions and apply the algorithm to the sub-matrix ∂ d+1 : C d+1 (K) → C d (K). One checks easily that Algorithm 1 has O(mn 2) time complexity. We now introduce a few lemmas useful for Algorithm 1: Reduction algorithm for the ∂ d+1 matrix R = ∂ d+1 for j ← 1 to n do while R j = 0 and ∃j 0 < j with low(j 0) = low(j) do R j ← R j + R j0 end end solving Problem 3.1. We allow ourselves to consider each column R j of the matrix R, formally an element of Z m 2 , as the corresponding d-chain in the basis (σ 1 , . . . , σ m).

Lemma 3.2. A d-chain A is reducible if and only if at least one of its

d-simplices is reducible. Proof. If there is a reducible d-simplex σ ∈ A, A is reducible by the d-chain A = A -σ + Red(σ),
where Red(σ) is a reduction for σ.

We suppose A to be reducible. Let Γ lex A be a reduction for A and B the (d + 1)-chain such that Γ -A = ∂B. We denote σ max = max {σ ∈ A -Γ}. Note that σ max is homologous to Γ -A + σ max . The chain Γ -A + σ max only contains simplices smaller than σ max , by definition of the lexicographic order (Definition 2.1). We have thus shown that if A is reducible, it contains at least one simplex that is reducible.

Lemma 3.3. After matrix reduction (Algorithm 1), a non-zero column R j = 0 can be described as R j = σ low(j) + Γ, where Γ is a reduction for σ low(j) .

Proof. As all matrix operations performed on R by the reduction algorithm are linear, each nonzero column R j of R is in the image of ∂ d+1 . Therefore, there exist a (d + 1)-chain B such that

R j = σ low(j) + Γ = ∂ d+1 B, which, is equivalent in Z 2 to Γ -σ low(j) = ∂ d+1 B.
By definition of the low of a column, we also have immediately: Γ lex σ low(j) . For each non-zero column, the largest simplex is therefore reducible by the other d-simplices of the column.

Lemma 3.4. After matrix reduction (Algorithm 1), there is a one-to-one correspondence between the reducible d-simplices and non-zero columns of R:

σ i ∈ C d (K) is reducible ⇐⇒ ∃j ∈ [1, n], R j = 0 and low(j) = i
Proof. Lemma 3.3 shows immediately that the simplex corresponding to the lowest index of a non-zero column is reducible. Suppose now that a d-simplex σ is reducible and let Γ be a reduction of it: σ + Γ = ∂ d+1 B and Γ lex σ. Algorithm 1 realizes the matrix factorization R = ∂ d+1 • V , where matrix V is invertible [START_REF] Edelsbrunner | Computational Topology -an Introduction[END_REF]. It follows that Im R = Im ∂ d+1 . Therefore, non-zero columns of R span Im ∂ d+1 and since

σ + Γ = ∂ d+1 B ∈ Im ∂ d+1 , there is a family (R j) j∈J = (σ low(j) , Γ j) j∈J of columns of R such that : σ + Γ = j∈J σ low(j) + Γ j
Every σ low(j) represents the largest simplex of a column, and Γ j a reduction chain for σ low(j) . As observed in section VII.1 of [START_REF] Edelsbrunner | Computational Topology -an Introduction[END_REF], one can check that the low indexes in R are unique after the reduction algorithm. Therefore, there is a j max ∈ J such that for all j in J \ {j max }, low(j) < low(j max), which implies:

σ jmax = max{σ ∈ j∈J σ low(j) + Γ j } = max σ ∈ σ + Γ = σ
We have shown that for the reducible simplex σ, there is a non-zero column R jmax with σ = σ low(jmax) as its largest simplex.

Total reduction algorithm

Combining the three previous lemmas give the intuition on how to construct the total reduction solving Problem 3.1: Lemma 3.2 allows to consider each simplex individually, Lemma 3.4 characterizes the reducible nature of a simplex using the reduced boundary matrix and Lemma 3.3 describes a column of the reduction boundary matrix as a simplex and its reduction. We now present Algorithm 2, referred to as the total reduction algorithm. For a d-chain Γ, Γ[i] ∈ Z 2 denotes the coefficient of the i th simplex in the chain Γ. Proof. In Algorithm 2, let Γ i-1 be the value of the variable Γ after iteration i. Since the iteration counter i decreases from m to 1, the input and output of the algorithm are respectively Γ m and Γ 0 . At each iteration, Γ i-1 are either equal to Γ i or Γ i + R j . Since R j ∈ Im ∂ d+1 , Γ i-1 is in both cases homologous to Γ i . Therefore, Γ 0 is homologous to Γ m . We are left to show that Γ 0 is irreducible. From Lemma 3.2, it is enough to check that it does not contain any reducible simplex. Let σ i be a reducible simplex and let us show that σ i / ∈ Γ 0 . Two possibilities may occur:

-if σ i ∈ Γ i , then Γ i-1 = Γ i + R j . Since low(j) = i, we have σ i ∈ R j and therefore σ i / ∈ Γ i-1 . -if σ i / ∈ Γ i , then Γ i-1 = Γ i and again σ i / ∈ Γ i-1 .
Furthermore, from iterations i -1 to 1, the added columns R j contain only simplices smaller than σ i and therefore

σ i / ∈ Γ i-1 ⇒ σ i / ∈ Γ 0 .
Observe that using an auxiliary array allows to compute the correspondence low(j) → i in time O(1). The column addition nested inside the loop lead to a O(m 2) time complexity for Algorithm 2.

It follows that Problem 3.1 can be solved in O(mn 2) time complexity, by applying successively Algorithms 1 and 2, or in O(N 3) complexity if N is the size of the simplicial complex.

Lexicographic-minimal chain under imposed boundary 4.1 Problem statement

This section will study a variant of Lex-OHCP (Problem 4.1) in order to solve the subsequent problem of finding a minimal d-chain bounding a given (d -1)-cycle (Problem 4.2). Problem 4.1. Given a simplicial complex K with a total order on the d-simplices and a d-chain

Γ 0 ∈ C d (K), find : Γ min = min lex {Γ ∈ C d (K) | ∂ d Γ = ∂ d Γ 0 } Problem 4.2.
Given a simplicial complex K with a total order on the d-simplices and a (d -1)cycle A, check if A is a boundary:

B A = def. {Γ ∈ C d (K) | ∂ d Γ = A} = ∅
If it is the case, find the minimal d-chain Γ bounded by A:

Γ min = min lex B A
In Problem 4.2, finding a representative Γ 0 in the set B A = ∅ such that ∂ d Γ 0 = A is sufficient: we are then taken back to Problem 4.1 to find the minimal d-chain Γ min such that

∂ d Γ min = ∂ d Γ 0 = A.

Boundary reduction transformation matrix

As in Section 3, we will derive an algorithmic solution to Problem 4.1 from the result of the boundary matrix reduction algorithm. Note that, unlike Section 3 that used the ∂ d+1 boundary operator, we are now considering ∂ d , meaning the given total order on d-simplices applies to the greater dimension of the matrix. An arbitrary order can be taken for the (d -1)-simplices to build the matrix ∂ d . Indeed, if we see the performed reduction in matrix notation as R = ∂ d • V , the minimization steps in this section will be performed on the transformation matrix V , whose rows do follow the given simplicial ordering. The number of zero columns of R is the dimension of Z d = Ker ∂ d [START_REF] Edelsbrunner | Computational Topology -an Introduction[END_REF]. Let's denote it by n Ker = dim(Z d). By selecting all columns in V corresponding to zero columns in R, we obtain the matrix V Ker , whose columns V Ker 1 , . . . , V Ker n Ker form a basis of Z d . We first show a useful property on the matrix V Ker . Note that the low index for any column in V Ker is well defined, as V is invertible.

Lemma 4.1. Indexes low(V Ker i) i∈[1,n Ker] are unique: i = j ⇒ low(V Ker i) = low(V Ker j) If A ∈ Ker ∂ d \ {0}, there exists a unique column V Ker max of V Ker with low(V Ker max) = low(A).
Proof. Before the boundary matrix reduction algorithm, the initial matrix V is the identity: the low indexes are therefore unique. During iterations of the algorithm, the matrix V is rightmultiplied by an column-adding elementary matrix L j0,j , adding column j 0 to j with j 0 < j.

L j0,j = j                   1 1 1 j 0 . . . 1 . . . 1
Therefore, the indexes {low(V i), V i ∈ V } stay on the diagonal during the reduction algorithm and are therefore unique. The restriction of V to V Ker does not change this property.

If A ∈ Ker ∂ d \ {0}, A can be written as a non-zero linear combination of columns (V Ker i) i∈I of V Ker . Call i max = low(A) the index of the largest element σ imax in A. Suppose no column of (V Ker i) i∈I has i max as its low index. By existence of σ imax in A, there is an odd number of columns

V Ker j ∈ (V Ker i) i∈I satisfying σ imax ∈ V Ker j with low(V Ker j) > i max .
We have shown however that the lows of V Ker are unique, which implies the lows of columns V Ker j would appear in A: this contradicts the definition of i max as the low of A.

Total reduction with imposed boundary

We apply a similar total reduction algorithm as previously introduced in Section 3 but using the matrix V Ker . In the following algorithm, m = dim C d (K). Proof. The proof is similar to the one of Proposition 3.5. In Algorithm 3, we denote by Γ i-1 the value of variable Γ after iteration i. Since iteration counter i is decreasing from m to 1, the input and output of the algorithm are respectively Γ m and Γ 0 . Since V Ker j ∈ Ker ∂ d , at each iteration ∂Γ i-1 = ∂Γ i therefore ∂Γ 0 = ∂Γ m . We are left to show the algorithm's result is the minimal solution.

Algorithm 3: Total reduction variant

Inputs : A d-chain Γ and V Ker for i ← m to 1 do if Γ[i] = 0 and ∃j ∈ [1, n Ker] with low(j) = i in V Ker then Γ ← Γ + V Ker
Suppose there is Γ such that ∂ d Γ = ∂Γ and Γ lex Γ 0 . Let's consider the difference Γ 0 -Γ , and its largest element index low(Γ 0 -Γ) = i, with σ i ∈ Γ 0 and σ i / ∈ Γ by Definition 2.1 of the lexicographic order. As Γ 0 -Γ ∈ Ker ∂ d \ {0}, there has to be a column V Ker j in V Ker where low V Ker j = i, from Lemma 4.1. Two possibilities may occur at iteration i:

-if σ i ∈ Γ i , then Γ i-1 = Γ i + V Ker j . Since i = low(j), we have σ i ∈ V Ker j and therefore σ i / ∈ Γ i-1 . -if σ i / ∈ Γ i , then Γ i-1 = Γ i and again σ i / ∈ Γ i-1 .
However, from iterations i -1 to 1, the added columns V Ker j contains only simplices with indices smaller than i and therefore we obtain σ i / ∈ Γ i-1 ⇒ σ i / ∈ Γ 0 , a contradiction to the definition of σ i as the largest element of Γ -Γ 0 .

Finding a representative of B A

As previously mentioned, solving Problem 4.2 requires deciding if the set B A is empty and in case it is not empty, finding an element of the set B A . Algorithm 3 can then be used to minimize this element under imposed boundary. In the following algorithm, m = dim C d-1 (K) and n = dim C d (K).

Proposition 4.3. Algorithm 4 decides if the set B

A is non-empty, and in that case, finds a representative Γ 0 such that ∂Γ 0 = A in O(m 2) time complexity.

Proof. We start by two trivial observations from the definition of a reduction. First, A is a boundary if and only if its total reduction is the null chain. Second, if a non-null chain is a boundary, then its greatest simplex is reducible.

Algorithm 4: Finding a representative

Inputs : A (d -1)-chain A, a boundary matrix R reduced by

V Γ 0 ← ∅ A 0 ← A for i ← m to 1 do if A 0 [i] = 0 then if ∃j ∈ [1, n] with low(j) = i in R then A 0 ← A 0 + R j Γ 0 ← Γ 0 + V j else
The set B A is empty. end end end If, at iteration i, A 0 [i] = 0, then σ i is the greatest simplex in A 0 . In the case R has no column R j such that low(j) = i, σ i is not reducible by Lemma 3.4 and therefore A 0 is not a boundary. Since A and A 0 differ by a boundary (added columns of R), A is not a boundary either. This means the set B A is empty. The main difference with the previous chain reduction is we keep track of the column operations in Γ 0 . If the total reduction of A is null, we have found a linear combination (R j) j∈J such that A = j∈J R j . We have also computed Γ 0 as the sum of the corresponding columns in V : Γ 0 = j∈J V j . As R = ∂ d • V , we can now verify:

∂ d Γ 0 = ∂ d   j∈J V j   = j∈J R j = A

Efficient algorithm for codimension 1 (dual graph)

In this section we focus on Problem 5.1, a specialization of Problem 3.1, namely when K is a subcomplex of a (d + 1)-pseudomanifold.

Problem statement

Recall that a d-dimensional simplicial complex is said pure if it is of dimension d and any simplex has at least one coface of dimension d.

Γ min = min lex {Γ ∈ C p (M) | ∃B ∈ C d+1 (M \ {τ 1 , τ 2 }) , Γ -∂τ 1 = ∂B} Definition 5.4.
Seeing a graph G as a 1-dimensional simplicial complex, we define the coboundary operator ∂ 0 : C 0 (G) → C 1 (G) as the linear operator defined by the transpose of the matrix of the boundary operator ∂ 1 : C 1 (G) → C 0 (G) in the canonical basis of simplices. 1For a given graph G = (V, E), V and E respectively denote its vertex and edge sets. For a d-chain α ∈ C d (M) and a (d + 1)-chain β ∈ C d+1 (M), α and β denote their respective dual 1-chain and dual 0-chain in the dual graph G(M) of M. We easily see that:

Remark 5.5. For a set of vertices V 0 ⊂ V, ∂ 0 V 0 is exactly the set of edges in G = (V, E) that connect vertices in V 0 with vertices in V \ V 0 . Remark 5.6. Let M be a (d + 1)-pseudomanifold. If α ∈ C d (M) and β ∈ C d+1 (M), then α = ∂ 0 β ⇐⇒ α = ∂ d+1 β.

Codimension 1 and Lexicographic Min Cut (LMC)

The order on d-simplices of a (d+1)-pseudomanifold M naturally defines a corresponding order on the edges of the dual graph: τ 1 < τ 2 ⇐⇒ τ1 < τ2 . This order extends similarly to a lexicographic order lex on sets of edges (or, equivalently, 1-chains) in the graph.

In what follows, we say a set of edges Γ disconnects τ1 and τ2 in the graph (V, E) if τ1 and τ2 are not in the same connected component of the graph (V, E \ Γ).

Given a graph with weighted edges and two vertices, the min-cut/max-flow problem [START_REF] Edmonds | Theoretical improvements in algorithmic efficiency for network flow problems[END_REF][START_REF] Orlin | Max flows in o(nm) time, or better[END_REF] consists in finding the minimum cut (i.e. set of edges) disconnecting the two vertices, where minimum is meant as minimal sum of weights of cut edges. We consider a similar problem where the minimum is meant in term of a lexicographic order: the Lexicographic Min Cut (LMC).

Problem 5.2 (LMC).

Given a connected graph G = (V, E) with a total order on E and two vertices τ1 , τ2 ∈ V, find the set ΓLMC ⊂ E minimal for the lexicographic order lex , that disconnects τ1 and τ2 in G. Proof. Problem 5.1 can be equivalently formulated as:

Γ min = min lex {∂ d+1 (τ 1 + B) | B ∈ C d+1 (M \ {τ 1 , τ 2 })} (2)
Using Observation 5.6, we see that Γ min is the minimum in Equation (2) if and only if its dual 1-chain Γmin satisfies:

Γmin = min lex ∂ 0 (τ 1 + B) | B ⊂ V \ {τ 1 , τ2 } (3)
Denoting ΓLMC the minimum of Problem 5.2, we need to show that ΓLMC = Γmin . As ΓLMC disconnects τ1 and τ2 in G = (V, E), τ2 is not in the connected component of τ1 in (V, E \ ΓLMC). We define B as the connected component of τ1 in (V, E \ ΓLMC) minus τ1 . We have that B ⊂ V \ {τ 1 , τ2 }. Consider an edge e ∈ ∂ 0 (τ 1 + B). From Observation 5.5, e connects a vertex

v a ∈ {τ 1 } ∪ B with a vertex v b / ∈ {τ 1 } ∪ B.
From the definition of B, ΓLMC disconnects v a and v b in G, which in turn implies e ∈ ΓLMC . We have therefore shown that ∂ 0 (τ 1 + B) ⊂ ΓLMC . Using Equation (3), we get:

Γmin lex ∂ 0 (τ 1 + B) lex ΓLMC (4)
Now we claim that if there is a C ⊂ V \ {τ 1 , τ2 } with Γ = ∂ 0 (τ 1 + C), then Γ disconnects τ1 and τ2 in (V, E). Consider a path in G from τ1 to τ2 . Let v a be the last vertex of the path that belongs to {τ 1 } ∪ C and v b the next vertex on the path (which exists since the τ2 is not in {τ 1 } ∪ C). From Observation 5.5, we see that the edge (v a , v b) must belong to Γ = ∂ 0 (τ 1 + C). We have shown that any path in G connecting τ1 and τ2 has to contain an edge in Γ and the claim is proved.

In particular, the minimum Γmin disconnects τ1 and τ2 in (V, E). As ΓLMC denotes the minimum of Problem 5.2, ΓLMC lex Γmin which, together with Equation (4), gives us ΓLMC = Γmin . We have therefore shown the minimum defined by Equation (3) coincides with the minimum defined in Problem 5.2.

Algorithm for Lexicographic Min Cut

In light of the new problem equivalency, we will study an algorithm solving Problem 5.2. As we will only consider the dual graph for this section, we leave behind the dual chain notation: vertices τ1 and τ2 are replaced by α 1 and α 2 , and the solution to the problem is simply noted Γ LMC . The following lemma exposes a constructive property of the solution on subgraphs. Proof. Let's call Γ LMC the solution for (V, E ∪ {e 0 }). Since Γ LMC ∩ E disconnects α 1 and α 2 in (V, E), one has Γ LMC lex Γ LMC . Since Γ LMC ∪ {e 0 } disconnects α 1 and α 2 in (V, E ∪ {e 0 }), we also have Γ LMC lex Γ LMC ∪ {e 0 }. Therefore, Γ LMC lex Γ LMC lex Γ LMC ∪ {e 0 }. As e 0 < min{e ∈ E}, there is no set in E ∪ {e 0 } strictly between Γ LMC and Γ LMC ∪ {e 0 } for the lexicographic order. It follows that Γ LMC is either equal to Γ LMC or Γ LMC ∪ {e 0 }. The choice for Γ LMC is therefore ruled by the property that it should disconnect α 1 and α 2 : if α 1 and α 2 are connected in (V, E ∪ {e 0 } \ Γ LMC), Γ LMC does not disconnect α 1 and α 2 in (V, E ∪ {e 0 }) and Γ LMC ∪ {e 0 } has to be the solution for (V, E ∪ {e 0 }). On the other hand, if α 1 and α 2 are not connected in (V, E ∪ {e 0 } \ Γ LMC), then both Γ LMC and Γ LMC ∪ {e 0 } disconnect α 1 and α 2 in (V, E ∪ {e 0 }), but as Γ LMC lex Γ LMC ∪ {e 0 }, Γ LMC ∪ {e 0 } is not the solution for (V, E ∪ {e 0 }).

Building an algorithm from Lemma 5.8 suggests a data structure able to check if vertices α 1 and α 2 are connected in the graph: the disjoint-set data structure, introduced for finding connected components [START_REF] Galler | An improved equivalence algorithm[END_REF], does exactly that. In this structure, each set of elements has a different root value, called representative. Calling the operation MakeSet on an element creates a new set containing this element. The FindSet operation, given an element of a set, returns the representative of the set. For all elements of the same set, FindSet will of course return the same representative. Finally, the structure allows merging two sets, by using the UnionSet operation. After this operation, elements of both sets will have the same representative.

We now describe Algorithm 5. The algorithm expects a set of edges sorted in decreasing order according to the lexicographic order. Proposition 5.9. Algorithm 5 computes the solution of Problem 5.2 for a given graph (V, E) and two vertices α 1 , α 2 ∈ V. Assuming the input set of edges E are sorted, the algorithm has O(nα(n)) time complexity, where n is the cardinal of E and α the inverse Ackermann function.

Proof. We denote by e i the i th edge along the decreasing order and Γ i LMC the value of the variable Γ LMC of the algorithm after iteration i. The algorithm works by incrementally adding edges in decreasing order and tracking the growing connected components of the set associated with α 1 and α 2 in (V, {e ∈ E, e ≥ e i } \ Γ i LMC), for i = 1, . . . , n. At the beginning, no edges are inserted, and Γ 0 LMC = ∅ is indeed solution for (V, ∅). With Lemma 5.8, we are guaranteed at each iteration i to find the solution for (V, {e ∈ E, e ≥ e i }) by only adding to Γ i-1 LMC the current edge e i if α 1 and α 2 are connected in {e ∈ E, e ≥ e i } \ Γ i-1 LMC , which is done in the if-statement. If the edge is not added, we update the connectivity of the graph (V, {e ∈ E, e ≥ e i } \ Γ i LMC) by merging the two sets represented by r 1 and r 2 . After each iteration, Γ i LMC is solution for (V, {e ∈ E, e ≥ e i }) and when all edges are processed, Γ n LMC is solution for (V, E).

The complexity of the MakeSet, FindSet and UnionSet operations have been shown to be respectively O(1), O(α(v)) and O(α(v)), where α(v) is the inverse Ackermann function on

Algorithm 5: Lexicographic Min Cut

Inputs : G = (V, E) and α 1 , α 2 ∈ V, with E = {e i , i = 1, . . . , n} in decreasing order Output:

Γ LMC Γ LMC ← ∅ for v ∈ V do MakeSet(v) end for e ∈ E in decreasing order do e = (v 1 , v 2) ∈ V × V r 1 ← FindSet(v 1), r 2 ← FindSet(v 2) c 1 ← FindSet(α 1), c 2 ← FindSet(α 2) if {r 1 , r 2 } = {c 1 , c 2 } then Γ LMC ← Γ LMC ∪ e else UnionSet(r 1 , r 2) end end
the cardinal of the vertex set [START_REF] Endre | Worst-case analysis of set union algorithms[END_REF]. Assuming sorted edges as input of the algorithm -which is performed in O(n ln(n)), the algorithm runs in O(nα(n)) time complexity.

Application to point cloud triangulation

In all that precedes, the order on simplices was not specified and one can wonder if choosing such an ordering makes the specialization of OCHP too restrictive for it to be useful. In this section, we give a concrete example where this restriction makes sense and provides a simple and elegant application to the problem of point cloud triangulation. Whereas all that preceded dealt with an abstract simplicial complex, we now consider a bijection between vertices and a set of points in Euclidean space, allowing to compute geometric quantities on simplices.

Simplicial ordering

Recent works have studied a characterization of the 2D Delaunay as a lexicographic minimum over 2-chains. Denote by R B (σ) the radius of the smallest enclosing ball and R C (σ) the radius of the circumcircle of a 2-simplex σ. Based on [START_REF] Cohen-Steiner | Regular triangulations as lexicographic optimal chains[END_REF][START_REF] Cohen-Steiner | Lexicographic optimal chains and manifold triangulations[END_REF], we define the total order on 2-simplices:

σ 1 ≤ σ 2 ⇐⇒      R B (σ 1) < R B (σ 2) or R B (σ 1) = R B (σ 2) and R C (σ 1) ≥ R C (σ 2) (5)
Under generic condition on the position of points, we can show this order is total. In what follows, the lexicographic order lex is induced by this order on simplices. The following proposition from [START_REF] Cohen-Steiner | Lexicographic optimal chains and manifold triangulations[END_REF] shows a strong link between the simplex ordering and the 2D Delaunay triangulation. Proposition 6.1 (Proposition 7.9 in [START_REF] Cohen-Steiner | Lexicographic optimal chains and manifold triangulations[END_REF]). Let P = {P 1 , . . . , P N } ⊂ R 2 with N ≥ 3 be in general position and let K P be the 2-dimensional full complex over P. Denote by β P ∈ C 1 (K P) the 1-chain made of edges belonging to the boundary of CH(P). If Γ min = min lex {Γ ∈ C 2 (K P) , ∂Γ = β P }, the simplicial complex |Γ min | support of Γ min is the Delaunay triangulation of P.

As the 2D Delaunay triangulation has some well-known optimality properties, such as maximizing the minimal angle, we can hope that using the same order to minimize 2-chains in dimension 3 will keep some of those properties. In fact, it has been shown that for a Čech or Vietoris-Rips complex, under strict conditions linking the point set sampling, the parameter of the complex and the reach of the underlying manifold of Euclidean space, the minimal lexicographic chain using the described simplex order is a triangulation of the sampled manifold [START_REF] Cohen-Steiner | Lexicographic optimal chains and manifold triangulations[END_REF]. Experimental results (Figure 1) show that this property remains true relatively far from these theoretical conditions.

Open surface triangulation

Using the Phat library [START_REF] Bauer | Phat -persistent homology algorithms toolbox[END_REF], we generate a Čech complex of the point cloud and the points of a provided cycle, with a sufficient parameter to capture the topology of the object [START_REF] Chazal | A sampling theory for compact sets in euclidean space[END_REF][START_REF] Attali | Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes[END_REF]. After constructing the 2-boundary, we apply the boundary reduction algorithm, slightly modified to calculate as well the transformation matrix V . We then apply Algorithm 4, and in the case the cycle is a boundary, we get a chain bounded by the provided cycle. We then apply Algorithm 3 to minimize the chain under imposed boundary. Figure 2 shows results of this method.

Closed surface triangulation

Using Algorithm 5 requires a strongly connected 3-pseudomanifold: we therefore use a 3D Delaunay triangulation, for its efficiency and non-parametric nature, using the CGAL library [START_REF] Jamin | 3D triangulations[END_REF], and complete it into a 3-sphere by connecting, for any triangle on the convex hull of the Delaunay triangulation, its dual edge to an "infinite" dual vertex.

Experimentally, sorting triangles does not require exact predicates: the R B and R C quantities can simply be calculated in fixed precision. The quasilinear complexity of Algorithm 5 makes it competitive in large point cloud applications (Figure 3). Outliers are naturally ignored and, being parameter free, the algorithm adapts to non uniform point densities.

The choice of α 1 and α 2 defines the location of the closed separating surface. We can guide the algorithm by interactively adding multiple α 1 and α 2 regions as depicted in Figure 4. Algorithm 5 requires to be slightly modified to take as input multiple α 1 , α 2 : after creating all sets with MakeSet, we need to combine all α 1 sets together, and all α 2 sets together. The algorithm remains unchanged for the rest.

Algorithm 2 :

 2 Total reduction algorithm Inputs : A d-chain Γ, the reduced boundary matrix R for i ← m to 1 do if Γ[i] = 0 and ∃j ∈ [1, n] with low(j) = i in R then Γ ← Γ + R j end end Proposition 3.5. Algorithm 2 finds the total reduction of a given d-chain in O(m 2) time complexity.

2 .

 2 Algorithm 3 computes the solution for Problem 4.1 in O(m 2) time complexity.

Definition 5 . 1 .Definition 5 . 2 .Definition 5 . 3 .Problem 5 . 1 .

 51525351 A d-pseudomanifold is a pure d-dimensional simplicial complex for which each (d -1)-face has exactly two d-dimensional cofaces. The dual graph of a d-pseudomanifold M is the graph whose vertices are in oneto-one correspondence with the d-simplices of M and whose edges are in one-to-one correspondence with (d -1)-simplices of M : an edge e connects two vertices v 1 and v 2 of the graph if and only if e corresponds to the (d -1)-face with cofaces corresponding to v 1 and v 2 . A strongly connected d-pseudomanifold is a d-pseudomanifold whose dual graph is connected.Given a strongly connected (d + 1)-pseudomanifold M and τ 1 = τ 2 two (d + 1)-simplices of M, we consider a special case of Problem 3.1 where K = M \ {τ 1 , τ 2 } and A = ∂τ 1 : Given a strongly connected (d + 1)-pseudomanifold M with a total order on the d-simplices and two distinct (d + 1)-simplices (τ 1 , τ 2) of M, find:

Proposition 5 . 7 .

 57 Γ min is solution of Problem 5.1 if and if only its dual 1-chain Γmin is solution of Problem 5.2 on the dual graph G(M) of M where τ1 and τ2 are respective dual vertices of τ 1 and τ 2 .

Lemma 5 . 8 .

 58 Consider Γ LMC solution of Problem 5.2 for the graph G = (V, E) and α 1 , α 2 ∈ V. Let e 0 be an edge in V × V such that e 0 < min{e ∈ E}. Then:(a) The solution for (V, E ∪ {e 0 }) is either Γ LMC or Γ LMC ∪ {e 0 }. (b) Γ LMC ∪ {e 0 } is solution for (V, E ∪ {e 0 }) if and only if α 1 and α 2 are connected in (V, E ∪ {e 0 } \ Γ LMC).

Figure 1 :

 1 Figure 1: Watertight reconstructions under different perturbations. Under small perturbations (first two images from the left), the reconstruction is a triangulation of the sampled manifold. A few non-manifold configurations appear however under larger perturbations (Rightmost image).

Figure 2 :

 2 Figure 2: Open surface triangulations under imposed boundaries (red cycles).

Figure 3 :Figure 4 :

 34 Figure 3: Closed surface triangulation of 440K points in 7.33 seconds. Beside the point cloud, the only user input is one inner tetrahedron.

 a 0 , . . . , a i , . . . , a d] where the symbol a i means the vertex a i is deleted from the array. The kernel of the boundary operator Z d = Ker ∂ d is called the group of d-cycles and the image of the operator B d = Im ∂ p+1 is the group of d-boundaries. We say two d-chains A and A are homologous if A -A = ∂ d+1 B, for some (d + 1)-chain B.

In order to avoid to introduce non essential formal definitions, the coboundary operator is defined over chains since, for finite simplicial complexes, the canonical inner product defines a natural bijection between chains and cochains.