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LEAVE PIMA INDIANS ALONE: BINARY REGRESSION AS A BENCHMARK FOR BAYESIAN COMPUTATION

Whenever a new approach to perform Bayesian computation is introduced, a common practice is to showcase this approach on a binary regression model and datasets of moderate size. This paper discusses to which extent this practice is sound. It also reviews the current state of the art of Bayesian computation, using binary regression as a running example. Both sampling-based algorithms (importance sampling, MCMC and SMC) and fast approximations (Laplace and EP) are covered. Extensive numerical results are provided, some of which might go against conventional wisdom regarding the effectiveness of certain algorithms. Implications for other problems (variable selection) and other models are also discussed.

Introduction

The field of Bayesian computation seems hard to track these days, as it is blossoming in many directions. MCMC (Markov chain Monte Carlo) remains the main approach, but it is no longer restricted to Gibbs sampling and Hastings-Metropolis, as it includes more advanced, Physics-inspired methods, such as HMC (Hybrid Monte Carlo, [START_REF] Neal | MCMC using Hamiltonian dynamics[END_REF] and its variants [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF][START_REF] Shahbaba | Split Hamiltonian Monte Carlo[END_REF][START_REF] Hoffman | The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian monte carlo[END_REF]. On the other hand, there is also a growing interest for alternatives to MCMC, such as SMC (Sequential Monte Carlo, e.g. Del Moral et al., 2006), nested sampling [START_REF] Skilling | Nested sampling for general Bayesian computation[END_REF], or the fast approximations that originated from machine learning, such as Variational Bayes (e.g. Bishop, 2006, Chap. 10), andEP (Expectation Propagation, Minka, 2001). Even Laplace approximation has resurfaced in particular thanks to the INLA methodology [START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations[END_REF].

One thing however that all these approaches have in common is they are almost always illustrated by a binary regression example; see e.g. the aforementioned papers. In other words, binary regressions models, such as probit or logit, are a de facto benchmark for Bayesian computation.

This remark leads to several questions. Are binary regression models a reasonable benchmark for Bayesian computation? Should they be used then to develop a 'benchmark culture' in Bayesian computation, like in e.g. optimisation? And practically, which of these methods actually 'works best' for approximating the posterior distribution of a binary regression model?

The objective of this paper is to answer these questions. As the ironic title suggests, our findings shall lead to us be critical of certain current practices. Specifically, most papers seem content with comparing some new algorithm with Gibbs sampling, on a few small datasets, such as the well-known Pima Indians diabetes dataset (8 covariates). But we shall see that, for such datasets, approaches that are even more basic than Gibbs sampling are actually hard to beat. In other words, datasets considered in the literature may be too toy-like to be used as a relevant benchmark. On the other hand, if ones considers larger datasets (with say 100 covariates), then not so many approaches seem to remain competitive.

We would also like to discuss how Bayesian computation algorithms should be compared. One obvious criterion is the error versus CPU time trade-off; this implies discussing which posterior quantities one may be need to approximate. A related point is whether the considered method comes with a simple way to evaluate the numerical error. Other criteria of interest are: (a) how easy to implement is the considered method? (b) how generic is it? (does changing the prior or the link function require a complete rewrite of the source code?) (c) to which extent does it require manual tuning to obtain good performances? (d) is it amenable to parallelisation? Points (a) and (b) are rarely discussed in Statistics, but relate to the important fact that, the simpler the program, the easier it is to maintain, and to make it bug-free. Regarding point (c), we warn beforehand that, as a matter of principle, we shall refuse to manually tune an algorithm on a per dataset basis. Rather, we will discuss, for each approach, some (hopefully reasonable) general recipe for how to choose the tuning parameters. This has two motivations. First, human time is far more valuable that computer time: [START_REF] Cook | Time exchange rate[END_REF] mentions that one hour of CPU time is today three orders of magnitude less expensive than one hour of pay for a programmer (or similarly a scientist). Second, any method requiring too much manual tuning through trial and error may be practically of no use beyond a small number of experts.

Finally, we also hope this paper may serve as an up to date review of the state of Bayesian computation. We believe this review to be timely for a number of reasons. First, as already mentioned, because Bayesian computation seems to develop currently in several different directions. Second, and this relates to criterion (d), the current interest in parallel computation [START_REF] Lee | On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods[END_REF][START_REF] Suchard | Understanding GPU programming for statistical computation: Studies in massively parallel massive mixtures[END_REF] may require a re-assessment of Bayesian computational methods: method A may perform better than method B on a single core architecture, while performing much worse on a parallel architecture. Finally, although the phrase 'big data' seems to be a tired trope already, it is certainly true that datasets are getting bigger and bigger, which in return means that statistical methods needs to be evaluated on bigger and bigger datasets. To be fair, we will not really consider in this work the kind of huge datasets that pertain to 'big data', but we will at least strive to move away from the kind of 'ridiculously small' data encountered too often in Bayesian computation papers.

The paper is structured as follows. Section 2 covers certain useful preliminaries on binary regression models. Section 3 discusses fast approximations, that is, deterministic algorithms that offer an approximation of the posterior, at a lower cost than sampling-based methods. Section 4 discusses 'exact', sampling-based methods. Section 5 is the most important part of the paper, as it contains an extensive numerical comparison of all these methods. Section 6 discusses variable selection. Section 7 discusses our findings, and their implications for both end users and Bayesian computation experts.

Preliminaries: binary regression models

2.1. Likelihood, prior. The likelihood of a binary regression model have the generic expression (2.1)

p(D|β) = n D i=1 F (y i β T x i )
where the data D consist of n responses y i ∈ {-1, 1} and n vectors x i of p covariates, and F is some CDF (cumulative distribution function) that transforms the linear form y i β T x i into a probability. Taking F = Φ, the standard normal CDF, gives the probit model, while taking F = L, the logistic CDF, L(x) = 1/ (1 + e -x ), leads to the logistic model. Other choices could be considered, such as e.g. the CDF of a Student distribution (robit model) to better accommodate outliers. We follow [START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF]'s recommendation to standardise the predictors in a preliminary step: non-binary predictors have mean 0 and standard deviation 0.5, binary predictors have mean 0 and range 1, and the intercept (if present) is set to 1. This standardisation facilitates prior specification: one then may set up a "weakly informative" prior for β, that is a proper prior that assigns a low probability that the marginal effect of one predictor is outside a reasonable range. Specifically, we shall consider two priors p(β) in this work: (a) the default prior recommended by [START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF], a product of independent Cauchys with centre 0 and scale 10 for the constant predictor, 2.5 for all the other predictors (henceforth, the Cauchy prior); and (b) a product of independent Gaussians with mean 0 and standard deviation equal to twice the scale of the Cauchy prior (henceforth the Gaussian prior).

Of course, other priors could be considered, such as e.g. Jeffreys' prior [START_REF] Firth | Bias reduction of maximum likelihood estimates[END_REF], or a Laplace prior [START_REF] Kabán | On Bayesian classification with Laplace priors[END_REF]. Our main point in considering the two priors above is to determine to which extent certain Bayesian computation methods may be prior-dependent, either in their implementation (e.g. Gibbs sampling) or in their performance, or both. In particular, one may expect the Cauchy prior to be more difficult to deal with, given its heavy tails.

2.2.

Posterior maximisation (Gaussian prior). We explain in this section how to quickly compute the mode, and the Hessian at the mode, of the posterior:

p(β|D) = p(β)p(D|β) p(D) , p(D) = ˆRd p(β)p(D|β) dβ,
where p(β) is one of the two priors presented in the previous section, and Z(D) is the marginal likelihood of the data (also known as the evidence). These quantities will prove useful later, in particular to tune certain of the considered methods.

The two first derivatives of the log-posterior density may be computed as:

∂ ∂β log p(β|D) = ∂ ∂β log p(β) + ∂ ∂β log p(D|β), ∂ 2 ∂β∂β T log p(β|D) = ∂ 2 ∂β∂β T log p(β) + ∂ 2 ∂β∂β T log p(D|β) where ∂ ∂β log p(D|β) = n D i=1 (log F ) (y i β T x i )y i x i ∂ 2 ∂β∂β T log p(D|β) = n D i=1 (log F ) (y i β T x i )x i x T i
and (log F ) and (log F ) are the two first derivatives of log F . Provided that log F is concave, which is the case for probit and logit regressions, the Hessian of the log-likelihood is clearly a negative definite matrix. Moreover, if we consider the Gaussian prior, then the Hessian is of the log-posterior is also negative (as the sum of two negative matrices, as Gaussian densities are log-concave). We stick to the Gaussian prior for now.

This suggests the following standard approach to compute the MAP (maximum a posterior) estimator, that is the point β MAP that maximises the posterior density p(β|D): to use Newton-Raphson, that is, to iterate (2.2)

β (new) = β (old) -H -1 ∂ ∂β log p(β (old) |D)
until convergence is reached; here H is Hessian of the log posterior at β = β (old) , as computed above. The iteration above corresponds to finding the zero of a local, quadratic approximation of the log-posterior. Newton-Raphson typically works very well (converges in a small number of iterations) when the function to maximise is concave. A variant of this approach is We note two points in passing. First, one may obtain the MLE (maximum likelihood estimator) by simply taking p(β) = 1 above (i.e. a Gaussian with infinite variance). But the MLE is not properly defined when complete separation occurs, that is, there exists a hyperplane that separates perfectly the two outcomes: y i β T CS x i ≥ 0 for some β CS and all i ∈ 1 : N . This remark gives an extra incentive for performing Bayesian inference, or at least MAP estimation, in cases where complete separation may occur, in particular when the number of covariates is large [START_REF] Firth | Bias reduction of maximum likelihood estimates[END_REF][START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF].

Variants of Newton-Raphson may be obtained by adapting automatically the step size (e.g. update is

β (new) = β (old) -λH -1 ∂ ∂β log p(β (old) |D)
, and step size λ is determined by line search) or replacing the Hessian H by some approximation. Some of these algorithms such as IRLS (iterated reweighted least squares) have a nice statistical interpretation. For our purposes however, these variants seem to show roughly similar performance, so we will stick to the standard version of Newton-Raphson.

Posterior maximisation (Cauchy prior).

The log-density of the Cauchy prior is not concave:

log p(β) = - p j=1 log (πσ j ) - p j=1 log(1 + β 2 j /σ 2 j )
for scales σ j chosen as explained in Section 2.1. Hence, the corresponding logposterior is no longer guaranteed to be concave, which in turn means that Newton-Raphson might fail to converge. However, we shall observe that, for most of the datasets considered in this paper, Newton-Raphson does converge quickly even for our Cauchy prior. In each case, we used as starting point for the Newton-Raphson iterations the OLS (ordinary least square) estimate. We suspect what happens is that, for most standard datasets, the posterior derived from a Cauchy prior remains log-concave, at least in a region that encloses the MAP estimator and our starting point.

Fast approximation methods

This section discusses fast approximation methods, that is methods that are deterministic, fast (compared to sampling-based methods), but which comes with an approximation error which is difficult to assess. These methods include the Laplace approximation, which was popular in Statistics before the advent of MCMC methods, but also recent Machine Learning methods, such as EP (Expectation Propagation, [START_REF] Minka | Expectation Propagation for approximate Bayesian inference[END_REF]VB (Variational Bayes, e.g. Bishop, 2006, Chap. 10). We will focus on Laplace and EP; for VB, see [START_REF] Consonni | Mean-field variational approximate Bayesian inference for latent variable models[END_REF] for a discussion of why VB (or at least a certain standard version of VB, known as mean field VB) may not work so well for probit models.

Concretely, we will focus on the approximation of the following posterior quantities: the marginal likelihood p(D), as this may be used in model choice; and the marginal distributions p(β i |D) for each component β i of β. Clearly these are the most commonly used summaries of the posterior distribution, and other quantities, such as the posterior expectation of β, may be directly deduced from them.

Finally, one should bear in mind that such fast approximations may be used as a preliminary step to calibrate an exact, more expensive method, such as those described in Section 4.

3.1. Laplace approximation. The Laplace approximation is based on a Taylor expansion of the posterior log-density around the mode β MAP :

log p(β|D) ≈ log p(β MAP |D) - 1 2 (β -β MAP ) T Q (β -β MAP ) ,
where Q = -H, i.e. minus the Hessian of log p(β|D) at β = β MAP ; recall that we explained how to compute these quantities in Section 2.2. One may deduce a Gaussian approximation of the posterior by simply exponentiating the equation above, and normalising:

(3.1) q L (β) = N p β; β MAP , Q -1 := (2π) -p/2 |Q| 1/2 exp - 1 2 (β -β MAP ) T Q (β -β MAP ) .
In addition, since for any β,

p(D) = p(β)p(D|β) p(β|D)
one obtains an approximation to the marginal likelihood p(D) as follows:

p(D) ≈ Z L (D) := p(β MAP )p(D|β MAP ) (2π) -p/2 |Q| 1/2
.

From now on, we will refer to this particular Gaussian approximation q L as the Laplace approximation, even if this phrase is sometimes used in Statistics for higherorder approximations, as discussed in the next Section. We defer to Section 3.5 the discussion of the advantages and drawbacks of this approximation scheme.

3.2. Improved Laplace, connection with INLA. Consider the marginal distributions p(β j |D) = ´p(β|D)dβ -j for each component β j of β, where β -j is β minus β j . A first approximation may be obtained by simply computing the marginals of the Laplace approximation q L . An improved (but more expensive) approximation may be obtained from:

p(β j |D) ∝ p(β)p(D|β) p(β -j |β j , D) which suggests to choose a fine grid of β j values (deduced for instance from q L (β)), and for each β j value, compute a Laplace approximation of p(β -j |β j , D), by computing the mode β-j (β j ) and the Hessian Ĥ(β j ) of log p(β -j |β j , D), and then approximate (up to a constant)

p(β j |D) ≈ q IL (β j ) ∝ p β(β j ) p(D| β(β j )) Ĥ(β j ) 1/2
where β(β j ) is the vector obtained by inserting β i at position i in β-j (β j ), and IL stands for "Improved Laplace". One may also deduce posterior expectations of functions of β j in this way. See also [START_REF] Tierney | Accurate approximations for posterior moments and marginal densities[END_REF], [START_REF] Tierney | Fully exponential Laplace approximations to expectations and variances of non-positive functions[END_REF] for higher order approximations for posterior expectations.

We note in passing the connection to the INLA scheme of [START_REF] Rue | Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations[END_REF]. INLA applies to posteriors p(θ, x|D) where x is a latent variable such that p(x|θ, D) is close to a Gaussian, and θ is a low-dimensional hyper-parameter. It constructs a grid of θ-values, and for each grid point θ j , it computes an improve Laplace approximation of the marginals of p(x|θ j , D). In our context, β may be identified to x, θ to an empty set, and INLA reduces to the improved Laplace approximation described above.

3.3. The EM algorithm of [START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF] (Cauchy prior). [START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF] recommend against the Laplace approximation for a Student prior (of which our Cauchy prior is a special case), because, as explained in Section 2.3, the corresponding log-posterior is not guaranteed to be concave, and this might prevent Newton-Raphson to converge. In our simulations however, we found the Laplace approximation to work reasonably well for a Cauchy prior. We now briefly describe the alternative approximation scheme proposed by [START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF] for Student priors, which we call for convenience Laplace-EM.

Laplace-EM is based on the well-known representation of a Student distribution, β j |σ 2 j ∼ N 1 (0, σ 2 j ), σ 2 j ∼ Inv -Gamma(ν/2, s j ν/2); take ν = 1 to recover our Cauchy prior. Conditional on σ 2 = (σ 2 1 , . . . , σ 2 p ), the prior on β is Gaussian, hence, for a fixed σ 2 one may implement Newton-Raphson to maximise the logdensity of p(β|σ 2 , D), and deduce a Laplace (Gaussian) approximation of the same distribution.

Laplace-EM is an approximate EM (Expectation Maximisation, [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] algorithm, which aims at maximising in σ 2 = (σ 2 1 , . . . , σ 2 p ) the marginal posterior distribution p(σ 2 |D) = ´p(σ 2 , β|D) dβ. Each iteration involves an expectation with respect to the intractable conditional distribution p(β|σ 2 , D), which is Laplace approximated, using a single Newton-Raphson iteration. When this approximate EM algorithm has converged to some value σ 2 , one more Newton-Raphson iteration is performed to compute a final Laplace approximation of p(β|σ 2 , D), which is then reported as a Gaussian approximation to the posterior. We refer the readers to [START_REF] Gelman | A weakly informative default prior distribution for logistic and other regression models[END_REF] for more details on Laplace-EM.

3.4. Expectation-Propagation. Like Laplace, Expectation Propagation (EP, [START_REF] Minka | Expectation Propagation for approximate Bayesian inference[END_REF] generates a Gaussian approximation of the posterior, but it is based on different ideas. The consensus in machine learning seems to be that EP provides a better approximation than Laplace (e.g. [START_REF] Nickisch | Approximations for Binary Gaussian Process Classification[END_REF]; the intuition being that Laplace is 'too local' (i.e. it fitted so at to match closely the posterior around the mode), while EP is able to provide a global approximation to the posterior.

Starting from the decomposition of the posterior as product of (n D + 1) factors:

p(β|D) = 1 p(D) n D i=0 l i (β), l i (β) = F (y i β T x i ) for i ≥ 1,
and l 0 is the prior, l 0 (β) = p(β), EP computes iteratively a parametric approximation of the posterior with the same structure

(3.2) q EP (β) = n D i=0 1 Z i q i (β).
Taking q i to be an unnormalised Gaussian densities written in natural exponential form

q i (β) = exp - 1 2 β T Q i β + β T r i ,
one obtains for q EP a Gaussian with natural parameters Q = n i=0 Q i and r i = n i=0 r i ; note that the more standard parametrisation of Gaussians may be recovered by taking

Σ = Q -1 , µ = Q -1 r.
Other exponential families could be considered for q and the q i 's, see e.g. [START_REF] Seeger | Expectation Propagation for Exponential Families[END_REF], but Gaussian approximations seems the most natural choice here.

An EP iteration consists in updating one factor q i , or equivalently (Z i , Q i , r i ), while keeping the other factors as fixed, by moment matching between the hybrid distribution h(β) ∝ l i (β)

j =i q j (β)
and the global approximation q defined in (3.2): compute

Z h = ˆli (β) j =i q j (β) dβ µ h = 1 Z h ˆβl i (β) j =i q j (β) dβ Σ h = 1 Z h ˆββ T l i (β) j =i q j (β) dβ
and set

Q i = Σ -1 h -Q -i , r i = Σ -1 h µ h -r -i , log Z i = log Z h -Ψ(r, Q) + Ψ(r -i , Q -i ) where r -i = j =i r j , Q -i = j =i Q j , and ψ(r, Q) is the normalising constant of a Gaussian distribution with natural parameters (r, Q), ψ(r, Q) = ˆRp exp - 1 2 β T Qβ + β T r dβ = - 1 2 log |Q/2π| + 1 2 r T Qr.
In practice, EP proceeds by looping over sites, updating each one in turn until convergence is achieved.

To implement EP for binary regression models, two points must be addressed. First, how to compute the hybrid moments? For the probit model, these moments may be computed exactly, see the supplement, while for the other links function (such as logistic), numerical (one-dimensional) quadrature may be used. Second, how to deal with the prior? If the prior is Gaussian, one may simply set q 0 to the prior, and never update q 0 in the course of the algorithm. For a Cauchy prior, q 0 is simply treated as an extra site.

EP being a fairly recent method, it is currently lacking in terms of supporting theory, both in terms of algorithmic convergence (does it converge in a finite number of iterations?), and statistical convergence (does the resulting approximation converges in some sense to the true posterior distribution as n D → +∞?). On the other hand, there is mounting evidence that EP works very well in many problems; again see e.g. Nickisch and Rasmussen (e.g. 2008).

3.5. Discussion of the different approximation schemes. Laplace and its variants have complexity O(n D + p 3 ), while EP has complexity O(n D p 3 ). Incidentally, one sees that the number of covariates p is more critical than the number of instances n D in determining how 'big' (how time-intensive to process) is a given dataset. This will be a recurring point in this paper.

The p 3 term in both complexities is due to the p×p matrix operations performed by both algorithms; e.g. the Newton-Raphson update (2.2) requires solving a linear system of order p. EP requires to perform such p 3 operations at each site (i.e. for each single observation), hence the O(n D p 3 ) complexity, while Laplace perform such operations only once per iteration. EP is therefore expected to be more expensive than Laplace.

This remark may be mitigated as follows. First, one may modify EP so as to update the global approximation only at the end of each iteration (complete pass over the data). The resulting algorithm [START_REF] Van Gerven | Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior[END_REF]) may be easily implemented on parallel hardware: simply distribute the n D factors over the processors. Even without parallelisation, parallel EP requires only one single matrix inversion per iteration.

Second, the 'improved Laplace' approximation for the marginals described in Section 3.1 requires to perform quite a few basic Laplace approximations, so its speed advantage compared to standard EP essentially vanishes.

Points that remain in favour of Laplace is that it is simpler to implement than EP, and the resulting code is very generic: adapting to either a different prior, or a different link function (choice of F in 2.1), is simply a matter of writing a function that evaluates the corresponding function. We have seen that such an adaptation requires more work in EP, although to be fair the general structure of the algorithm is not model-dependent. On the other hand, we shall see that EP is often more accurate, and works in more examples, than Laplace; this is especially the case for the Cauchy prior.

Exact methods

We now turn to sampling-based methods, which are 'exact', at least in the limit: one may make the approximation error as small as desired, by running the corresponding algorithm for long enough. We will see that all of these algorithms requires some form of calibration that requires prior knowledge on the shape of the posterior distribution. Since the approximation methods covered in the previous section are faster by orders of magnitude than sampling-based methods, we will assume that a Gaussian approximation q(β) (say, obtained by Laplace or EP) has been computed in a preliminary step.

4.1. Our gold standard: Importance sampling. Let q(β) denote a generic approximation of the posterior p(β|D). Importance sampling (IS) is based on the trivial identity

p(D) = ˆp(β)p(D|β) dβ = ˆq(β) p(β)p(D|β) q(β) dβ
which leads to the following recipe: sample β 1 , . . . , β N ∼ q, then compute as an estimator of p(D)

(4.1) Z N = 1 N N n=1 w(β n ), w(β) := p(β)p(D|β) q(β) .
In addition, since ˆϕ(β)p(β|D) dβ = ´ϕ(β)q(β)w(β) dβ ´q(β)w(β) dβ one may approximate any posterior moment as

(4.2) ϕ N = N n=1 w(β n )ϕ(β n ) N n=1 w(β n )
.

Approximating posterior marginals is also straightforward; one may for instance use kernel density estimation on the weighted sample

(β n , w(β n )) N n=1 .
Concerning the choice of q, we will restrict ourselves to the Gaussian approximations generated either from Laplace or EP algorithm. It is sometimes recommended to use a Student distribution instead, as a way to ensure that the variance of the above estimators is finite, but we did not observe any benefit for doing so in our simulations.

It is of course a bit provocative to call IS our gold standard, as it is sometimes perceived as an obsolete method. We would like to stress out however that IS is hard to beat relative to most of the criteria laid out in the introduction:

• because it is based on IID sampling, assessing the Monte Carlo error of the above estimators is trivial: e.g. the variance of Z N may be estimated as N -1 times the empirical variance of the weights w(β n ). The autonormalised estimator 4.2 has asymptotic variance

E q w(β) 2 {ϕ(β) -µ(ϕ)} 2 , µ(ϕ) = ˆϕ(β)p(β|D) dβ
which is also trivial to approximate from the simulated β n 's. • Other advantages brought by IID sampling are: (a) importance sampling is easy to parallelize; and (b) importance sampling is amenable to QMC (Quasi-Monte Carlo) integration, as explained in the following section. • Importance sampling offers an approximation of the marginal likelihood p(D) at no extra cost. • Code is simple and generic. Of course, what remains to determine is whether importance sampling does well relative to our main criterion, i.e. error versus CPU trade-off. We do know that IS suffers from a curse of dimensionality: take both q and and the target density π to be the density of IID distributions: q(β) = p j=1 q 1 (β j ), π(β) = p j=1 π 1 (β j ); then it is easy to see that the variance of the weights grows exponentially with p. Thus we expect IS to collapse when p is too large; meaning that a large proportion of the β n gets a negligible weight. On the other hand, for small to moderate dimensions, we will observe surprising good results; see Section 5. We will also present below a SMC algorithm that automatically reduces to IS when IS performs well, while doing something more elaborate in more difficult scenarios.

The standard way to assess the weight degeneracy is to compute the effective sample size [START_REF] Kong | Sequential imputation and Bayesian missing data problems[END_REF],

ESS = N n=1 w(β n ) 2 N n=1 w(β n ) 2 ∈ [1, N ],
which roughly approximates how many simulations from the target distribution would be required to produce the same level of error. In our simulations, we will compute instead the efficiency factor EF, which is simply the ratio EF = ESS/N . 4.2. Improving importance sampling by Quasi-Monte Carlo. Quasi-Monte Carlo may be seen as an elaborate variance reduction technique: starting from the Monte Carlo estimators Z N and ϕ N , see (4.1) and (4.2), one may re-express the simulated vectors as functions of uniform variates u n in [0, 1] d ; for instance:

β n = µ + Cζ n , ζ n = Φ -1 (u n )
where Φ -1 is Φ -1 , the N (0, 1) inverse CDF, applied component-wise. Then, one replaces the N vectors u n by a low-discrepancy sequence; that is a sequence of N vectors that spread more evenly over [0, 1] d ; e.g. a Halton or a Sobol' sequence. Under appropriate conditions, QMC error converges at rate O(N -1+ ), for any > 0, to be compared with the standard Monte Carlo rate O P (N -1/2 ). We refer to [START_REF] Lemieux | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF] for more background on QMC, as well as how to construct QMC sequences.

Oddly enough, the possibility to use QMC in conjunction with importance sampling is very rarely mentioned in the literature; see however [START_REF] Hörmann | Quasi importance sampling[END_REF]. More generally, QMC seems often overlooked in Statistics. We shall see however that this simple IS-QMC strategy often performs very well.

One drawback of IS-QMC is that we lose the ability to evaluate the approximation error in a simple manner. A partial remedy is to use randomised Quasi-Monte Carlo (RQMC), that is, the u n are generated in such a way that (a) with probability one, u 1:N is a QMC point set; and (b) each vector u n is marginally sampled from [0, 1] d . Then QMC estimators that are empirical averages, such as

Z N = N -1 N
n=1 w(β n ) become unbiased estimators, and their error may be assessed through the empirical variance over repeated runs. Technically, estimators that are ratios of QMC averages, such as ϕ N , are not unbiased, but for all practical purposes their bias is small enough that assessing error through empirical variances over repeated runs remains a reasonable approach. 4.3. MCMC. The general principle of MCMC (Markov chain Monte Carlo) is to simulate a Markov chain that leaves invariant the posterior distribution p(β|D); see [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] for a general overview. Often mentioned drawbacks of MCMC simulation are (a) the difficulty to parallelize such algorithms (although see e.g. [START_REF] Jacob | Using Parallel Computation to Improve Independent Metropolis˘Hastings Based Estimation[END_REF] for an attempt at this problem); (b) the need to specify a good starting point for the chain (or alternatively to determine the burn-in period, that is, the length of the initial part of the chain that should be discarded) and (c) the difficulty to assess the convergence of the chain (that is, to determine if the distribution of β t at iteration t is sufficiently close to the invariant distribution p(β|D)).

To be fair, these problems are not so critical for binary regression models. Regarding (b), one may simply start the chain from the posterior mode, or from a draw of one of the Gaussian approximations covered in the previous section. Regarding (c) for most standard datasets, MCMC converges reasonably fast, and convergence is easy to assess visually. The main issue in practice is that MCMC generates correlated random variables, and these correlations inflate the Monte Carlo variance. 4.3.1. Gibbs sampling. Consider the following data-augmentation formulation of binary regression:

z i = β T x i + i y i = sgn(z i )
where z = (z 1 , . . . , z n D ) T is a vector of latent variables, and assume for a start that i ∼ N (0, 1) (probit regression). One recognises p(β|z, D) as the posterior of a linear regression model, which is tractable (for an appropriate prior). This suggests to sample from p(β, z|D) using Gibbs sampling [START_REF] Albert | Bayesian analysis of binary and polychotomous response data[END_REF]: i.e. iterate the two following steps: (a) sample from z|β, D; and (b) sample from β|z, D.

For (a), the z i 's are conditionally independent, and follows a truncated Gaussian distribution

p(z i |β, D) ∝ N 1 z i ; β T x i , 1 1 {z i y i > 0}
which is easy to sample from [START_REF] Chopin | Fast simulation of truncated Gaussian distributions[END_REF]. For Step (b) and a Gaussian prior N p (0, Σ prior ), one has, thanks to standard conjugacy properties:

β|z, D ∼ N p (µ post (z), Σ post ) , Σ -1 post = Σ -1 prior + xx T , µ post (z) = Σ -1 post xz
Algorithm 1 Hastings-Metropolis iteration

Input: β Output: β 1: Sample β ∼ κ(β |β). 2: With probability 1 ∧ r, r = p(β )p(D|β )κ(β|β ) p(β)p(D|β)κ(β |β) , set β = β ; otherwise set β = β.
where x is the n × p matrix obtained by stacking the x T i . Note that Σ post and its inverse need to be computed only once, hence the complexity of a Gibbs iteration is O(p 2 ), not O(p 3 ).

The main drawback of Gibbs sampling is that it is particularly not generic: its implementation depends very strongly on the prior and the model. Sticking to the probit case, switching to another prior requires deriving a new way to update β|z, D. For instance, for a prior which is a product of Students with scales σ j (e.g. our Cauchy prior), one may add extra latent variables, by resorting to the well-known representation: β j |s j ∼ N 1 (0, νσ 2 j /s j ), s j ∼ Chi 2 (ν); with ν = 1 for our Cauchy prior. Then the algorithm has three steps: (a) an update of the z i 's, exactly as above; (b) an update of β, as above but with Σ prior replaced by the diagonal matrix with elements νσ 2 j /s j , j = 1, . . . , p; and (c) an (independent) update of the p latent variables s j , with s j |β, z, D ∼ Gamma (1 + ν)/2, 1 + νβ 2 j /σ 2 j /2 . The complexity of Step (b) is now O(p 3 ), since Σ prior and Σ post must be recomputed at each iteration (although some speed-up may be obtained by using Sherman-Morrison formula).

Of course, considering yet another type of prior would require deriving another strategy for sampling β. Then if one turns to logistic regression, things get rather complicated. In fact, deriving an efficient Gibbs sampler for logistic regression is a topic of current research; see [START_REF] Holmes | Bayesian auxiliary variable models for binary and multinomial regression[END_REF]; Frühwirth-Schnatter and Frühwirth (2009); [START_REF] Gramacy | Simulation-based regularized logistic regression[END_REF]; [START_REF] Polson | Bayesian inference for logistic models using pólya˘gamma latent variables[END_REF]. In a nutshell, the two first papers use the same data augmentation as above, but with i ∼ Logistic(1) written as a certain mixture of Gaussians (infinite for the first paper, finite but approximate for the second paper), while [START_REF] Polson | Bayesian inference for logistic models using pólya˘gamma latent variables[END_REF] use instead a representation of a logistic likelihood as an infinite mixture of Gaussians, with a Polya-Gamma as the mixing distribution. Each representation leads to introducing extra latent variables, and discussing how to sample their conditional distributions.

Since their implementation is so model-dependent, the main justification for Gibbs samplers should be their greater performance relative to more generic algorithms. We will investigate if this is indeed the case in our numerical section. 4.3.2. Hastings-Metropolis. Hastings-Metropolis consists in iterating the step described as Algorithm 1. Much like importance sampling, Hastings-Metropolis is both simple and generic, that is, up to the choice of the proposal kernel κ(β |β) (the distribution of the proposed point β , given the current point β). A naive approach is to take κ(β |β) independent of β, κ(β |β) = q(β ), where q is some approximation of the posterior. In practice, this usually does not work better than importance sampling based on the same proposal, hence this strategy is hardly used.

Algorithm 2 Leap-frog step

Input: (β, α) Output: (β 1 , α 1 ) 1: α 1/2 ← α -2 ∇ β E(β) 2: β 1 ← β + α 1/2 3: α 1 ← α 1/2 -2 ∇ β E(β 1 )
A more usual strategy is to set the proposal kernel to a random walk: κ(β |β) = N p (β, Σ prop ). It is well known that the choice of Σ prop is critical for good performance. For instance, in the univariate case, if Σ prop is too small, the chain moves slowly, while if too large, proposed moves are rarely accepted.

A result from the optimal scaling literature (e.g. [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF]) is that, for a N p (0, I p ) target, Σ prop = (λ 2 /p)I p with λ = 2.38 is asymptotically optimal, in the sense that as p → ∞, this choice leads to the fastest exploration. Since the posterior of a binary regression model is reasonably close to a Gaussian, we adapt this result by taking Σ prop = (λ 2 /p)Σ q in our simulations, where Σ q is the covariance matrix of a (Laplace or EP) Gaussian approximation of the posterior. This strategy seems validated by the fact we obtain acceptance rates close to the optimal rate, as given by [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF].

The bad news behind this optimality result is that the chain requires O(p) steps to move a O(1) distance. Thus random walk exploration tends to become slow for large p. This is usually cited as the main motivation to develop more elaborate MCMC strategies, such as HMC, which we cover in the following section. 4.3.3. HMC. Hamiltonian Monte Carlo (HMC, also known as Hybrid Monte Carlo, [START_REF] Duane | Hybrid Monte Carlo[END_REF] is a new type of MCMC algorithm, where one is able to perform several steps in the parameter space before determining if the new position is accepted or not. Consequently, HMC is able to make much bigger jumps in the parameter space than standard Metropolis algorithms. See [START_REF] Neal | MCMC using Hamiltonian dynamics[END_REF] for an excellent introduction.

Consider the pair (β, α), where β ∼ p(β|D), and α ∼ N p (0, M -1 ), thus with joint un-normalised density exp {-H(β, α)}, with

H(β, α) = E(β) + 1 2 α T M α, E(β) = -log {p(β)p(D|β)} .
The physical interpretation of HMC is that of a particle at position β, with velocity α, potential energy E(β), kinetic energy 1 2 α T M α, for some mass matrix M , and therefore total energy given by H(β, α). The particle is expected to follow a trajectory such that H(β, α) remains constant over time.

In practice, HMC proceeds as follows: first, sample a new velocity vector, α ∼ N p (0, M -1 ). Second, move the particle while keeping the Hamiltonian H constant; in practice, discretisation must be used, so L steps of step-size are performed through leap-frop steps; see Algorithm 2 which describes one such step. Third, the new position, obtained after L leap-frog steps is accepted or rejected according to probability 1 ∧ exp {H(β, α) -H(β , α )}; see Algorithm 3 for a summary. The validity of the algorithm relies on the fact that a leap-frog step is "volume preserving"; that is, the deterministic transformation (β, α) → (β 1 , α 1 ) has Jacobian one. This is why the acceptance probability admits this simple expression.

The tuning parameters of HMC are M (the mass matrix), L (number of leapfrog steps), and (the stepsize). For M , we follow Neal (2010)'s recommendation and take M -1 = Σ q , an approximation of the posterior variance (again obtained from either Laplace or EP). This is equivalent to rescaling the posterior so as to Algorithm 3 HMC iteration Input: β Output: β 1: Sample momentum α ∼ N p (0, M ). 2: Perform L leap-frog steps (see Algorithm 2), starting from (β, α); call (β , α ) the final position.

3: With probability 1 ∧ r, r = exp {H(β, α) -H(β , α )} set β = β ; otherwise set β = β.
have a covariance matrix close to identity. In this way, we avoid the bad mixing typically incurred by strong correlations between components.

The difficulty to choose L and seems to be the main drawback of HMC. The performance of HMC seems very sensitive to these tuning parameters, yet clear guidelines on how to choose them seem currently lacking. A popular approach is to fix L to some value, and to use vanishing adaptation [START_REF] Andrieu | A tutorial on adaptive MCMC[END_REF] to adapt so as to target acceptance rate of 0.65 (the optimal rate according to the formal study of HMC by [START_REF] Beskos | Optimal tuning of the hybrid Monte Carlo algorithm[END_REF]: i.e. at iteration t, take = t , with t = t-1 -η t (R t -0.65), η t = t -κ , κ ∈ (1/2, 1) and R t the acceptance rate up to iteration t. The rationale for fixing L is that quantity may be interpreted as a 'simulation length', i.e. how much distance one moves at each step; if too small, the algorithm may exhibit random walk behaviour, while if too large, it may move a long distance before coming back close to its starting point. Since the spread of is already taken into account through M -1 = Σ q , we took L = 1 in our simulations. 4.3.4. NUTS and other variants of HMC. [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF] proposed an interesting variation of HMC, where the mass matrix M is allowed to depends on β; e.g. M (β) is set to the Fisher information of the model. This allows the corresponding algorithm, called RHMC (Riemanian HMC), to adapt locally to the geometry of the target distribution. The main drawback of RHMC is that each iteration involves computing derivatives of M (β) with respect to β, which is very expensive, especially if p is large. For binary regression, we found RMHC to be too expensive relative to plain HMC, even when taking into account the better exploration brought by RHMC. This might be related to the fact that the posterior of a binary regression model is rather Gaussian-like and thus may not require such a local adaptation of the sampler.

We now focus on NUTS (No U-Turn sampler, Hoffman and Gelman, 2013), a variant of HMC which does not require to specify a priori L, the number of leap-frog steps. Instead, NUTS aims at keeping on doing such steps until the trajectory starts to loop back to its initial position. Of course, the difficulty in this exercise is to preserve the time reversibility of the simulated Markov chain. To that effect, NUTS constructs iteratively a binary tree whose leaves correspond to different velocity-position pairs (α, β) obtained after a certain number of leapfrog steps. The tree starts with two leaves, one at the current velocity-position pair, and another leaf that corresponds to one leap-frop step, either in the forward or backward direction (i.e. by reversing the sign of velocity); then it iteratively doubles the number of leaves, by taking twice more leap frog steps, again either in the forward or backward direction. The tree stops growing when at least one leaf corresponds to a "U-turn"; then NUTS chooses randomly one leaf, among those leaves that would have generated the current position with the same binary tree mechanism; in this way reversibility is preserved. Finally NUTS moves the new position that corresponds to the chosen leaf.

We refer the readers to [START_REF] Hoffman | The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian monte carlo[END_REF] for a more precise description of NUTS. Given its complexity, implementing directly NUTS seems to require more efforts than the other algorithms covered in this paper. Fortunately, the STAN package (http://mc-stan.org/) provides a C++ implementation of NUTS which is both efficient and user-friendly: the only required input is a description of the model in a probabilistic programming language similar to BUGS. In particular, STAN is able to automatically derive the log-likelihood and its gradient, and no tuning of any sort is required from the user. Thus, we will use STAN to assess NUTS in our numerical comparisons. 4.4. Sequential Monte Carlo. Sequential Monte Carlo (SMC) is a class of algorithms for approximating iteratively a sequence of distributions π t , t = 0, . . . , T , using importance sampling, resampling, and MCMC steps. We focus here on the non-sequential use of SMC [START_REF] Neal | Annealed importance sampling[END_REF][START_REF] Chopin | A sequential particle filter for static models[END_REF][START_REF] Del Moral | Sequential Monte Carlo samplers[END_REF], where one is only interested in approximating the final distribution π T (in our case, set to the posterior p(β|D)), and the previous π t 's are designed so as to allow for a smooth progression from some π 0 , which is easy to sample from, to π T .

At iteration t, SMC produces a set of weighted particles (simulations

) (β n , w n ) N n=1
that approximates π t , in the sense that

1 N n=1 w n N n=1 w n ϕ(β n ) → E πt [ϕ(β)]
as N → +∞. At time 0, one samples β n ∼ π 0 , and set w n = 1. To progress from π t-1 to π t , one uses importance sampling: weights are multiplied by ratio π t (β n )/π t-1 (β n ). When the variance of the weights gets too large (which indicates that too few particles contribute significantly to the current approximation), one resamples the particles: each particle gets reproduced O n times, where O n ≥ 0 is random, and such that E(O n ) = N w n / N m=1 w m , and N n=1 O n = N with probability one. In this way, particles with a low weights are likely to die, while particles with a large weight get reproduced many times. Finally, one may reintroduce diversity among the particles by applying one (or several) MCMC steps, using a MCMC kernel that leaves invariant the current distribution π t .

We focus in this paper on tempering SMC, where the sequence

π t (β) ∝ q(β) 1-δt {p(β)p(D|β)}
δt corresponds to a linear interpolation (on the log-scale) between some distribution π 0 = q, and π T (β) = p(β|D), our posterior. This is a convenient choice in our case, as we have at our disposal some good approximation q (either from Laplace or EP) of our posterior. A second advantage of tempering SMC is that one can automatically adapt the "temperature ladder" δ t [START_REF] Jasra | Inference for Lévy driven stochastic volatility models via Sequential Monte Carlo[END_REF]. Algorithm 4 describes a tempering SMC algorithm based on such an adaptation scheme: at each iteration, the next distribution π t is chosen so that the efficiency factor (defined in Section 4.1) of the importance sampling step from π t-1 to π t equals a pre-defined level τ ∈ (0, 1); a default value is τ = 1/2. Another part of Algorithm 4 which is easily amenable to automatic calibration is the MCMC step. We use a random walk Metropolis step, i.e. Algorithm 1 with proposal kernel κ(β |β) = N p (β, Σ prop ), but with Σ prop calibrated to the empirical variance of the particles Σ: Σ prop = λ Σ, for some λ. Finally, one may also automatically calibrate the number m of MCMC steps, as in [START_REF] Ridgway | Computation of Gaussian orthant probabilities in high dimension[END_REF], but in our simulations we simply took m = 3.

Algorithm 4 tempering SMC Operations involving index n must be performed for all n ∈ 1 : N . 0: Sample β n ∼ q(β) and set δ ← 0.

1: Let, for δ ∈ [δ, 1], EF(δ) = 1 N N n=1 w γ (β n ) 2 N n=1 w γ (β n ) 2 , u δ (β) = p(β)p(D|β) q(β) δ .
If EF(1) ≥ τ , stop and return (β n , w n ) n=1:N with w n = u 1 (β n ); otherwise, use the bisection method (Press et al., 2007, Chap. 9) In the end, one obtains essentially a black-box algorithm. In practice, we shall often observe that, for simple datasets, our SMC algorithm automatically reduces to a single importance sampling step, because the efficiency factor of moving from the initial distribution q to the posterior is high enough. In that case, our SMC sampler performs exactly as standard importance sampling.

Finally, we note that the reweighting step and the MCMC steps of Algorithm 4 are easy to parallelise.

Numerical study

The point of this section is to compare numerically the different methods discussed in the previous sections, first on several datasets of standard size (that are representative of previous numerical studies), then in a second time on several bigger datasets.

We focus on the following quantities: the marginal likelihood of the data, p(D), and the p marginal posterior distributions of the regression coefficients β j . Regarding the latter, we follow [START_REF] Faes | Variational Bayesian inference for parametric and nonparametric regression with missing data[END_REF] in defining the 'marginal accuracy' of approximation q for component j to be

MA j = 1 - 1 2 ˆ+∞ -∞ |q(β j ) -p(β j |D)| dβ j .
This quantity lies in [0, 1], and is scale-invariant. Since the true marginals p(β j |D) are not available, we will approximate them through a Gibbs sampler run for a very long time. To give some scale to this criterion, assume q(

β j ) = N 1 (β j ; µ 1 , σ 2 ), p(β j |D) = N 1 (β j ; µ 2 , σ 2 ), then MA j is 2Φ(-δ/2) ≈ 1 -0.4 × δ for δ = |µ 1 -µ 2 |/σ
small enough; e.g. 0.996 for δ ≈ 0.01, 0.96 for δ ≈ 0.1.

In our results, we will refer to the following four prior/model 'scenarios': Gaussian/probit, Gaussian/logit, Cauchy/probit, Cauchy/logit, where Gaussian and Cauchy refer to the two priors discussed in Section 2.1. All the algorithms have been implemented in C++, using the Armadillo and Boost libraries, and run on a standard desktop computer (except when explicitly stated). Results for NUTS were obtained by running STAN (http://mc-stan.org/) version 2.4.0. q q q q q q q q 0.00 is available on the web page of [START_REF] Gelman | Data analysis using regression and multilevel/hierarchical models[END_REF]'s book). These datasets are representative of the numerical studies found in the literature. In fact, it is a superset of the real datasets considered in [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF], [START_REF] Shahbaba | Split Hamiltonian Monte Carlo[END_REF], [START_REF] Holmes | Bayesian auxiliary variable models for binary and multinomial regression[END_REF] and also (up to one dataset with 5 covariates) [START_REF] Polson | Bayesian inference for logistic models using pólya˘gamma latent variables[END_REF]. In each case, an intercept have been included; i.e. p is the number of predictors plus one.

Datasets of moderate size.

5.1.1. Fast Approximations. We compare the four approximation schemes described in Section 3: Laplace, Improved Laplace, Laplace EM, and EP. We concentrate on the Cauchy/logit scenario for two reasons: (i) Laplace EM requires a Student prior; and (ii) Cauchy/logit seems the most challenging scenario for EP, as (a) a Cauchy prior is more difficult to deal with than a Gaussian prior in EP ; and (b) contrary to the probit case, the site update requires some approximation; see Section 3.4 for more details. Box-plots of marginal accuracies across the p dimensions, for the four approximation schemes, and four selected datasets; plots for remaining datasets are in the supplement. For the sake of readability, scale of y-axis varies across plots.

Left panel of Fig. 5.1 plots the marginal accuracies of the four approximation schemes across all components and all datasets; Fig. 5.2 does the same, but separately for four selected datasets; results for the remaining datasets are available in the supplement.

EP seems to be the most accurate method on these datasets: marginal accuracy is about 0.99 across all components for EP, while marginal accuracy of the other approximation schemes tend to be lower, and may even drop to quite small values; see e.g. the German dataset, and the left tail in the left panel of Fig. 5.1.

EP also fared well in terms of CPU time: it was at most seven times as intensive as standard Laplace across the considered datasets, and about 10 to 20 times faster than Improved Laplace and Laplace EM. As expected (see Section 3.5). Of course, the usual caveats apply regarding CPU time comparison, and how they may depend on the hardware, the implementation, and so on.

We also note in passing the disappointing performance of Laplace EM, which was supposed to replace standard Laplace when the prior is Student, but which actually performs not as well as standard Laplace on these datasets.

We refer the reader to the supplement for similar results on the three other scenarios, which are consistent with those above. In addition, we also represent the approximation error of EP and Laplace for approximating the log-evidence in the right panel of Fig. 5.1. Again, EP is found to be more accurate than Laplace for most datasets (except for the Breast dataset).

To conclude, it seems that EP may be safely be used as a complete replacement of sampling-based methods on such datasets, as it produces nearly instant results, and the approximation error along all dimensions is essentially negligible. 5.1.2. Importance sampling, QMC. We now turn to importance sampling (IS), which we deemed our "gold standard" among sampling-based methods, because of its ease of use and other nice properties as discussed in Section 4.1. We use N = 5 × 10 5 samples, and a Gaussian EP proposal. (Results with a Laplace proposal are roughly similar.) We consider first the Gaussian/probit scenario, because this is particularly favorable to Gibbs sampling; see next section. Table 2. Performance of importance sampling (IS), and QMC importance sampling (IS-QMC), on all datasets, in Gaussian/probit scenario: efficiency factor (EF), CPU time (in seconds), speed gain when using multi-threading Intel hyper-threaded quad core CPU (Speed gain MT), and efficiency gain of QMC (see text).

We see that all these efficiency factors are all close to one, which means IS works almost as well as IID sampling would on such datasets. Further improvement may be obtained by using either parallelization, or QMC (Quasi-Monte Carlo, see Section 4.2). Table 2 reports the speed-up factor obtained when implementing multi-threading on our desktop computer which has a multi threading quad core CPU (hence 8 virtual cores). We also implemented IS on an Amazon EC2 instance with 32 virtual CPUs, and obtained speed-up factors about 20, and running times below 2s.

Finally, Table 2 also reports the MSE improvement (i.e. MSE ratio of IS relative to IS-QMC) obtained by using QMC, or more precisely RQMC (randomised QMC), based on a scrambled Sobol' sequence (see e.g. [START_REF] Lemieux | Monte Carlo and Quasi-Monte Carlo Sampling[END_REF]. Specifically, the table reports the median MSE improvement for the p posterior expectations (first column), and the MSE improvement for the evidence (second column). The improvement brought by RQMC varies strongly across datasets. The efficiency gains brought by parallelization and QMC may be combined, because the bulk of the computation (as reported by a profiler) is the N likelihood evaluations, which are trivial to parallelize.

It is already clear that other sampling-based methods do not really have a fighting chance on such datasets, but we shall compare them in the next section for the sake of completeness. See also the supplement for results for other scenarios, which are very much in line with those above. 5.1.3. MCMC schemes. In order to compare the different sampling-based methods, we define the IRIS (Inefficiency Relative to Importance Sampling) criterion, for a given method M and a given posterior estimate, as follows:

MSE M M SE IS × CPU IS CPU M
where MSE M (resp. MSE IS ) is the mean square error of the posterior estimate obtained from method M (resp. from importance sampling), and CPU M the CPU time of method M (resp. importance sampling). The comparison is relative to importance sampling without parallelisation or quasi-Monte Carlo sampling. In terms of posterior estimates, we consider the expectation and variance of each posterior marginal p(β j |D). We observe that, in both cases, IRIS does not vary much across the p components, so we simply report the median of these p values. Fig 5 .3 reports the median IRIS across all datasets. We refer the reader to Section 4.3 for how we tuned these MCMC algorithms. The first observation is that all these MCMC schemes are significantly less efficient than importance sampling on such datasets. The source of inefficiency seems mostly due to the autocorrelations of the simulated chains (for Gibbs or random walk Metropolis), or, equivalently, the number of leap-frog steps performed at each iteration in HMC and NUTS. See the supplement for ACF's (Autocorrelation plots) to support this statement. Second, HMC and NUTS do not perform significantly better than random-walk Metropolis. As already discussed, HMC-type algorithms are expected to outperform random walk algorithms as p → +∞. But the considered datasets seem too small to give evidence to this phenomenon, and should not be considered as reasonable benchmarks for HMC-type algorithms (not to mention again that these algorithms are significantly outperformed by IS on such datasets). We note in passing that it might be possible to get better performance for HMC by finely tuning the quantities and L on per dataset basis. We have already explained in the introduction why we think this is bad practice, and we also add at this stage that the fact HMC requires so much more effort to obtain good performance (relative to other MCMC samplers) is a clear drawback.

Regarding Gibbs sampling, it seems a bit astonishing that an algorithm specialised to probit regression is not able to perform better than more generic approach on such simple datasets. Recall that the Gaussian/probit case is particularly favourable to Gibbs, as explained in Section 4.3.1. See the supplement for a comparison of MCMC schemes in other scenarios than Gaussian/probit; results are roughly similar, except that Gibbs is more significantly outperformed by other methods, as expected.

5.2. Bigger datasets. Finally, we turn our attention to the bigger datasets summarised by Table 3. These datasets not only have more covariates (than those of the previous section), but also stronger correlations between these covariates (especially Sonar and Musk). We consider the probit/Gaussian scenario.

Regarding fast approximations, we observe again that EP performs very well, and better than Laplace; see Figure 5.4. It is only for DNA (180 covariates) that the EP approximation starts to suffer.

Regarding sampling-based methods, importance sampling may no longer be used as a reference, as the effective sample size collapses to a very small value for these datasets. We replace it by the tempering SMC algorithm described in Section 4.4. Moreover, we did not manage to calibrate HMC so as to obtain reasonable performance in this setting. Thus, among sampling-based algorithms, the four remaining contenders are: Gibbs sampling, NUTS, RWHM (random walk Hastings-Metropolis), and tempering SMC. Recall that the last two are calibrated with the approximation provided by EP.

Figure 5.5 reports the "effective sample size" of the output of these algorithms when run for the same fixed CPU time (corresponding to 5 × 10 5 iterations of RWHM), for the p posterior expectations (left panels), and the p posterior variances (right panels); here "effective sample size" is simply the posterior variance divided by the MSE of the estimate (across 50 independent runs of the same algorithm).

No algorithm seems to vastly outperform the others consistently across the three datasets. If anything, RWMH seems to show consistently best or second best performance. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0.85 0.90 0.95 1.00 EP Laplace value (a) Musk q q q q q q 0.85 Still, these results offer the following insights. Again, we see that Gibbs sampling, despite being a specialised algorithm, does not outperform significantly more generic algorithms. Recall that the probit/Gaussian scenario is very favourable to Gibbs sampling; in other scenarios (results not shown), Gibbs is strongly dominated by other algorithms.

More surprisingly, RWHM still performs well despite the high dimension. In addition, RHHM seems more robust than SMC to an imperfect calibration; see the DNA example, where the error of the EP approximation is greater.

On the other hand, SMC is more amenable to parallelisation, hence on a parallel architecture, SMC would be likely to outperform the other approaches. q q q q q q q q q q q q q q q q q q q q q q q q q q q 0 2000 4000 6000
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Variable selection

We discuss in this section the implications of our findings on variable selection. The standard way to formalise variable selection is to introduce as a parameter the binary vector γ ∈ {0, 1}

p , and to define the likelihood

p(D|β, γ) = n D i=1 F (y i β T γ x γ,i )
where β γ (resp. x γ,i ) is the vector of length |γ| that one obtains by excluding from β (resp. x i ) the components j such that γ j = 0. Several priors may be considered for this problem [START_REF] Chipman | The practical implementation of Bayesian model selection[END_REF], but for simplicity, we will take p(β, γ) = p(β)p(γ) where p(β) is either the Cauchy prior or the Gaussian prior discussed in Section 2.1, and p(γ) is the uniform distribution with respect to the set {0, 1} p , p(γ) = 2 -p . Computationally, variable selection is more challenging than parameter estimation, because the posterior p(β, γ|D) is a mixture of discrete and continuous components. If p is small, one may simply perform a complete enumeration: for all the 2 p possible values of γ, approximate p(D|γ) using e.g. importance sampling. If p is large, one may adapt the approach of [START_REF] Schäfer | Sequential monte carlo on large binary sampling spaces[END_REF], as described in the next sections.

6.1. SMC algorithm of [START_REF] Schäfer | Sequential monte carlo on large binary sampling spaces[END_REF]. In linear regression,

y i = β T γ x γ,i + ε i , ε i ∼ N 1 (0, σ 2
), the marginal likelihood p(D|γ) is available in close form (for a certain class of priors). [START_REF] Schäfer | Sequential monte carlo on large binary sampling spaces[END_REF] use this property to construct a tempering SMC sampler, which transitions from the prior p(γ) to the posterior p(γ|D), through the tempering sequence π t (γ) ∝ p(γ)p(D|γ) δt , with δ t growing from 0 to 1. This algorithm has the same structure as Algorithm 4 (with the obvious replacements of the β's by γ's and so on.) The only difference is the MCMC step used to diversify the particles after resampling. Instead of a random walk step (which would be ill-defined on a discrete space), [START_REF] Schäfer | Sequential monte carlo on large binary sampling spaces[END_REF] use a Metropolis step based on an independent proposal, constructed from a sequence of nested logistic regressions: proposal for first component γ 1 is Bernoulli, proposal for second component γ 2 , conditional on γ 1 , corresponds to a logistic regression with γ 1 and an intercept as covariates, and so on. The parameters of these p successive regressions are simply estimated from the current particle system. [START_REF] Schäfer | Sequential monte carlo on large binary sampling spaces[END_REF] show that their algorithm significantly outperform several MCMC samplers on datasets with more than 100 covariates. 6.2. Adaptation to binary regression. For binary regression models, p(D|γ) is intractable, so the approach of Schäfer and Chopin (2011) cannot be applied directly. On the other hand, we have seen that (a) both Laplace and EP may provide a fast approximation of the evidence p(D|γ); and (b) both importance sampling and the tempering SMC algorithm may provide an unbiased estimator of p(D|γ).

Based on these remarks, [START_REF] Schäfer | Monte Carlo methods for sampling high-dimensional binary vectors[END_REF] in his PhD thesis considered the following extension of the SMC algorithm of [START_REF] Schäfer | Sequential monte carlo on large binary sampling spaces[END_REF]: in the sequence π t (γ) ∝ p(γ)p(D|γ) δt , the intractable quantity p(D|γ) is simply replaced by an unbiased estimator (obtained with importance sampling and the Gaussian proposal corresponding to Laplace). The corresponding algorithm remains valid, thanks to pseudo-marginal arguments (see e.g. [START_REF] Andrieu | The pseudo-marginal approach for efficient Monte Carlo computations[END_REF]. Specifically, one may re-interpret the resulting algorithm as a SMC algorithm for a sequence of distribution of an extended space, such that marginal in γ is exactly the posterior 6.3. Numerical illustration. We now compare the proposed SMC approach with the Gibbs sampler of [START_REF] Holmes | Bayesian auxiliary variable models for binary and multinomial regression[END_REF] for sampling from p(β, γ|D), on the Musk dataset. Both algorithms were given the same CPU budget (15 minutes), and were run 50 times; see Figure 6.1. Clearly, the SMC sampler provides more reliable estimates of the inclusion probabilities p(γ j = 1|D) on such a big dataset. See also the PhD dissertation of [START_REF] Schäfer | Monte Carlo methods for sampling high-dimensional binary vectors[END_REF] for results consistent with those, on other datasets, and when comparing to the adaptive reversible jump sampler of [START_REF] Lamnisos | Adaptive Monte Carlo for Bayesian variable selection in regression models[END_REF].

6.4. Spike and slab. We also note in passing that a different approach to the variable selection problem is to assign a spike and slab prior to β [START_REF] George | Variable Selection via Gibbs Sampling[END_REF]:

p(β) = p j=1 λN 1 (β j ; 0, v 2 0 ) + (1 -λ)N 1 (β j ; 0, v 2 1 ) , v 2 0 v 2 1
where λ ∈ (0, 1), v 2 0 and v 2 1 are fixed hyper-parameters. This prior generates a continuous posterior (without point masses at β j = 0), which is easier to sample from than the discrete-continuous mixture obtained in the standard formulation of Bayesian variable selection. It would be interesting to see to which extent our discussion and findings extend to this particular type of posteriors; see for instance [START_REF] Hernández-Lobato | Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation[END_REF] for how to deal with such priors in EP.

Conclusion and extensions

7.1. Our main messages to users. Our first and perhaps most important message to end users is that Bayesian computation (for binary regression) is now sufficiently fast for routine use: if the right approach is used, results may be obtained near instantly on a standard computer, at least on simple datasets.

Concretely, as far as binary regression is concerned, our main recommendation is to always use EP. It is very fast, and its approximation error is negligible in most cases (for such models). EP requires some expertise to implement, but the second author will release shortly a R package that computes the EP approximation for any logit or probit model. The only drawback of EP is the current lack of theoretical support. We learnt however while finishing this manuscript that Simon Barthelmé and Guillaume Dehaene (personal communication) established that the error rate of EP is O(n -2 D ) in certain models (where n D is the sample size). This seems to explain why EP often performs so well.

In case one wishes to assess the EP error, by running in a second step some exact algorithm, we would recommend to use the SMC approach outlined in Section 4.4 (i.e. with initial particles simulated from the EP approximation). Often, this SMC sampler will reduce to a single importance sampling step, and will perform extremely well. Even when it does not, it should provide decent performance, especially if run on (and implemented for) a parallel architecture. Alternatively, on a single-core machine, random walk Metropolis is particularly simple to implement, and performs surprisingly well on high-dimensional data (when properly calibrated using EP). 7.2. Our main message to Bayesian computation experts. Our main message to Bayesian computation scientists was already in the title of this paper: leave Pima Indians alone, and more generally, let's all refrain from now on from using datasets and models that are too simple to serve as a reasonable benchmark.

To elaborate, let's distinguish between specialised algorithms and generic algorithms.

For algorithms specialised to a given model and a given prior (i.e. Gibbs samplers), the choice of a "benchmark" reduces to the choice of a dataset. It seems unfortunate that such algorithms are often showcased on small datasets (20 covariates or less), for which simpler, more generic methods perform much better. As a matter of fact, we saw in our simulations that even for bigger datasets Gibbs sampling does not seem to offer better performance than generic methods.

For generic algorithms (Metropolis, HMC, and so on), the choice of a benchmark amounts to the choice of a target distribution. A common practice in papers proposing some novel algorithm for Bayesian computation is to compare that algorithm with a Gibbs sampler on a binary regression posterior for a small dataset. Again, we see from our numerical study that this benchmark is of of limited interest, and may not be more informative than a Gaussian target of the same dimension. If one wishes to stick with binary regression, then datasets with more than 100 covariates should be used, and numerical comparisons should include at least a properly calibrated random walk Metropolis sampler. 7.3. Big data and the p 3 frontier. Several recent papers [START_REF] Wang | Parallelizing MCMC via Weierstrass sampler[END_REF][START_REF] Scott | Bayes and big data: The consensus monte carlo algorithm[END_REF][START_REF] Bardenet | On Markov chain Monte Carlo methods for tall data[END_REF] have approached the 'big data' problem in Bayesian computation by focussing on the big n D (many observations) scenario. In binary regression, and possibly in similar models, the big p problem (many covariates) seems more critical, as the complexity of most the algorithms we have discussed is O(n D p 3 ). Indeed, we do not believe that any of the methods discussed in this paper is practical for p 1000. The large p problem may be therefore the current frontier of Bayesian computation for binary regression.

Perhaps one way to address the large p problem is to make stronger approximations; for instance by using EP with an approximation family of sparse Gaussians. Alternatively, one may use a variable selection prior that forbids that the number of active covariates is larger than a certain threshold. 7.4. Generalising to other models. We suspect some of our findings may apply more generally to other models (such as certain generalised linear models), but, of course, further study is required to assess this statement.

On the other hand, there are two aspects of our study which we recommend to consider more generally when studying other models: parallelisation, and taking into account the availability of fast approximations. The former has already been discussed. Regarding the latter, binary regression models are certainly not the only models such that some fast approximations may be obtained, whether through Laplace, INLA, Variational Bayes, or EP. And using this approximation to calibrate sampling-based algorithms (Hastings-Metropolis, HMC, SMC, and so on) will often have a dramatic impact on the relative performance of these algorithms. Alternatively, one may also discover in certain cases that these approximations are sufficiently accurate to be used directly.

  to solve numerically in δ the equation EF(γ) = τ. 2: Resample according to normalised weights W n = w n / N m=1 w m , with w n = u δ (β n ); see the supplement for one such resampling algorithm. 3: Update the β n 's through m MCMC steps that leaves invariant π t (β), using e.g. Algorithm 1 with κ(β |β) = N p (β, Σ prop ), Σ prop = λ Σ, where Σ is the empirical covariance matrix of the resampled particles. 4: Set δ ← δ. Go to Step 1.
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 51 Figure5.1. Comparison of approximation schemes across all datasets of moderate size: marginal accuracies (left), and absolute error for log-evidence versus the dimension p (right); x-axis range of the left plot determined by range of marginal accuracies (i.e. marginal accuracy may drop below 0.4 for e.g. Laplace-EM).

  Figure5.2. Box-plots of marginal accuracies across the p dimensions, for the four approximation schemes, and four selected datasets; plots for remaining datasets are in the supplement. For the sake of readability, scale of y-axis varies across plots.

  Figure 5.3. IRIS (Inefficiency relative to importance sampling) across all datasets for MCMC schemes and Gaussian/probit scenario; left (resp. right) panel shows median IRIS when estimating the p posterior expectations (resp. the p posterior variances).
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 54 Figure 5.4. Marginal accuracies across the p dimensions of EP and Laplace, for datasets Musk, Sonar and DNA
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 55 Figure 5.5. Effective sample size for a fixed CPU time for sampling-based algorithms: posterior expectations (left), and posterior variances (right) for datasets (from top to bottom): Musk, Sonar, and ADN
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 61 Figure 6.1. Variation of estimated inclusion probabilities p(γ j = 1|D) over 50 runs for the p covariates of Musk dataset: median (red line), 80% confidence interval (white box); the black-box extends until the maximum value.

Table 1 .

 1 Table 1 lists the 7 datasets considered in this section (obtained from the UCI machine learning repository, except Elections, which Datasets of moderate size (from UCI repository, except Elections, from web-site of Gelman and Hill (2006)'s book): name (short and long version), number of instances n D , number of covariates p (including an intercept)

	Dataset	n D	p
	Pima (Indian diabetes)	532 8
	German (credit)	999 25
	Heart (Statlog)	270 14
	Breast (cancer)	683 10
	Liver (Indian Liver patient)	579 11
	Plasma (blood screening data) 32	3
	Australian (credit)	690 15
	Elections	2015 52

  Table 2 reports for each dataset the efficiency factor of IS (as defined in Section 4.1), the CPU time and two other quantities discussed below.

			IS		IS-QMC
	Dataset	EF	CPU	MT	MSE improv. MSE improv.
		= ESS/N	time	speed-up (expectation)	(evidence)
	Pima	99.5%	37.54 s	4.39	28.9	42.7
	German	97.9%	79.65 s	4.51	13.2	8.2
	Breast	82.9%	50.91 s	4.45	2.6	6.2
	Heart	95.2%	22.34 s	4.53	8.8	9.3
	Liver	74.2 %	35.93 s	4.76	7.6	11.3
	Plasma	90.0%	2.32 s	4.28	2.2	4.4
	Australian	95.6%	53.32 s	4.57	12	20.3
	Elections	21.39%	139.48 s	3.87	617.9	3.53

Table 3 .

 3 Datasets of larger size (from UCI repository): name, number of instances n D , number of covariates p (including an intercept)

	Dataset n D	p
	Musk	476 95
	Sonar	208 61
	DNA	400 180
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