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Convergence of sequential Quasi-Monte
Carlo smoothing algorithms

Mathieu Gerber∗ Nicolas Chopin†

Gerber and Chopin (2015) recently introduced Sequential quasi-Monte Carlo
(SQMC) algorithms as an efficient way to perform filtering in state-space
models. The basic idea is to replace random variables with low-discrepancy
point sets, so as to obtain faster convergence than with standard particle
filtering. Gerber and Chopin (2015) describe briefly several ways to extend
SQMC to smoothing, but do not provide supporting theory for this extension.
We discuss more thoroughly how smoothing may be performed within SQMC,
and derive convergence results for the so-obtained smoothing algorithms. We
consider in particular SQMC equivalents of forward smoothing and forward
filtering backward sampling, which are the most well-known smoothing tech-
niques. As a preliminary step, we provide a generalization of the classical
result of Hlawka and Mück (1972) on the transformation of QMC point sets
into low discrepancy point sets with respect to non uniform distributions. As
a corollary of the latter, we note that we can slightly weaken the assumptions
to prove the consistency of SQMC.
Keywords: Hidden Markov models; Low discrepancy; Particle filtering;

Quasi-Monte Carlo; Sequential quasi-Monte Carlo; Smoothing; State-space
models.

1. Introduction

State-space models are popular tools to model real life phenomena in many fields such as
Economics, Engineering and Neuroscience. These models are mainly used for extracting
information about a hidden Markov process (xt)t≥0 of interest from a set of observations
y0:T := (y0, . . . ,yT ). In practice, this typically translates to the estimation of p(xt|y0:t),
the distribution of xt given the data y0:t, 0 ≤ t ≤ T (called the filtering distribution),
and/or to p(x0:T |y0:T ) (called the smoothing distribution). However, these distributions
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are intractable in most cases, and require to be approximated in some way, the most
popular being particle filtering (Sequential Monte Carlo). See e.g. the books of Doucet
et al. (2001), Cappé et al. (2005) for more background on state-space models and particle
filters.
Recently, Gerber and Chopin (2015) introduced sequential quasi-Monte Carlo (SQMC)

as an efficient alternative to particle filtering. Essentially, SQMC amounts to replacing
the random variates generated by a particle filter with a QMC (low-discrepancy) point set;
that is a set ofN points that are selected so as to cover more evenly the space that random
variates would; see e.g. the books of Lemieux (2009), Leobacher and Pillichshammer
(2014) for more background on QMC.
Gerber and Chopin (2015) established that, for some constructions of RQMC (random-

ised QMC) point sets, the convergence rate of SQMC (with respect to N , the number
of simulations) is at worst OP (N−1/2), while it is OP (N−1/2) on the class of continuous
and bounded functions. (This of course compares favourably to the OP (N−1/2) rate of
particle filtering.) In addition, the numerical results of Gerber and Chopin (2015) show
that SQMC dramatically outperforms particle filtering in several applications.
One important question that remains however is how to use SQMC to obtain smoothing

estimates that converge asN → +∞. Smoothing is recognised as a more difficult problem
than filtering (Briers et al., 2010). Smoothing algorithms typically require extra steps
on top of particle filtering (such as a backward pass), and often cost O(N2) (but some
variants cost O(N), as discussed later).
This paper discusses existing smoothing algorithms, explains how they may be adapted

to SQMC, and presents convergence results for the corresponding SQMC smoothing
algorithms. We first study forward smoothing, where trajectories are carried forward in
the particle filter, and show that this approach leads to consistent estimates in SQMC.
Then, we derive a SQMC version of forward filtering backward sampling (where complete
trajectories are simulated from the positions simulated by a particle filter, see Godsill
et al., 2004), and establish convergence results for the so obtained smoothing estimates.
We also consider the marginal version of backward sampling, which usually allows for a
more precise estimation of marginal smoothing distributions.
The rest of this paper is organized as follows. Section 2 introduces the model and

the notations considered in this work, and give a short description of SQMC. Section 3
contains some preliminary results that will be needed to study SQMC smoothing. We
first present a new consistency result for the forward step, which has the advantage to rely
on weaker assumptions than in Gerber and Chopin (2015), and state a result relative
to the backward decomposition and SQMC estimation of the smoothing distribution.
Then, we provide a generalization of the classical result of Hlawka and Mück (1972) on
the transformation of QMC point sets into low discrepancy point sets with respect to
non uniform distributions that is essential to the analysis of QMC smoothing algorithms.
This section ends with some results on the conversion of discrepancies through the Hilbert
space filling curve. In Section 4 we establish the consistency of QMC forward smoothing
while our results on QMC forward-backward smoothing are given Section 5. In Section 6
a numerical study examines the performance of the QMC smoothing strategies discussed
in this work while Section 7 concludes.
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2. Preliminaries

2.1. Model and related notations

Let (xt)t≥0 a Markov chain, defined on a space X ⊆ Rd (equipped with Lebesgue meas-
ure), with initial distribution m0(dx0), transition kernel mt(xt−1,dxt), t ≥ 1, and let
(Gt)t≥0 a sequence of (measurable) potential functions, G0 : X → R+, Gt : X ×X → R+.
As in Gerber and Chopin (2015), and most of the QMC literature, we take X = [0, 1)d,
but see Section 3 of Gerber and Chopin (2015) for how to generalise our results to un-
bounded state spaces.
For this Feynman-Kac model (mt, Gt)t≥0, let Qt and Qt be the probability measures

on X such that, for any bounded measurable function ϕ : X → R,

Qt(ϕ) =
1

Zt−1
E

[
ϕ(xt)G0(x0)

t−1∏
s=1

Gs(xs−1,xs)

]

Qt(ϕ) =
1

Zt
E

[
ϕ(xt)G0(x0)

t∏
s=1

Gs(xs−1,xs)

]

Zt = E

[
G0(x0)

t∏
s=1

Gs(xs−1,xs)

]
where expectations are with respect to the law of Markov chain (xt), and empty products
equal one. Similarly, let Q̃t be the probability measure on X t+1 such that, for any
bounded test function ϕ : X t+1 → R,

Q̃t(ϕ) =
1

Zt
E

[
ϕ(x0:t)G0(x0)

t∏
s=1

Gs(xs−1,xs)

]
.

In the sequel, the notation 0 : t is used to denote the set of integers {0, . . . , t} and x0:t

denotes the collection {xs}ts=0. Similarly, in what follows we use the shorthand x1:N for
a collection {xn}Nn=1 of N points in Rd, and x1:N

0:t for collection {xn0:t}Nn=1 of N points in
R(t+1)d. Finally, for a probability measure π ∈ P(X ), with P(X ) the set of probability
measures on X absolutely continuous with respect to the Lebesgue measure, π(ϕ) denotes
the expectation of ϕ(x) under π.
To make more transparent the connection between this Feynman-Kac formulation and

state-space models, assume Markov chain (xt) is observed indirectly through yt, which
has conditional probability density fY (yt|xt) (with respect to an appropriate measure,
typically Lebesgue). If we take G0(x0) = fY (y0|x0), Gt(xt−1,xt) = fY (yt|xt) for t > 0,
Qt(dxt) becomes the filtering distribution (the law of xt|y0:t), Qt(dxt) the predictive
distribution (the law of xt|y0:t−1), and Q̃t(dx0:t), the object of interest in this work,
namely the smoothing distribution (the law of x0:t|y0:t). In addition, Zt is the marginal
likelihood of observations y0:t. In this case, Gt depends only on xt, but having a Gt that
depends on both xt−1 and xt makes it possible to apply our results to a more general
class of algorithms (such as those where the Markov transition used to simulate particles
differs from the Markov transition of the model).
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2.2. Extreme norm and QMC point sets

As in Gerber and Chopin (2015), our consistency results are stated in term of the extreme
norm, defined, for two probability measures π1 and π2 on [0, 1)d, by

‖π1 − π2‖E = sup
B∈B

[0,1)d

|π1(B)− π2(B)|

where

B[0,1)d = {B =
d∏
i=1

[ai, bi], 0 ≤ ai < bi < 1}.

Note that ‖πN − π‖E → 0 implies that πN (ϕ) → π(ϕ) for any bounded and continuous
function ϕ (by portmanteau lemma, see e.g. Lemma 2.2, p.6 of Van der Vaart 2007).
In words, consistency for the extreme norm implies consistency of estimates for test
functions ϕ that are bounded and continuous.

The extreme norm is natural in QMC contexts since it can be viewed as the general-
ization of the extreme discrepancy of a point set u1:N in [0, 1)d, defined by

D(u1:N ) = ‖S(u1:N )− λd‖E

where λd denotes the Lebesgue measure on Rd and S is the operator

S : u1:N → 1

N

N∑
n=1

δun .

The extreme discrepancy therefore measures how a point set spreads evenly over [0, 1)d

and is used to define formally QMC point sets. To be more specific, u1:N is a QMC
point set in [0, 1)d if D(u1:N ) = O(N−1(logN)d). Note that, for a sample u1:N of N
IID uniform random numbers in [0, 1)d, D(u1:N ) = O(N−1/2 log logN) almost surely
by the law of iterated logarithm (see e.g. Niederreiter, 1992, page 167). There exist
many constructions of QMC point sets in the literature (see Niederreiter, 1992; Dick and
Pillichshammer, 2010, for more details on this topic) and, although we write u1:N rather
than uN,1:N , u1:N may not necessarily be the N first points of a fixed sequence, i.e. one
may have uN,N−1 6= uN−1,N−1. However, it is worth keeping in mind that all the results
presented in this paper hold both for point sets and sequences.
Even if in this work we are mainly interested in consistency results (which hold for

deterministic point sets u1:N ), we will sometimes refer to randomized QMC (RQMC)
point sets. Formally, u1:N is RQMC point set if it is a QMC point set with probability
one and if, marginally, un ∼ U([0, 1)d) for all n ∈ 1 : N .

2.3. The Hilbert space-filling curve

The Hilbert space filling curve plays a key role in the construction and the analysis of
SQMC. This curve is a Hölder continuous fractal map H : [0, 1]→ [0, 1]d that fills com-
pletely [0, 1]d; see Figure 1 for a graphical depiction, and Appendix A for a presentation of
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m= 1 m= 2 m= 3 m= 4

Figure 1: First four iterates of sequence Hm, the limit of which is the Hilbert curve H,
for d = 2 (source: He and Owen (2014))

its mains properties. In what follows, we denote by h : [0, 1]d → [0, 1] its pseudo-inverse
which verifies, for any x ∈ [0, 1]d, H ◦ h(x) = x, and, for d = 1, we use the natural
convention that H and h are the identity mappings, i.e. H(x) = h(x) = x, ∀x ∈ [0, 1].
The Hilbert curve is not uniquely defined; in this work, we assume that H is such that
H(0) = 0 ∈ [0, 1]d (this is in fact the classical way to construct the Hilbert curve, see
e.g. Hamilton and Rau-Chaplin, 2008). This technical assumption is needed in order to
be consistent with the fact that we work with left-closed and right-opened hypercubes
since, in that case, h([0, 1)d) = [0, 1).

2.4. Rosenblatt transform

Another important technical tool for SQMC is the Rosenblatt transform. For a probab-
ility distribution π over [0, 1), Fπ denotes its CDF (cumulative distribution), and F−1

π

its inverse CDF; i.e. F−1
π = inf{x ∈ [0, 1) : F (x) ≥ u}. More generally, for a probability

distribution π over X = [0, 1)d, Fπ denotes the Rosenblatt transform, that is

Fπ(x) = (Fπ,1(x1), Fπ,2(x2|x1), . . . , Fπ,d(xd|x1:d−1))T , x = (x1, . . . , xd)
T ∈ X ,

where Fπ,1 is the CDF of the marginal distribution of the first component (relative to π),
and for i ≥ 2, Fπ,i(·|x1:i−1) is the CDF of component xi, conditional on (x1, . . . , xi−1),
again relative to π. The inverse of Fπ is denoted F−1

π . Note how the Rosenblatt transform
and its inverse define a monotonous map that transforms any distribution into a uniform
distribution, and vice-versa.
We overload this notation for Markov kernels: Fmt(xt−1, ·) is the the Rosenblatt trans-

form of probability distribution mt(xt−1,dxt) (for fixed xt−1 ∈ X ), and F−1
mt is defined

similarly.

2.5. Sequential quasi-Monte Carlo

The basic structure of SMC (Sequential Monte Carlo, also known as particle filtering)
algorithms is recalled as Algorithm 1. One sees from this description that SMC is a
class of iterative algorithms that use resampling and mutation steps to move from a
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Algorithm 1 SMC Algorithm
Generate (for n ∈ 1 : N) xn0 ∼ m0(dx0)
Compute (for n ∈ 1 : N) Wn

0 = G0(xn0 )/
∑N

m=1G0(xm0 )
for t = 1 to t = T do

Generate (for n ∈ 1 : N) unt ∼ U [0, 1) and set ant = F−1
t,N (unt ), where Ft,N (m) =∑N

n=1W
n
t 1(n ≤ m)

Generate (for n ∈ 1 : N) xnt ∼ mt(x̂
n
t−1, dxt), where x̂nt−1 = x

ant
t−1

Compute (for n ∈ 1 : N) Wn
t = Gt(x̂

n
t−1,x

n
t )/
∑N

m=1Gt(x̂
m
t−1,x

m
t )

end for

discrete approximation Q̂N
t (dxt) of Qt(dxt) to a discrete approximation Q̂N

t+1(dxt+1) of
Qt+1(dxt+1), where

Q̂N
t (dxt) =

N∑
n=1

Wn
t δxnt (dxt), t ∈ 0 : T.

A closer look at Algorithm 1 shows that, for t ≥ 1, the resampling and the mutation
steps together amounts to sampling from the (random) distribution on X 2 defined by

πNt (d(xt−1,xt)) = Q̂N
t−1 ⊗mt(d(xt−1,xt)) (1)

where, for a probability measure π ∈ P([0, 1)d1) and a kernel K : [0, 1)d1 → P([0, 1)d2),
the notation π ⊗ K(d(x1,x2)) denotes the probability measure π(dx1)K(x1,dx2) on
[0, 1)d1+d2 .
Based on this observation, the basic idea of SQMC is to replace the uniform random

numbers used at iteration t ≥ 1 of an SMC algorithm to sample from (1) by a QMC point
set u1:N

t of appropriate dimension. In the deterministic version of SQMC, the only known
property of u1:N

t is that its discrepancy converges to zero as N goes to infinity. Thus, we
must make sure that the transform applied to u1:N

t preserves consistency (relative the
extreme norm): i.e. D(u1:N )→ 0 implies that ‖ΓNt (u1:N )− πNt ‖E → 0, where ΓNt is the
chosen transformation.
When the state-space is univariate, Gerber and Chopin (2015) propose to use for ΓNt

the inverse Rosenblatt transformation of πNt described in the previous subsection, which
amounts to sample (x̂t−1, xt) from (1) as follows:

x̂t−1 = F−1

Q̂Nt−1

(ut), xt = F−1
mt (x̂t−1, vt), (ut, vt) ∼ U([0, 1)2).

However, when the state variable is multivariate (i.e. d > 1) this approach cannot be
directly used because in that case Q̂N

t−1(dxt−1) is a weighted sum of Dirac measures over
X ⊂ Rd.
To extend this approach to multidimensional state-space models, Gerber and Chopin

(2015) transform the multivariate distribution Q̂N
t−1(dxt−1) into a univariate distribution

Q̂N
t−1,h(dht−1) by applying the change of variable h : x ∈ X → [0, 1), where h is the

6



Algorithm 2 SQMC Algorithm
Generate a QMC point set u1:N

0 in [0, 1)d

Compute (for n ∈ 1 : N) xn0 = F−1
m0

(un0 )

Compute (for n ∈ 1 : N) Wn
0 = G0(xn0 )/

∑N
m=1G0(xm0 )

for t = 1 to t = T do
Generate a QMC point set u1:N

t in [0, 1)d+1, let unt = (unt ,v
n
t ), where unt ∈ [0, 1),

vnt ∈ [0, 1)d. Assume that, for all n,m ∈ 1 : N , n ≤ m =⇒ unt ≤ umt
Hilbert sort: find permutation σt−1 such that h(x

σt−1(1)
t−1 ) ≤ . . . ≤ h(x

σt−1(N)
t−1 )

Compute (for n ∈ 1 : N) ant−1 = F−1
t,N (unt ) where Ft,N (m) =

∑N
i=1W

σt−1(i)
t−1 I(i ≤ m)

Compute (for n ∈ 1 : N) xnt = F−1
mt (x̂nt−1,v

n
t ), where x̂nt−1 = x

ant−1

t−1

Compute (for n ∈ 1 : N) Wn
t = Gt(x̂

n
t−1,x

n
t )/
∑N

m=1Gt(x̂
m
t−1,x

m
t )

end for

pseudo-inverse of the Hilbert curve (see Section 3.4). Using this change of variable, the
resampling and mutation steps of SMC are equivalent to sampling from

πNt,h(d(ht−1,xt)) = Q̂N
t−1,h ⊗mt,h(d(ht−1,xt)) (2)

where mt,h(ht−1,xt) := mt(H(ht−1),xt). As for the univariate setting, one can generate
random variates form πNt,h(d(ht−1,xt)) using the inverse Rosenblatt transformation of
this distribution; that is, we can sample (ĥt−1,xt) from (2) as follows:

ĥt−1 = F−1

Q̂Nt−1,h

(ut), xt = F−1
mt (H(ĥt−1),vt), (ut,vt) ∼ U([0, 1)d+1).

The resulting SQMC algorithm, which is therefore based for t ≥ 1 on d+ 1-dimensional
QMC point sets u1:N

t , unt = (unt ,v
n
t ) ∈ [0, 1)d+1, is presented in Algorithm 2.

3. Preliminary results

3.1. Consistency of SQMC

The consistency of Algorithm 2 (as N → +∞, with respect to the extreme metric) was
established in Gerber and Chopin (2015, Theorem 5), under the assumption that Fmt is
Lipschitz. We generalise below this result to the case where Fmt is Hölder continuous,
as this generalisation will be needed later on when dealing with the backward step. This
also allows us to recall some of the assumptions that will be repeated throughout the
paper. For convenience, let Fmt(xt−1,xt) = Fm0(x0) when t = 0.

Theorem 1. Consider the set-up of Algorithm 2 where, for all t ∈ 0 : T , (u1:N
t )N≥1

is a sequence of point sets in [0, 1)dt , with d0 = d and dt = d + 1 for t > 0, such that
D(u1:N

t )→ 0 as N → +∞. Assume the following holds for all t ∈ 0 : T :

1. The xnt ’s are pairwise distinct: xnt 6= xmt for n 6= m ∈ 1 : N ;

7



2. Gt is continuous and bounded;

3. Fmt(xt−1,xt) is such that

a) For i ∈ 1 : d and for a fixed x′, the i-th coordinate of Fmt (x′,x) is strictly
increasing in xi ∈ [0, 1), the i-th coordinate of x;

b) Viewed as a function of x′ and x, Fmt (x′,x) is Hölder continuous;

c) For i ∈ 1 : d, mti(x
′, x1:i−1, dxi), the distribution of the component xi condi-

tional on (x1, .., xi−1) relative to mt(x
′, dx), admits a density pti(xi|x1:i−1,x

′)
with respect to the Lebesgue measure such that ‖pti(·|·)‖∞ < +∞.

4. Qt(dxt) = pt(xt)λd(dxt) where pt(xt) is a strictly positive bounded density.

For t ∈ 1 : T , let PNt,h = (h(x̂1:N
t−1),x1:N

t ). Then, under Assumptions 1-4, we have, for
t ∈ 1 : T , ∥∥S(PNt,h)−Qt−1,h ⊗mt,h

∥∥
E
→ 0, as N → +∞

and, for t ∈ 0 : T ,
‖Q̂N

t −Qt‖E → 0, as N → +∞.

The difference with Gerber and Chopin (2015, Theorem 5) is Assumption 3, where
3c was not needed but it was assumed that Fmt is a Lipschitz function. In this work,
Assumption 3c will be required to establish the validity of the backward step. Assumption
1 is a technical condition that is verified almost surely for the randomized version of
SQMC while assuming that Gt is bounded is standard in particle filtering (Del Moral,
2004). In our notations, we drop the dependence of point sets on N , i.e. we write
(x1:N )N≥1 rather than (xN,1:N )N≥1, although in full generality x1:N may not necessarily
be the N first points of a fixed sequence.
The proof of Theorem 1 is omitted since it can be directly deduced from the proof

of Gerber and Chopin (2015, Theorem 5) and from the generalization of the result of
Hlawka and Mück (1972, “Satz 2”) presented in the Section 3.3, which constitutes one of
the key ingredients to study the backward pass of SQMC.

3.2. Backward decomposition

Backward smoothing algorithms require that Markov kernel mt(xt−1, dxt) admits a
(strictly positive) probability density which may be computed pointwise; mt(xt−1,dxt) =
mt(xt−1,xt)λd(dxt), with mt(xt−1,dxt) > 0 (and λd being Lebesgue measure in our
case).
The backward decomposition of the smoothing distribution is (e.g. Del Moral et al.,

2010):

Q̃T (dx0:T ) = QT (dxT )

T∏
t=1

Mt,Qt−1(xt,dxt−1) (3)

8



where, for any π ∈ P(X ) and t ∈ 1 : T , Mt,π : X → P(X ) is the Markov kernel such
that

Mt,π(xt, dxt−1) := G̃t(xt−1,xt)π(dxt−1)

with
G̃t(xt−1,xt) :=

mt(xt−1,xt)Gt(xt−1,xt)´
X mt(x̃t−1,xt)Gt(x̃t−1,xt)π(dx̃t−1)

. (4)

As a preliminary result, we show that the plug-in estimate Q̃N
T of Q̃T , obtained by

replacing Qt with Q̂N
t in (3), is consistent for the extreme norm; see Appendix B.1 for a

proof.

Theorem 2. Consider the set-up of Algorithm 2, define for t ∈ 1 : T

Q̃N
t (dx0:t) = Q̂N

t (dxt)
t∏

s=1

M
s,Q̂Ns−1

(xs,dxs−1), (5)

and consider the following hypotheses:

(H1) G̃t is continuous and bounded, ‖G̃t‖∞ <∞;

(H2) FMt,Qt−1
(xt,xt−1) satisfies Assumptions 3a and 3b of Theorem 1 (i.e. replace mt

byMt,Qt−1 in these assumptions).

Then,

1. Under (H1) and the assumptions of Theorem 1, one has (for t ∈ 1 : T )

sup
xt∈[0,1)d

‖M
t,Q̂Nt−1

(xt,dxt−1)−Mt,Qt−1(xt,dxt−1)‖E → 0, as N → +∞. (6)

2. If (6) holds, and under (H2) and the assumptions of Theorem 1, one has (for
t ∈ 1 : T )

‖Q̃N
t − Q̃t‖E → 0, as N → +∞. (7)

The first result above does not have a clear interpretation, but it will be used as an
intermediate result later on.

3.3. A generalization of Satz 2 of Hlawka and Mück (1972)

Theorem 3 below generalizes Proposition ‘Satz 2’ of Hlawka and Mück (1972) to the
case where point sets in [0, 1)d are transformed through a Hölder continuous Rosenblatt
transformation; see Appendix B.2 for a proof.

Theorem 3. Let π be a probability measure on [0, 1)d and assume the following:

1. Viewed as a function of x, Fπ (x) is Hölder continuous with Hölder exponent κ ∈
(0, 1];

9



2. For i ∈ 1 : d, the i-th coordinate of Fπ (x) is strictly increasing in xi ∈ [0, 1), the
i-th coordinate of x;

3. For i ∈ 1 : d, πi(x1:i−1,dxi), the distribution of the component xi conditional on
(x1, .., xi−1) relative to π(dx), admits a density pi(xi|x1:i−1) with respect to the
Lebesgue measure such that ‖pi(·|·)‖∞ < +∞.

Let u1:N be a point set in [0, 1)d and, for n ∈ 1 : N , define xn = F−1
π (un). Then, for a

constant c > 0,
‖S(x1:N )− π‖E ≤ cD(u1:N )1/d̃

where d̃ =
∑d−1

i=0 dκ−1ei.

When the Rosenblatt transformation Fπ is Lipschitz, d̃ = d and we recover the result of
Hlawka and Mück (1972). In this case, Assumption 3 is not needed. Notice that the rate
provided in Theorem 3 decreases quickly with the Hölder exponent κ. For κ = 1/2, the
convergence rate is of order O(D(u1:N )1/2d−1) and hence is very slow even for moderate
values of d.
We will see that the backward step of the forward-backward SQMC smoothing al-

gorithm amounts to applying to QMC point sets transformations that are “nearly” (1/d)-
Hölder continuous (in a sense that we will make precise). The main message of Theorem 3,
as far as SQMC is concerned, is that such an algorithm may be consistent (as N → +∞)
despite being based on non-Lipschitz transformations.
Theorem 3 is interesting more generally, since the construction of low discrepancy

point sets with respect to non uniform distributions is an important problem, which
is motivated by the generalized Koksma-Hlawka inequality (Aistleitner and Dick, 2014,
Theorem 1): ∣∣∣∣∣ 1

N

N∑
n=1

ϕ(xn)−
ˆ

[0,1)
ϕ(x)π(dx)

∣∣∣∣∣ ≤ V (ϕ)‖S(x1:N )− π‖E

where V (ϕ) is the variation of ϕ in the sense of Hardy and Krause. It is also interesting
to mention that the inverse Rosenblatt transformation is the best known construction of
low discrepancy point sets for non uniform probability measures, although the bounds
for the extreme metric given in Hlawka and Mück (1972, “Satz 2”) and in Theorem 3 are
very far from the best known achievable rate since Aistleitner and Dick (2013, Theorem
1) have established the existence, for any probability measure π on [0, 1)d, of a sequence
(xn)n≥1 verifying ‖S(x1:N )− π‖E = O(N−1(logN)0.5(3d+1)).

3.4. Discrepancy conversion through the Hilbert space filling curve

We now state results regarding how the Hilbert curve H : [0, 1] → [0, 1]d conserves
discrepancy. Such results were not directly needed to establish the consistency of SQMC.
Indeed, as outlined in the statement of Theorem 1, it was sufficient to show that PNt,h has
low discrepancy with respect to the proposal distribution Qt−1,h ⊗mt,h, where we recall
that PNt,h =

(
h(x̂1:N

t−1),x1:N
t

)
, with h(x̂1:N

t−1) ∈ [0, 1). The discrepancy of the “resampled”
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particles x̂1:N
t−1 in [0, 1)d was not derived. But, again, we will need such results when

dealing with backward estimates.
More precisely, and as explained below (see Section 5.2), the analysis of these latter

require results on the conversion of discrepancies through the following mapping, defined
for k ∈ N, by

Hk : (x0, . . . , xk) ∈ [0, 1)(k+1) 7→ (H(x0), . . . ,H(xk)) ∈ [0, 1)d(k+1) (8)

and with pseudo-inverse hk : [0, 1)d(k+1) → [0, 1)k+1.
Theorem 4 and Corollary 1 below are generalizations of Schretter et al. (2015, Theorem

1), which corresponds to Theorem 4 with k = 0, πh the uniform distribution on [0, 1)
and πNh = S(u1:N ) for a point set u1:N in [0, 1). To save space, the proofs the these two
results are omitted.

Theorem 4. Let π(dx) = π(x)λd(k+1)(dx), k ∈ N, be a probability measure on [0, 1)d(k+1)

with bounded density π, πhk be the image of π by hk and (πNhk)N≥1 be a sequence of prob-
ability measures on [0, 1)k+1 such that ‖πNhk − πhk‖E → 0 as N → +∞. Let πN be the
image by Hk of πNhk . Then,

‖πN − π‖E → 0, as N → +∞.

Corollary 1. Consider the set-up of Theorem 4 with k = 0 and let K : [0, 1)d →
P ([0, 1)s) be a Markov kernel, Kh(h1,dx2) = K(h(x1), dx2) and PNh = (h1:N

1 ,x1:N
2 ) be

a sequence of point sets in [0, 1)1+s such that, as N → +∞, ‖S(PNh )− πh ⊗Kh‖E → 0.
Let PN =

(
H(h1:N

1 ),x1:N
2

)
. Then,

‖S(PN )− πN ⊗K‖E → 0, as N → +∞.

A direct consequence of this corollary is that, under the assumptions of Theorem 1,
the point set PNt = (x̂1:N

t−1,x
1:N
t ) is such that, as N → +∞,

‖S(PNt )−Qt−1 ⊗mt‖E → 0.

Another consequence of this corollary is that Algorithm 2 can be trivially adapted to
forward smoothing, as briefly explained in the next section.

4. SQMC forward smoothing

Consider now the following extension of Algorithm 2, where full trajectories zt := x0:t ∈
X t+1 are carried forward: at time 0, set zn0 := xn0 , and, recursively, znt := (ẑnt ,x

n
t ),

with ẑnt := z
ant−1

t−1 . In addition, replace the Hilbert sort step of Algorithm 2 by the same
operation on full trajectories:

Hilbert sort: find permutation σt−1 such that ht(zσt−1(1)
t−1 ) ≤ . . . ≤ ht(zσt−1(N)

t−1 )

11



with ht the inverse of a Hilbert curve Ht that maps [0, 1] into [0, 1]dt. In other words,
this is the SQMC equivalent of the smoothing technique known as ‘forward smoothing’.

Proposition 1. Under Assumptions 1-3 of Theorem 1, and Assumption 4’

4’. Q̃t(dzt) = p̃t(zt)λd(t+1)(dzt) where p̃t(zt) is a strictly positive bounded
density;

one has, for t ≥ 0 and the forward smoothing algorithm described above,∥∥∥∥∥
N∑
n=1

Wn
t δznt − Q̃t

∥∥∥∥∥
E

→ 0, as N → +∞ (9)

where Q̃t denotes the smoothing distribution at time t.

See Appendix B.3 for a proof.
This result is presented for the sake of completeness, but it is clear that it is of limited

practical interest. Transformations through Ht will lead to poor convergence rates as
soon as t becomes large, as per Theorem 4. In addition, there is no reason to believe that
the SQMC version of forward smoothing would not suffer from the same major drawback
as its Monte Carlo counterpart, namely that the N simulated paths quickly coalesce to
a single ancestor.

5. SQMC backward smoothing

We now turn to the derivation and analysis of a SQMC version of backward smoothing.
There exist in fact two backward smoothing algorithms. The first one (Doucet et al.,
2000), approximates the marginal smoothing distributions Qt|T (dxt) for t ∈ 0 : T ; that
is, the marginal distribution of xt relative to Q̃T (dx0:T ). This may be used to compute
the smoothing expectation of additive functions ϕ(x0:T ) =

∑T
t=0 ϕt(xt) such as, e.g., the

score functions of certain models (e.g. Poyiadjis et al., 2011). See Section 5.1.
The second type of backward step (Godsill et al., 2004) allows to estimate the full

(joint) smoothing distribution Q̃(dx0:T ). Its SQMC version is given and analysed in
Section 5.2.
These two algorithms share the following properties: (a) they require that the Markov

kernel mt(xt−1,dxt) admits a positive probability density mt(xt−1,xt) which may be
computed pointwise (for all xt−1,xt ∈ X ); (b) they use as input the output of a forward
pass, i.e. either Algorithm 1 (SMC), or Algorithm 2 (SQMC); and (c) their complexity
is O(TN2).

5.1. Marginal backward smoothing

To perform marginal smoothing, it suffices to compute, from the output of the forward
pass, the following smoothing weights:

W̃n
t|T := Wn

t ×
N∑
m=1

W̃m
t+1|Tmt+1(xnt ,x

m
t+1)Gt+1(xnt ,x

m
t+1)∑N

p=1W
p
t mt+1(xpt ,x

m
t+1)Gt+1(xpt ,x

m
t+1)
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for all n ∈ 1 : N , and recursively, from t = T − 1, to t = 0. (For t = T , simply set
W̃n
t|T = Wn

T .) Then

Q̃N
t|T (dxt) :=

N∑
n=1

W̃n
t|T δxnt (dxt) ≈ Qt|T (dxt).

This particular backward pass may be applied to either the output of SMC (Algorithm
1), or SQMC (Algorithm 2). In the latter case, the question is whether this approach
remains valid. The answer is directly given by Theorem 2: under its assumptions, we
have that

‖Q̃N
t|T − Q̃t|T ‖E → 0, as N → +∞

since Q̃t|T (resp. Q̃N
t|T ) is a certain marginal distribution of Q̃T (resp. Q̃N

T ). In words,
marginal backward smoothing generates consistent (marginal) smoothing estimates when
applied to the output of the SQMC algorithm.

5.2. Full backward smoothing

The SQMC backward step to estimate the joint smoothing distribution Q̃T , proposed in
Gerber and Chopin (2015), is recalled as Algorithm 3.

Algorithm 3 SQMC Backward step for full smoothing

Input: x
σt(1:N)
t , W σt(1:N)

t for t ∈ 0 : T , output of Algorithm 2 after the Hilbert sort step
(i.e, for all n,m ∈ 1 : N , n ≤ m =⇒ h(x

σt(n)
t ) ≤ h(x

σt(m)
t )) and ũ1:N a point set in

[0, 1)T+1 such that, for all n,m ∈ 1 : N , n ≤ m =⇒ unT ≤ umT
Output: x̃1:N

0:T (N trajectories in X T+1)
for n = 1→ N do

Compute x̃nT = x
anT
T where anT = F−1

T,N (unT ) with FT,N (i) =
∑N

m=1W
σT (m)
T I(m ≤ i)

end for
for t = T − 1→ 0 do

for n = 1→ N do
Compute x̃nt = x

ãnt
t where ãnt = F̃−1

t,N (x̃n1+1, ũ
n
t ) with F̃t,N (xt+1, i) =∑N

m=1 W̃
σt(m)
t (xt+1)I(m ≤ i), and W̃m

t (xt+1) =
Wm
t mt+1(xmt ,xt+1)Gt+1(xmt ,xt+1)∑N

p=1W
p
t mt+1(xpt ,xt+1)Gt+1(xpt ,xt+1)

.

end for
end for

Algorithm 3 generates a low discrepancy point set for distribution Q̃N
T , the plug-in

estimate of Q̃T , and is therefore the exact QMC equivalent of the backward step of
standard backward sampling.
To better understand why Algorithm 3 is valid, it helps to decompose it in two steps.

First, it transforms ũ1:N , a point set in [0, 1)T+1, into h̃1:N
0:T , another point set in [0, 1)T+1,
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by applying the inverse Rosenblatt transformation of

Q̃N
T,h(dh0:T ) := Q̂N

T,h(dhT )
T∏
t=1

Mh
t,Q̂Nt−1,h

(ht,dht−1), (10)

which is the image of probability measure Q̃N
T (dx0:T ), defined in (5), by mapping hT :

(x0, . . . ,xT ) 7→ (h(x0), . . . , h(xT )). Recall that Q̂N
t,h is the image of Q̂N

t by h while, for
any π ∈ P([0, 1)) and t ∈ 1 : T ,Mh

t+1,π : [0, 1)→ P([0, 1)) is a Markov kernel such that

Mh
t,π(ht, dht−1) ∝ mt

(
H(ht−1), H(ht)

)
Gt
(
H(ht−1), H(ht)

)
π(dht−1).

In a second step, Algorithm 3 returns x̃1:N
0:T where x̃n0:T = HT (h̃n0:T ) with the mapping

HT : [0, 1)T+1 → [0, 1)d(T+1) defined in (8).

5.2.1. L1− and L2−convergence

A direct consequence of the inverse Rosenblatt interpretation of the previous section
is that, when Algorithm 3 uses a RQMC point set as input, the random point x̃n0:T

is such that, for any function ϕ : [0, 1)d(T+1) → R and for any n ∈ 1 : N , we have
E[ϕ(x̃n0:T )|FNT ] = Q̃N

T (ϕ), with FNT the σ-algebra generated by the forward step. Together
with Theorem 2, this observation allows us to deduce L2-convergence for test functions
ϕ that are continuous and bounded (see Appendix B.4 for a proof).

Theorem 5. Consider the set-up of the SQMC forward filtering-backward smoothing
algorithm (Algorithms 2 and 3) and assume the following:

1. In Algorithm 2, (u1:N
t )N≥1, t ∈ 0 : T , are independent random sequences of point

sets in [0, 1)dt , with d0 = d and dt = d+ 1 for t > 0, such that, for any ε > 0, there
exists a Nε,t > 0 such that, almost surely, D(u1:N

t ) ≤ ε, ∀N ≥ Nε,t;

2. In Algorithm 3, (ũ1:N )N≥1 is a sequence of point sets in [0, 1)T+1 such that

a) ∀n ∈ 1 : N , ũn ∼ U([0, 1)T+1);

b) For any function ϕ ∈ L2

(
[0, 1)d(T+1), λdt

)
, Var

(
1
N

∑N
n=1 ϕ(unt )

)
≤ Cσ2

ϕr(N)

where σ2
ϕ =

´ {
ϕ(u)−

´
ϕ(v)dv

}2
du, r(N) → 0 as N → +∞, and where

both C and r(N) do not depend on ϕ;

3. Assumptions of Theorem 1 and Assumptions H1-H2 of Theorem 2 hold.

Then, for any continuous and bounded function ϕ : X T+1 → R,

E
∣∣∣S(x̃1:N

0:T )(ϕ)− Q̃T (ϕ)
∣∣∣→ 0, Var

(
S(x̃1:N

0:T )(ϕ)
)
→ 0, as N → +∞.

Assumption 1 is verified for instance when u1:N
t consists of the first N points of a

nested scrambled (t, dt)-sequence in base b ≥ 2 (Owen, 1995, 1997, 1998). The result
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above may be easily extended to the case where the u1:N
t ’s are deterministic (rather than

random) QMC point sets.
On the other hand, the point set ũ1:N used as input of the backward pass is necessarily

random (for the result above to hold). But ũ1:N does not need to be a QMC point set
(i.e. to have low discrepancy). In particular, Assumption 2 is satisfied when the ũ1:N

are IID uniform variates (in [0, 1)T+1); then C = 1 and r(N) = N−1. See Section 5.3
for a discussion one the use of QMC or pseudo-random numbers in the backward step of
SQMC.

5.2.2. Consistency

Compared to standard (forward) SQMC, establishing the consistency of SQMC backward
smoothing requires two extra technical steps. First, as Algorithm 3 generates a point set
h̃1:N

0:T in [0, 1)T+1 using the inverse Rosenblatt transformation of the probability measure
defined in (10), and then projects it back to X T+1 through HT , we need to establish that
this transformation preserves the low discrepancy properties of h̃1:N

0:T . For this we will use
Theorem 4.
Second, the proof of Gerber and Chopin (2015) for the consistency of SQMC re-

quired smoothness conditions on the Rosenblatt transformation of mt,h(ht−1,dxt) =
mt(H(ht−1),dxt), so that this transformation maintains low discrepancy, as explained in
Section 2.5. Due to the Hölder property of the Hilbert curve, the Hölder continuity of
Fmt implies that Fmt,h is Hölder continuous as well. Similarly, for the backward step we
need assumptions on the Markov kernel Mt,Qt−1 which imply sufficient smoothness for
the Rosenblatt transformation of Mh

t,Q̂Nt−1,h

which is used in the course of Algorithm 3

to transform the QMC point set in [0, 1)T+1.
To this aim, note that since ‖Q̂N

t−1 −Qt−1‖E → 0 as N → +∞ (Theorem 1), one may
expect that

‖Mh
t,Q̂Nt−1,h

−Mh
t,Qt−1,h

‖E → 0, as N → +∞.

Therefore, we intuitively need smoothness assumption on this limiting Markov kernel to
establish the validity of the backward pass of SQMC. However, note that the two argu-
ments of this kernel are “projections” in [0, 1) through the inverse of the Hilbert curve.
Consequently, it is not clear how smoothness assumptions on the Rosenblatt transforma-
tion ofMt,Qt−1 would translate into some regularity for the Rosenblatt transformation of
Mh

t,Qt−1,h
. As shown below, a consistency result for QMC forward-backward algorithm

can be established under a Hölder assumption on the CDF ofMt,Qt−1 .
To establish the consistency of Algorithm 3 we proceed in two steps. First, we consider

a modified backward pass which amounts to sampling from a continuous distribution.
Working with a continuous distribution allows us to focus on the technical difficulties
specific to the backward step we just mentioned without being distracted by complicated
discontinuity issues. Then, the result obtained for this continuous backward pass is used
to deduce sufficient conditions for the consistency of Algorithm 3. If this approach in
two steps greatly facilitates the analysis, the resulting conditions for the validity of QMC
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forward-backward smoothing have the drawback to impose that the Markov kernel mt

and the potential function Gt are bounded below away from zero (see Corollary 2 below).

5.2.3. A continuous backward pass

Following the discussion above, we consider now a modified backward pass, which amounts
to transforming a QMC point set ũ1:N in [0, 1)T+1 through the inverse Rosenblatt trans-
formation of a continuous approximation Q̃NT,hT of Q̃N

T,hT
.

To construct Q̃NT,hT , let Q̂NT,h be the probability measure that corresponds to a con-

tinuous approximation of the CDF of Q̂N
T,h, which is strictly increasing on [0, h(x

σT (N)
T )]

with F
Q̂NT,h

(h(x
σT (N)
T )) = 1 and such that, under the assumptions of Theorems 1 and 2,

‖Q̂NT,h − Q̂N
T,h‖E = O(1).

Next, for t ∈ 1 : T , let KN
t,h : [0, 1)→ P([0, 1)) be a Markov kernel such that:

1. Its CDF is continuous on [0, 1)× [0, h(x
σt−1(N)
t−1 )];

2. ∀ht ∈ [0, 1), the CDF of KN
t,h(ht,dht−1) is strictly increasing on [0, h(x

σt−1(N)
t−1 )]

with FKN
t,h

(ht, h(x
σt−1(N)
t−1 )) = 1;

3. Under the assumptions of Theorems 1 and and 2,

sup
ht∈[0,1)

‖KN
t,h(ht, dht−1)−Mh

t,Q̂Nt−1,h

(ht, dht−1)‖E = O(1).

Finally, we define Q̃NT,hT ∈ P([0, 1)T+1) as

Q̃NT,hT (dh0:T ) := Q̂NT,h(dhT )
T∏
t=1

KN
t,h(ht, dht−1)

which, by construction, has a Rosenblatt transformation which is continuous on [0, 1)T+1.
Remark that such a distribution Q̃NT,hT indeed exists. For instance, under the as-

sumptions of Theorems 1 and 2, one can take for Q̂NT,h the probability distribution that
corresponds to a piecewise linear approximation of the CDF of Q̂N

T,h and, similarly, for
ht ∈ [0, 1), one can construct KN

t,h(ht, dht−1) from a piecewise linear approximation of
the CDF ofMh

t,Q̂Nt−1,h

(ht, dht−1).

For this modified backward step we obtain the following consistency result:

Theorem 6. Let (ũ1:N )N≥1 be a sequence of point sets in [0, 1)T+1 such that D(ũ1:N )→
0 as N → +∞. For n ∈ 1 : N , let ȟn0:T = F−1

Q̃NT,hT

(ũn) where Q̃NT,hT is as above. Suppose

that the Assumptions of Theorem 1 and Assumptions H1-H2 of Theorem 2 hold and that,
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viewed as a function of xt and xt−1, F
cdf
Mt,Qt−1

(xt,xt−1), the CDF ofMt,Qt−1(xt, dxt−1),

is Hölder continuous for all t ∈ 1 : T . Let x̌n0:T = HT (ȟn0:T ). Then,

‖S(x̌1:N
0:T )− Q̃T ‖E → 0 as N → +∞.

See Appendix B.5.2 for a proof.

5.2.4. A consistency result for SQMC forward-backward smoothing

We are now ready to provide conditions which ensure that QMC forward-backward
smoothing (Algorithms 2 and 3) yields a consistent estimate of the smoothing distri-
bution. The key idea of our consistency result (Corollary 2 below) is to show that, for
a given point set ũ1:N , the point set x̃1:N

0:T generated by Algorithm 3 becomes, as N in-
creases, arbitrary close to the point set x̌1:N

0:T obtained by the modified backward step
described in the previous subsection.

Corollary 2. Consider the set-up of the SQMC forward filtering-backward smoothing
algorithm (Algorithms 2 and 3) and assume the following holds for t ∈ 0 : T − 1:

1. (ũ1:N )N≥1 is a sequence of point sets in [0, 1)T+1 such that D(ũ1:N )→ 0 as N →
+∞;

2. Assumptions of Theorem 1 and Assumptions H1-H2 of Theorem 2 hold;

3. F cdfMt,Qt−1
(xt,xt−1) is Hölder continuous;

4. There exists a constant ct > 0 such that, for all x(t−1):(t+1) ∈ X 3,

Gt(xt−1,xt)Gt+1(xt,xt+1)mt+1(xt,xt+1) ≥ ct;

5. Gt(xt−1,xt)mt(xt−1,xt) is uniformly continuous on X 2.

Then,
‖S(x̃1:N

0:T )− Q̃T ‖E → 0 as N → +∞.

See Appendix B.5.3 for a proof. Recall that the result above implies that

1

N

N∑
n=1

ϕ(x̃nt )→ Q̃T (ϕ), as N → +∞

for any bounded and continuous ϕ, as explained in Section 2.2.
Assumption 4 is the main assumption of this result. This strong condition is the price

to pay for our study of QMC backward smoothing in two steps which, again, has the
advantage to facilitate the analysis by avoiding complicated discontinuity problems. We
conjecture that this assumption may be removed by using an approach similar to the
proof of Theorem 4 in Gerber and Chopin (2015).
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5.3. An alternative backward step

A drawback of Algorithm 3 is that it uses as an input a point set of ũ1:N of dimension
(T + 1), although T is often large in practice. It is well known that high-dimensional
QMC point sets do not have good equidistribution properties, unless N is extremely
large.
To address this issue, we may still use SQMC for the forward pass, but use as a

backward pass Algorithm 3 with IID uniform variables as an input (i.e. input ũ1:N is
replaced by N uniforms). Our consistency results still apply, since D(ũ1:N ) → 0 with
probability one in that case (Niederreiter, 1992, page 167). Of course, one cannot hope
for a convergence rate better than N−1/2 for such a hybrid approach, but the resulting
algorithm may still perform better than standard (Monte Carlo) backward smoothing
(for fixed N), while being simpler to implement than SQMC with a QMC backward pass
based on a point set of dimension T + 1.

More generally, we could take ũ1:N to be some combination of a point sets and uniform
variables, while still having D(ũ1:N ) → 0 (Ökten et al., 2006). However, we leave for
further research the study of such an extension.

6. Numerical study

We consider the following multivariate stochastic volatility model (SV) proposed by Chan
et al. (2006): {

yt = S
1/2
t εt, t ≥ 0

xt = µ+ Φ(xt−1 − µ) + Ψ
1
2νt, t ≥ 1

(11)

where St = diag(exp(xt1), ..., exp(xtd)), Φ and Ψ are diagonal matrices and (εt,νt) ∼
N2d(02d, C) with C a correlation matrix.

The parameters we use for the simulations are the same as in Chan et al. (2006):
φii = 0.9, µi = −9, ψii = 0.1 for all i = 1, ..., d and

C =

(
0.61d + 0.4Id 0d

0d 0.81d + 0.2Id

)
where Id, 0d and 1d, are respectively the identity, all-zeros, and all-ones d× d matrices.
The prior distribution for x0 is the stationary distribution of the process (xt)t≥0. We
take d = 2 and T = 399 (i.e. 400 observations).
We report results (a) for QMC full backward smoothing (Algorithm 2 for the forward

pass, then Algorithm 3 for the backward pass), and (b) for marginal backward smooth-
ing (as described in Section 5.1). These algorithms are compared with their Monte
Carlo counterpart using the gain factors for the estimation of the smoothing expectation
E[x1t|y0:T ], t ∈ 0 : T , which we define as the Monte Carlo mean square error (MSE)
over the quasi-Monte Carlo MSE. Results for component x2t of xt are mostly similar (by
symetry) and thus are not reported.
The implementation of QMC and Monte Carlo algorithms are as in Gerber and Chopin

(2015). In SQMC, prior to the Hilbert sort step, the particles are mapped into [0, 1)d

18



using a component-wise (rescaled) logistic transform. For SMC, systematic resampling
(Carpenter et al., 1999) is used, and random variables are generated using standard
methods (i.e. not using the inverse Rosenblatt transformation). The complete C/C++
code is available on-line at https://bitbucket.org/mgerber/sqmc.

Figure 2 plots the gain factors at each time step, for either N = 28 (left), or N = 210

(right). We observe that gain factors tend to increase with N (as expected) and that they
are above one most of the time. They are not very high for full backward smoothing;
but note that even a marginal improvement in terms of gain factor may translate in high
CPU time savings, given that these algorithms have complexity O(N2); i.e. a gain factor
of 3 means that SMC would need 3 times more particles, and therefore 9 times more
CPU time, to reach the same accuracy as SQMC. Notice also gain factors are higher for
marginal smoothing.
Finally, we compare Algorithm 3 (full backward smoothing) with the hybrid strategy

described at the end of Section 5.3: i.e. a SQMC forward pass (Algorithm 2) followed
by a Monte Carlo backward pass. Again, this is for N = 28 (left) and N = 210 (right).
Interestingly, the hybrid strategy (slightly) dominates at most time steps (excepts those
such that T − t is small). As already discussed, the likely reason for this phenomenon
is that the backward pass of Algorithm 3 is based on a point set of dimension T , which
is too large to have good equidistribution properties (for reasonable values of N), and
therefore to bring much improvement over plain Monte Carlo. Thus, for large T , one
may as well use this hybrid strategy to perform full smoothing.

7. Conclusion

The estimation of the smoothing distribution p(x0:T |y0:T ) is a challenging task for QMC
methods because it is typically a high dimensional problem. On the other hand, due to
the O(N2) complexity of most smoothing algorithms, small gains in term of mean square
errors translate into important savings in term of running times to reach the same level
of error. In this work we provide asymptotic results for some QMC smoothing strategies,
namely forward smoothing, and two variants of forward-backward smoothing. In a simu-
lation study we show that the QMC forward-backward smoothing algorithm outperforms
its Monte Carlo counterpart despite of the high dimensional nature of the problem. Also,
if one is interested in the estimation of the marginal smoothing distributions, more im-
portant gains may be obtained.
The set of smoothing strategies discussed in this work is obviously not exhaustive. For

instance, we have not discussed two-filter smoothing (Briers et al., 2005), or its O(N)
variant proposed by Fearnhead et al. (2010). In fact, our analysis can be easily applied
to derive a QMC version of these algorithms and to provide conditions for their validity.
An other interesting smoothing algorithm is proposed in Douc et al. (2011), where the
backward pass is an accept-reject procedure, leading to a O(N) complexity. A last
interesting smoothing strategy is the particle Gibbs sampler proposed by Andrieu et al.
(2010) which generates a Markov chain having the smoothing distribution as stationary
distribution. For these last two methods, the usefulness and the validity of replacing
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Figure 2: Smoothing of the bivariate SV model (11) for N = 28 and N = 210 particles.
The graphs give the gain factor (MSE ratio, from 100 replications) for com-
paring SQMC with SMC, and for E[xt1|y0:T ] as a function of t. The top line
is for full backward smoothing (Algorithm 3), the bottom line is for marginal
backward smoothing.
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Figure 3: Smoothing of the bivariate SV model (11) for N = 28 and N = 210 particles.
The graphs give the gain factor (MSE ratio, for 100 replications) of the hybrid
backward pass (Algorithm 3 with IID input) relative to the QMC backward pass
(Algorithm 3 with a QMC point set as input), for the estimation of E[xt1|y0:T ]
as a function of t.

pseudo-random numbers by QMC point sets remain interesting open questions.
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A. Main properties of the Hilbert curve

Function H is obtained as the limit of a certain sequence (Hm) of functions Hm : [0, 1]→
[0, 1]d as m → ∞. The proofs of the results presented in this work are based on the
following technical properties of H and Hm. For m ≥ 0, let Idm =

{
Idm(k)

}2md−1

k=0
be

the collection of consecutive closed intervals in [0, 1] of equal size 2−md and such that
∪Idm = [0, 1]. For k ≥ 0, Sdm(k) = Hm(Idm(k)) belongs to Sdm, the set of the 2md closed
hypercubes of volume 2−md that covers [0, 1]d, ∪Sdm = [0, 1]d; Sdm(k) and Sdm(k + 1) are
adjacent, i.e. have at least one edge in common (adjacency property). If we split Idm(k)
into the 2d successive closed intervals Idm+1(ki), ki = 2dk + i and i ∈ 0 : 2d − 1, then
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the Sdm+1(ki)’s are simply the splitting of Sdm(k) into 2d closed hypercubes of volume
2−d(m+1) (nesting property). Finally, the limit H of Hm has the bi-measure property :
λ1(A) = λd(H(A)), for any measurable set A ⊂ [0, 1], and satisfies the Hölder condition
‖H(x1) −H(x2)‖ ≤ CH |x1 − x2|1/d for all x1 and x2 in [0, 1]. For more background on
space-filling curves, see Sagan (1994).

B. Proofs

B.1. Backward decomposition: Proof of Theorem 2

Lemma 2 of Gerber and Chopin (2015) is central for the proof of this result and is
reproduced here for sake of clarity.

Lemma 1. Let (πN )N≥1 be a sequence of probability measures on [0, 1)d1 such that
‖πN − π‖E → 0 as N → +∞ for some π ∈ P([0, 1)d1), and let K a kernel [0, 1)d1 →
P([0, 1)d2)) such that FK(x1,x2) is Hölder continuous with its i-th component strictly
increasing in x2i, i ∈ 1 : d2. Then

‖πN ⊗K − π ⊗K‖E = O(1).

From Theorem 1, we know that (for t ≥ 1)

‖S(PNt,h)−Qt−1,h ⊗mt,h‖E = O(1) for PNt,h =
(
h(x̂1:N

t−1),x1:N
t

)
.

To establish (6), we fix xt+1, and recogniseMt+1,Qt as the marginal distribution of xt,
relative to joint distribution

G̃t+1(xt,xt+1)Gt,h(ht−1,xt)

Qt−1,h ⊗mt,h(Gt,h)
×Qt−1,h ⊗mt,h (d(ht−1,xt)) (12)

with Gt,h(ht−1,xt) = Gt(H(ht−1,xt)). This is a change of measure applied to Qt−1,h ⊗
mt,h. Similarly, M

t+1,Q̂Nt
is the marginal of a joint distribution obtained by the same

change of measure, but applied to S(PNt,h).
Thus, we may apply Theorem 1 of Gerber and Chopin (2015), and deduce that (again

for a fixed xt+1):

‖M
t+1,Q̂Nt

(xt+1, dxt)−Mt+1,Qt(xt+1, dxt)‖E = O(1).

To see that the O(1) term in the above expression does not depend on xt+1, note that
in (12), the dominating measure does not depends on xt+1, and the density with respect
to this dominating measure is bounded uniformly with respect to xt+1, and therefore the
results follows from the computations in the proof of Gerber and Chopin (2015, Theorem
1). This shows (6) for t ≥ 1. For t = 0 replace Qt−1,h ⊗ mt,h by m0,h in the above
argument.
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Let us now prove the second part of the theorem. As a preliminary result to establish
(7) we show that, for all t ≥ 0,

‖Q̂N
t+1 ⊗Mt+1,Q̂Nt

−Qt+1 ⊗Mt+1,Qt‖E = O(1). (13)

Let Bt and Bt+1 be two sets in B[0,1)d and note Bt:t+1 = Bt × Bt+1 to simplify the
notations. Then,∣∣∣Q̂N

t+1 ⊗Mt+1,Q̂Nt
(Bt:t+1)−Qt+1 ⊗Mt+1,Qt(Bt:t+1)

∣∣∣
=

∣∣∣∣∣
ˆ
Bt+1

λd

(
FM

t+1,Q̂Nt
(xt+1, Bt)

)
Q̂N
t+1(dxt+1)− λd

(
FMt+1,Qt

(xt+1, Bt)
)
Qt+1(dxt+1)

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
Bt+1

λd

(
FMt+1,Qt

(xt+1, Bt)
)(

Q̂N
t+1 −Qt+1

)
(dxt+1)

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
Bt+1

Q̂N
t+1(dxt+1)

[
λd

(
FM

t+1,Q̂Nt
(xt+1, Bt)

)
− λd

(
FMt+1,Qt

(xt+1, Bt)
)]∣∣∣∣∣ .

By assumption, FMt+1,Qt
(xt+1,xt) is Hölder continuous. Since ‖Q̂N

t+1 − Qt+1‖E = O(1)
by Theorem 1, Lemma 1 therefore implies

sup
Bt:t+1∈B2

[0,1)d

∣∣∣∣∣
ˆ
Bt+1

λd

(
FMt+1,Qt

(xt+1, Bt)
)(

Q̂N
t+1 −Qt+1

)
(dxt+1)

∣∣∣∣∣ = O(1).

In addition,∣∣∣∣∣
ˆ
Bt+1

Q̂N
t+1(dxt+1)

[
λd

(
FM

t+1,Q̂Nt
(xt+1, Bt)

)
− λd

(
FMt+1,Qt

(xt+1, Bt)
)]∣∣∣∣∣

≤
ˆ
Bt+1

Q̂N
t+1(dxt+1) sup

Bt∈B[0,1)d

∣∣∣λd (FM
t+1,Q̂Nt

(xt+1, Bt)
)
− λd

(
FMt+1,Qt

(xt+1, Bt)
)∣∣∣

≤
ˆ
Bt+1

Q̂N
t+1(dxt+1) sup

xt+1∈[0,1)d
‖M

t+1,Q̂Nt
(xt+1,dxt)−Mt+1,Qt(xt+1,dxt)‖E

= O(1)

using (6). This complete the proof of (13).
We are now ready to prove the second statement of the theorem. Note that (7) is true
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for t = 1 by (13). Let t > 1 and B0:t ∈ Bt+1
[0,1)d

. Then,

∣∣∣∣ˆ
B0:t

(
Q̃N
t − Q̃t

)
(dx0:t)

∣∣∣∣ =

∣∣∣∣∣
ˆ
B0:t

(
Q̂N
t ⊗Mt,Q̂Nt−1

(dxt−1:t)
t−1∏
s=1

M
s,Q̂Ns−1

(xs, dxs−1)

− Qt ⊗Mt,Qt−1(dxt−1:t)
t−1∏
s=1

Ms,Qs−1(xs, dxs−1)

)∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
Bt−1:t

[ˆ
B0:t−2

t−1∏
s=1

Ms,Qs−1(xs, dxs−1)

](
Q̂N
t ⊗Mt,Q̂Nt−1

−Qt ⊗Mt,Qt−1

)
(dxt−1:t)

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
Bt−1:t

Q̂N
t ⊗Mt,Q̂Nt−1

(dxt−1:t)

(ˆ
B0:t−2

t−1∏
s=1

M
s,Q̂Ns−1

(xs, dxs−1)−
ˆ
B0:t−2

t−1∏
s=1

Ms,Qs−1(xs, dxs−1)

)∣∣∣∣∣ .
The first term after the inequality sign can be rewritten as∣∣∣∣∣
ˆ
Bt−1:t

λ(t−1)d

(
F⊗t−1

s=1Ms,Qs−1
(xt−1, B0:t−2)

)(
Q̂N
t ⊗Mt,Q̂Nt−1

−Qt ⊗Mt,Qt−1

)
(dxt−1:t)

∣∣∣∣∣ .
The supremum of this quantity over B0:t ∈ Bt+1

[0,1)d
is O(1) using (13), the fact that

F⊗t−1
s=1Ms,Qs−1

is Hölder continuous (because FMs,Qs−1
is Hölder continuous for all s) and

Lemma 1.
To control the second term we first prove by induction that, for any t > 1,

sup
B0:t−2∈Bt−1

[0,1)d

∣∣∣∣∣
ˆ
B0:t−2

t−1∏
s=1

M
s,Q̂Ns−1

(xs,dxs−1)−
ˆ
B0:t−2

t−1∏
s=1

Ms,Qs−1(xs,dxs−1)

∣∣∣∣∣ = O(1)

(14)

uniformly on xt−1. By (6) this result is true for t = 2. Assume that (14) holds for t > 2.
Then∣∣∣∣∣
ˆ
B0:t−1

t∏
s=1

M
s,Q̂Ns−1

(xs, dxs−1)−
ˆ
B0:t−1

t∏
s=1

Ms,Qs−1(xs, dxs−1)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
B0:t−1

[
M

t,Q̂Nt−1
(xt,dxt−1)

t−1∏
s=1

M
s,Q̂Ns−1

(xs, dxs−1)

− Mt,Qt−1(xt,dxt−1)
t−1∏
s=1

Ms,Qs−1(xs, dxs−1)

]∣∣∣∣∣
≤

∣∣∣∣∣
ˆ
Bt−1

M
t,Q̂Nt−1

(xt,dxt−1)

ˆ
B0:t−2

(
t−1∏
s=1

M
s,Q̂Ns−1

(xs, dxs−1)−
t−1∏
s=1

Ms,Qs−1(xs,dxs−1)

)∣∣∣∣∣
+

∣∣∣∣∣
ˆ
Bt−1

λ(t−1)d

(
F⊗t−1

s=1Ms,Qs−1
(xt−1, B0:t−2)

)(
M

t,Q̂Nt−1
(xt,dxt−1)−Mt,Qt−1(xt, dxt−1)

)∣∣∣∣∣
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where we saw above that second term on the right side of the inequality sign is O(1)
uniformly on xt while the first term is bounded by

ˆ
[0,1)d

M
t,Q̂Nt−1

(xt, dxt−1)

× sup
B0:t−2∈Bt−1

[0,1)d

∣∣∣∣∣
ˆ
B0:t−2

(
t−1∏
s=1

M
s,Q̂Ns−1

(xs, dxs−1)−
t−1∏
s=1

Ms,Qs−1(xs, dxs−1)

)∣∣∣∣∣
where, by the inductive hypothesis, the second factor is O(1) uniformly on xt−1 ∈ [0, 1)d.
This shows that (14) is true at time t + 1 and therefore the proof of the theorem is
complete.

B.2. Generalization of Hlawka and Mück (1972): Proof of Theorem 3

The proof of this result is an adaptation of the proof of Hlawka and Mück (1972, “Satz
2”).
In what follows, we use the shorthand αN (B) = S(u1:N )(B) = N−1

∑N
n=1 1B(un) for

any set B ⊂ [0, 1)d. One has

‖S(x1:N )− π‖E = sup
B∈B

[0,1)d

|αN (Fπ(B))− λd (Fπ(B))| .

Let β = dκ−1e, d̃ =
∑d−1

i=0 β
i, L an arbitrary integer, and P be the partition of [0, 1)d

in Ld̃ congruent hyperrectangles W of size L−βd−1 ×L−βd−2 × ...×L−1. Let B ∈ B[0,1)d ,
U1 the set of the elements of P that are strictly in Fπ(B), U2 the set of elements W ∈ P
such that W ∩ ∂(Fπ(B)) 6= ∅, U1 = ∪ U1, U2 = ∪ U2, and U ′1 = Fπ(B) \ U1 so that
(Hlawka and Mück, 1972, “Satz 2” or Gerber and Chopin, 2015, Theorem 4)

|αN (Fπ(B))− λd (Fπ(B))| ≤ |αN (U1)− λd(U1)|+ #U2

{
D(u1:N ) + L−d̃

}
where, under the assumption of the theorem, |αN (U1) − λd(U1)| ≤ Ld̃−1D(u1:N ) (see
Hlawka and Mück, 1972).
To bound #U2, we first construct a partition P ′ of [0, 1)d into hyperrectangles W ′ of

size L′−βd−1 × ...× L′−1 such that, for all points x and x′ in W ′, we have

|Fi(x1:i−1, xi)− Fi(x′1:i−1, x
′
i)| ≤ L−β

d−i
, i = 1, ..., d (15)

where Fi(x1:i−1, xi) denotes the i-th component of Fπ(x) (with Fi(x1:i−1, xi) = F1(x1)
when i = 1). To that effect, let i ∈ 2 : d and note that

|Fi(x1:i−1, xi)− Fi(x′1:i−1, x
′
i)| ≤ |Fi(x1:i−1, xi)− Fi(x1:i−1, x

′
i)|

+ |Fi(x1:i−1, x
′
i)− Fi(x′1:i−1, x

′
i)|.

By Assumption 3, the probability measure πi(x1:i−1,dxi) admits a density pi(xi|x1:i−1)
with respect to the Lebesgue measure such that ‖pi(·|·)‖∞ < +∞. Therefore, the first
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term after the inequality sign is bounded by ‖pi‖∞L′−β
d−i . For the second term, the

Hölder property of Fπ implies that

|Fi(x1:i−1, x
′
i)− Fi(x′1:i−1, x

′
i)| ≤ Cπ(i− 1)κ/2(L′−β

d+1−i
)κ

≤ Cπ(i− 1)κ/2(L′−β
d+1−i

)1/β = Cπ(i− 1)κ/2L′−β
d−i

with Cπ the Hölder constant of Fπ. For i = 1, we simply have

|F1(x1)− F1(x′1)| ≤ ‖p1‖∞L′−β
d−1

.

Condition (15) is therefore verified for L′ the smallest integer such that L′ ≥ C̃L, for
some C̃ > 0.
Remark now that ∂(Fπ(B)) = Fπ(∂(B)) since F is a continuous function. Let R ∈ ∂B

be a (d − 1)-dimensional face of B and R be the set of hyper-rectangles W ′ ∈ P ′ such
that R ∩W ′ 6= ∅. Note that #R ≤ L′d̃−1 ≤ (bC̃Lc + 1)d̃−1. For each W ′ ∈ R, take a
point rW ′ ∈ R ∩W ′ and define

r̃W
′

= Fπ(rW
′
) ∈ Fπ(R).

Let R̃ be the collection of hyper-rectangles W̃ of size 2L−β
d−1 × ...× 2L−1 (assuming L

is even) and having point r̃W ′ , W ′ ∈ R, as a middle point.
For an arbitrary u ∈ Fπ(R), let x = F−1

π (u) ∈ R. Hence, x is in one hyperrectangle
W ′ ∈ R so that using (15)

|ui − r̃W
′

i | = |Fi(x1:i−1, xi)− Fi(rW
′

1:i−1, r
W ′
i )| ≤ L−βd−i , i = 1, . . . , d.

This shows that u belongs to the hyperrectangle W̃ ∈ R̃ with centre r̃W ′ so that Fπ(R) is
covered by at most #R̃ = #R ≤ (bC̃Lc+ 1)d̃−1 hyperrectangles W̃ ∈ R̃. To go back to
the initial partition of [0, 1)d with hyperrectangles in P, remark that every hyperrectangle
in R̃ is covered by at most c1 hyperrectangles in P for a constant c1. Finally, since the
set ∂B is made of the union of 2d (d− 1)-dimensional faces of B, we have #U2 ≤ c2L

d̃−1

for a constant c2.
Then, we may conclude the proof as follows

‖S(x1:N )− π‖E ≤ Ld̃−1D(u1:N ) + c2L
d̃−1

(
D(u1:N ) + L−d̃

)
where the optimal value of L is such that, for some c3 > 0,

‖S(x1:N )− π‖E ≤ c3D(u1:N )1/d̃.

B.3. Consistency of forward smoothing: Proof of Proposition 1

The proof amounts to a simple adaptation of Theorem 1: by replacing Assumption 4 by
Assumption 4’ above, one obtains that ‖S(P̃Nt,ht) − Q̃t−1,ht ⊗mt,h‖E → 0 as N → +∞,
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where P̃Nt,ht =
(
ht(ẑ1:N

t−1),x1:N
t

)
Q̃t−1,ht is the image by ht of Q̃t−1, and mt,h is defined as

in Theorem 1. Therefore, by Corollary 1,

‖S(z1:N
t )− Q̃t−1 ⊗mt‖E → 0, as N → +∞. (16)

In addition, since the Radon-Nikodymderivative

Q̃t

Q̃t−1 ⊗mt

(d(x0:t−1,xt)) ∝ Gt(xt−1,xt−1),

is continuous and bounded, Theorem 1 of Gerber and Chopin (2015), together with (16),
implies (9).

B.4. L2-convergence: Proof of Theorem 5

To prove the result, let ϕ be as in the statement of the theorem and let us first prove the
L1-convergence.

We have

E
∣∣∣S(x̃1:N

0:T )(ϕ)− Q̃T (ϕ)
∣∣∣ ≤ E

∣∣∣S(x̃1:N
0:T )(ϕ)− Q̃N

T (ϕ)
∣∣∣+ E

∣∣∣Q̃N
T (ϕ)− Q̃T (ϕ)

∣∣∣ .
By portmanteau lemma (Van der Vaart, 2007, Lemma 2.2, p.6), convergence in the sense
of the extreme metric is stronger than weak convergence. Hence, the second term above
goes to 0 as N → +∞ by Theorem 2 and by the dominated convergence theorem. For the
first term, as each ũn ∼ U([0, 1)T+1), we have, by the inverse Rosenblatt interpretation
of the backward pass of SQMC,

E
[
S(x̃1:N

0:T )(ϕ)
∣∣FT ] = E

[
S(h̃1:N

0:T )(ϕ ◦HT )
∣∣FT ] = Q̃N

T,hT
(ϕ ◦HT ) = Q̃N

T (ϕ)

with FNT the σ-algebra generated by the forward step (Algorithm 2). Therefore,

E
[∣∣S(x̃1:N

0:T )(ϕ)− Q̃N
T (ϕ)

∣∣ ∣∣FT ] ≤ Var
(
S(x̃1:N

0:T )(ϕ)
∣∣FT)1/2

(17)

where, using Assumption 2 and the fact that x̃n0:T = HT ◦ F−1

Q̃NT,hT
(ũn),

Var
(
S(x̃1:N

0:T )(ϕ)|FNT )
)
≤ Cr(N)σ2

ϕ,N (18)

with σ2
ϕ,N ≤ Q̃N

T (ϕ2) and with C and r(N) as in the statement of the theorem. Let
ε > 0. Then, by Assumption 1 and looking at the proof of Theorem 2, we have for N
large enough and almost surely, Q̃N

T (ϕ2) ≤ Q̃T (ϕ2) + ε so that, for N large enough,

E
∣∣∣S(x̃1:N

0:T )(ϕ)− Q̃N
T (ϕ)

∣∣∣ ≤√Cr(N)
(
Q̃T (ϕ2) + ε

)
(19)

showing the L1-convergence. To prove the L2-convergence, remark that

E
[
S(x̃1:N

0:T )(ϕ)|FNT
]

= Q̃N
T (ϕ) =

(
Q̃N
T (ϕ)− Q̃T (ϕ)

)
+ Q̃T (ϕ)
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and therefore

Var
(
E
[
S(x̃1:N

0:T )(ϕ)|FNT
])

= Var
(
Q̃N
T (ϕ)− Q̃T (ϕ)

)
≤ E

[(
Q̃N
T (ϕ)− Q̃T (ϕ)

)2]
where the right-hand side converges to zero as N → +∞ by the dominated convergence
theorem and by Theorem 2. On conclude the prove using (17)-(19) and the fact that

Var
(
S(x̃1:N

0:T )(ϕ)
)

= Var
(
E
[
S(x̃1:N

0:T )(ϕ)|FNT
])

+ E
[
Var
(
S(x̃1:N

0:T )(ϕ)|FNT
)]
.

B.5. Consistency of the Backward step: Proof of Theorem 6 and proof of
Corollary 2

B.5.1. Preliminary computations

To prove Theorem 6 we need the following two lemmas:

Lemma 2. Let m ∈ N, I = [0, k+1
2dm

], k ∈ {0, 1, ..., 2dm − 2} and B = H(I). Then,
B = ∪pi=1Bi for some closed hyperrectangles Bi ⊆ [0, 1]d and where p ≤ 2d(m+ 1).

Proof. To prove the Lemma, let 0 ≤ m1 ≤ m be the smallest integer m̃ such that
Idm̃(0) ⊆ I and i∗m1

be the number of intervals in Idm1
included in I. Note that i∗m1

< 2d.
Indeed, if i∗m1

≥ 2d then, by the nesting property of the Hilbert curve,

Idm1−1(0) ⊆
2d−1⋃
k=0

Idm1
(k) ⊆

i∗m1
−1⋃

k=0

Idm1
(k) ⊆ I

which is in contradiction with the definition of i∗m1
. Define I2 = I \ ∪IIm1

and i∗m2
the

number of intervals in Idm2
included in I2. For the same reason as above i∗n2

< 2d. More
generally, for any m1 ≤ mk ≤ m, i∗mk ≤ 2d meaning that the set B is made of at most∑m

k=m1
i∗mk ≤ 2d(m+ 1) hypercubes (of side varying between 2−m and 2−m1).

Lemma 3. Let (πN )N≥1 be a sequence of probability measures on [0, 1)(k+1)d such that
‖πN − π‖E → 0 where π(dx) = π(x)λ(k+1)d(dx) is a probability measure on π(k+1)d that
admits a bounded density π(x). Let πhk be the image by hk of π. Then,

‖πNhk − πhk‖E → 0, as N → +∞.

The proof of this last result is omitted since it follows from the properties of Cartesian
products and from straightforward modifications of the proof of Gerber and Chopin
(2015, Theorem 3).

B.5.2. Proof of the Theorem 6

To prove the theorem first note that

‖Q̃NT,hT − Q̃T,hT ‖E = O(1).
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Indeed, by assumption, ‖Q̂NT,h − Q̂N
T,h‖E = O(1) and, by Theorem 1 and Gerber and

Chopin (2015, Theorem 3), ‖Q̂N
T,h − QT,h‖E = O(1) since QT admits a bounded density

(Assumption 4 of Theorem 1). Hence, ‖Q̂NT,h − QT,h‖E = O(1) and thus, by Theorem
4, ‖Q̂NT − QT ‖E = O(1), with Q̂NT the image by H of Q̂NT,h. In addition, using the same
argument, and using the fact that, for all t ∈ 1 : T , G̃t is bounded (Assumption H1 of
Theorem 2), we have, by Theorem 2 (first part),

sup
xt∈X

‖KN
t (xt, dxt−1)−Mt,Qt−1(xt, dxt−1)‖E = O(1), t ∈ 1 : T

with KN
t (xt, dxt−1) the image by H of the probability measure Kt,h(H(xt),dht−1). Con-

sequently, by the second part of Theorem 2, ‖Q̃NT − Q̃T ‖E = O(1) where Q̃NT denotes the
image by HT of Q̃NT,hT . Finally, under the assumptions of the theorem, Q̃T admits a
bounded density (because for all t, G̃t is bounded and Qt admits a bounded density) and
thus, by Lemma 3, ‖Q̃NT,hT − Q̃T,hT ‖E = O(1).
To prove the theorem it therefore remains to show that

‖S(ȟ1:N
0:T )− Q̃NT,hT ‖E = O(1). (20)

Indeed, this would yield ‖S(ȟ1:N
0:T )− Q̃T,hT ‖E = O(1) and thus, by Theorem 4,

‖S(x̌1:N
0:T )− Q̃T ‖E = O(1)

as required.
To prove (20), we assume to simplify the notations that FMt,Qt−1

(xt,xt−1) is Lipschitz.
Generalization for any Hölder exponent can be done using similar arguments as in the
proof of Theorem 3.
Let hnt = h(xNt ) where x1:N

t are the particles obtained at the end of iteration t of
Algorithm 2. We assume that, for all t ∈ 0 : T , the particles are sorted according to
their Hilbert index, i.e. n < m =⇒ hnt < hmt (note that the inequality is strict by
Assumption 1 of Theorem 1). Then, using the same notation as in the proof of Theorem
3, one has

‖S(ȟ1:N
0:T )− Q̃NT,hT ‖E = sup

B∈BN
[0,1)T+1

∣∣∣∣αN (FQ̃NT,hT
(B)

)
− λT+1

(
F
Q̃NT,hT

(B)

)∣∣∣∣
where BN

[0,1)T+1 =
{

[a, b] ⊂ B[0,1)T+1 , bNi ≤ hNi , i ∈ 0 : T
}
.

The beginning of the proof follows the lines of Theorem 3, with β = d and d replaced
by T + 1. Let d̃ =

∑T
t=0 d

t so that, for a set B ∈ BN
[0,1)T+1 ,∣∣∣∣αN (FQ̃NT,hT

(B)

)
− λT+1

(
F
Q̃NT,hT

(B)

)∣∣∣∣ ≤ Ld̃D(u1:N ) + #U2

{
D(u1:N ) + L−d̃

}
where L and U2 are as in the proof of Theorem 3.
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Following this latter, let P ′ be the partition of the set [0, 1)T+1 into hyperrectangles
W ′ of size L′−dT × L′−dT−1 × ...× L′−1 such that, for all h and h′ in W ′, we have

|F
Q̂NT,h

(ht)− FQ̂NT,h
(h′1)| ≤ L−dT . (21)

and ∣∣∣F̃Ni−1(hi−1, hi)− F̃Ni−1(h′i−1, h
′
i)
∣∣∣ ≤ L−dT+1−i

, i ∈ 2 : (T + 1) (22)

where, to simplify the notation, we write F̃Ni−1(h̃, ·) the CDF of KN
T−i+2,h(h̃,dhT−i+1).

Let us first look at condition (21). We have

|F
Q̂NT,h

(h1)− F
Q̂NT,h

(h′1)| ≤ 2‖FQ̂NT,h
− F

Q̂NT,h
‖∞ + 2‖FQ̂NT,h

− FQT,h‖∞ + |FQT,h(h1)− FQT,h(h′1)|

≤ 2r1(N) + 2r2(N) +
∣∣FQT,h(h1)− FQT,h(h′1)

∣∣
with r1(N) = ‖F

Q̂NT,h
− FQ̂NT,h

‖∞ and r2(N) = ‖Q̂N
T,h − QT,h‖E; note r1(N) → 0 by the

construction of Q̂NT,h and under the assumptions of the theorem while r2(N) → 0 by
Theorem 1 and by Gerber and Chopin (2015, Theorem 3)
Let L′ = 2m for an integerm ≥ 0, so that hi and h′i are in the same interval Id

dT−im
(k) ∈

Id
dT−im

, i ∈ 1 : (T+1). Then, since h1 and h′1 are in the same interval Id
dT−1m

(k) ∈ Id
dT−1m

,

∣∣FQT,h(h1)− FQT,h(h′1)
∣∣ ≤ QT,h

(
IddT−1m(k)

)
= QT

(
SddT−1m(k)

)
≤ ‖pT ‖∞

(L′)dT

as QT admits a bounded density pT . Hence (21) is verified if

L′ ≥ Lk̃N , k̃N =

(
‖pT ‖∞

(1− LdT r∗1(N))

)1/dT

, r∗1(N) = 2r1(N) + 2r2(N),

which implies that we assume from now on that L−dT ≥ 2r∗1(N) for N large enough.
Let us now look at (22) for a i > 1. To simplify the notation in what follows, let

FNi−1(h̃, ·) be the CDF of Mh
T−i+2,Q̂NT−i+1,h

(h̃,dhT−i+1) and Fi−1(h̃, ·) be the CDF of

Mh
T−i+2,QT−i+1

(h̃,dhT−i+1). Then,∣∣∣F̃Ni−1(hi−1, hi)− F̃Ni−1(h′i−1, h
′
i)
∣∣∣

≤ 2‖F̃Ni−1 − FNi−1‖∞ + 2‖FNi−1 − Fi−1‖∞ + |Fi−1(hi−1, hi)− Fi−1(h′i−1, h
′
i)|

= 2r3(N) + 2r4(N) +
∣∣Fi−1(hi−1, hi)− Fi−1(h′i−1, h

′
i)
∣∣

with r3(N) = ‖F̃Ni−1 − FNi−1‖∞ and r4(N) = ‖FNi−1 − Fi−1‖∞; note r3(N) → 0 by the
construction of KN

T−i+2,h and under the assumptions of the theorem while r4(N)→ 0 by
Theorem 2 and Gerber and Chopin (2015, Theorem 3).

32



To control
∣∣Fi−1(hi−1, hi)− Fi−1(h′i−1, h

′
i)
∣∣, assume without loss of generality that hi ≥

h′i and write G̃hi (hi−1, h
′
i) = G̃T−i+2(H(hi−1), H(h′i)) to simplify further the notation.

Then

|Fi−1(hi−1, hi)− Fi−1(h′i−1, h
′
i)| ≤ |Fi−1(hi−1, h

′
i)− Fi−1(h′i−1, h

′
i)|

+

∣∣∣∣∣
ˆ hi

h′i

G̃h(hi−1, v)QT−i+1,h(dv)

∣∣∣∣∣ .
The second term is bounded by ‖G̃T−i+2‖∞QT−i+1,h([h′i, hi]) ≤ ‖G̃T−i+2‖∞QT−i+1(W )
where W ∈ Sd

dT−im
. Since QT−i+1 admits a bounded density, we have, for a constant

c > 0,
‖G̃T−i+2‖∞QT−i+1,h([h′i, hi]) ≤ cL−d

T+1−i
.

To control the other term suppose first that h′i > L′−d
T−i+1 and let k be the largest

integer such that h′i ≥ kL′−d
T−i+1 . Then,

|Fi−1(hi−1, h
′
i)− Fi−1(h′i−1, h

′
i)|

=

∣∣∣∣∣
ˆ h′i

0

[
G̃hi (hi−1, v)− G̃hi (h′i−1, v)

]
QT−i+1,h(dv)

∣∣∣∣∣
≤

∣∣∣∣∣∣
ˆ kL′−d

T−i+1

0

[
G̃hi (hi−1, v)− G̃hi (h′i−1, v)

]
QT−i+1,h(dv)

∣∣∣∣∣∣
+

∣∣∣∣∣
ˆ h′i

kL′−dT−i+1

[
G̃hi (hi−1, v)− G̃hi (t′i−1, v)

]
QT−i+1,h(dv)

∣∣∣∣∣ .
(23)

Then, using by Lemma 2, we have for the first term:∣∣∣ ˆ kL′−d
T−i+1

0

[
G̃hi (hi−1, v)− G̃hi (h′i−1, v)

]
QT−i+1,h(dv)

∣∣∣
=

∣∣∣∣∣∣
ki∑
j=1

ˆ
Wj

[
G̃T−i+2(H(hi−1),x)− G̃T−i+2(H(h′i−1),x)

]
QT−i+1(dx)

∣∣∣∣∣∣
≤

ki∑
j=1

{ ∣∣∣F cdfMT−i+2,QT−i+1
(H(hi−1),aj)− F cdfMT−i+2,QT−i+1

(H(h′i−1),aj)
∣∣∣

+
∣∣∣F cdfMT−i+2,QT−i+1

(H(hi−1),bj)− F cdfMT−i+2,QT−i+1
(H(h′i−1),bj)

∣∣∣ }
where Wj = [aj ,bj] ⊂ [0, 1)d and where ki ≤ 2d(dT−im + 1). Let Ci be the Lipschitz
constant of F cdfMT−i+2,QT−i+1

. Then, for any c ∈ [0, 1)d,∣∣∣F cdfMT−i+2,QT−i+1
(H(hi−1), c)− F cdfMT−i+2,QT−i+1

(H(h′i−1), c)
∣∣∣ ≤ Ci‖H(hi−1)−H(h′i−1)‖∞

≤ CiL′−d
T−i+1
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because H(hi−1) and H(h′i−1) belong to the same hypercube W ∈ Sd
dT−im

of side
2−md

T−i+1
= L′−d

T−i+1 .
For the second term after the inequality sign in (23), we have∣∣∣∣∣
ˆ h′i

kL′−dT−i+1

[
G̃hi (hi−1, v)− G̃hi (h′i−1, v)

]
QT−i+1,h(dv)

∣∣∣∣∣
≤Mh

T−i+2,QT−i+1,h
(hi−1, [kL

′−dT−i+1
, h′i]) +Mh

T−i+2,QT−i+1,h
(h′i−1, [kL

′−dT−i+1
, h′i])

≤MT−i+2,QT−i+1
(H(hi−1),W ) +MT−i+2,QT−i+1

(H(h′i−1),W )

≤ 2‖G̃T−i+2‖∞‖pT−i+1‖∞2−md
T−i+1

for a W ∈ Sd
dT−im

and where pT−i+1 is the (bounded) density of QT−i+1. This last
quantity is also the bound we obtain for h′i < L′−d

T−i+1 . Hence, these computations
shows that

|F̃i−1(hi−1, hi)− F̃i−1(h′i−1, h
′
i)| ≤ ciL′−d

T−i+1
log(L′)

for a constant ci, i ∈ 2 : (T + 1).
Condition (22) is therefore verified when (taking L′ so that log(L′) ≥ 1)

L′

log(L′)
≥ L max

i∈{2,...,T+1}

(
ci

1− LdT−i+1r∗2(N))

) 1

dT−i+1

where r∗2(N) = 2r3(N) + 2r4(N). Let γ ∈ (0, 1) and note that for N large enough
logL′ < L′γ . Hence, for N large enough (21) and (22) are verified for L′ the smallest
power of 2 such that

L′ ≥ (kNL)(1−γ)−1
, kN = max

i∈{1,...,T+1}

(
ci

1− LdT−i+1r∗(N))

) 1

dT−i+1

, c1 = ‖pT ‖

where r∗(N) = r∗1(N) + r∗2(N). Note that we assume from now on that L−dT ≥ 2r∗(N).
Because the function F

Q̃NT,hT
is continuous on [0, hN0 ] × · · · × [0, hNT ], ∂(F

Q̃NT,hT
(B)) =

F
Q̃NT,hT

(∂(B)) and therefore we can bound #U2 following the proof of Theorem 3. Using

the same notations as in the proof of Theorem 3, we obtain that Q̃NT,hT (∂(B)) is covered
by at most

(T + 1)2d̃k
d̃−1
1−γ
N L

d̃−1
1−γ

hyperrectangles in R̃. To go back to the initial partition of [0, 1)T+1 with hyperrectangles
W ∈ P, remark that L′ > L so that every hyperrectangles in R̃ is covered by at most c∗

hyperrectangles of P for a constant c∗. Hence,

#U (1)
2 ≤ cNL

d̃−1
1−γ , cN = c∗(T + 1)2d̃k

d̃−1
1−γ
N . (24)

We therefore have

‖S(ȟ1:N
0:T )− Q̃NT,hT ‖E ≤ L

d̃D(u1:N ) + cNL
d̃−1
1−γ
(
D(u1:N ) + L−d̃

)
.
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Let γ ∈ (0, d̃−1) so that cd := d̃ − d̃−1
1−γ > 0. To conclude the proof as in Gerber and

Chopin (2015, Theorem 4), let d̃1 = dT and d̃2 =
∑T−1

t=0 dt. Thus,

‖S(ȟ1:N
0:T )− Q̃NT,hT ‖E ≤ 2Ld̃1+d̃2D(u1:N ) + cNL

−cd

where the optimal value of L is such that L = O(D(u1:N )
− 1
cd+d̃1+d̃2 ). Then, provided that

r∗(N)D(u1:N )
− d̃1
cd+d̃1+d̃2 = O(1), L verifies all the conditions above and, since cN = O(1),

we have
‖S(ȟ1:N

0:T )− Q̃NT,hT ‖E = O
(
D(u1:N )

1
cd+d̃1+d̃2

)
.

Otherwise, if r∗(N)D(u1:N )
− d̃1
cd+d̃1+d̃2 → +∞, let L = O(r∗(N)

− 1
d̃1 ). Then cN = O(1)

and

Ld̃1+d̃2D(u1:N ) = O(r(N))
cd
d̃1
− cd+d̃1+d̃2

d̃1 D(u1:N )

= O(r(N)cd/d̃1)

(
O(r(N))−1D(u1:N )

d̃1
cd+d̃1+d̃2

) cd+d̃1+d̃2
d̃1

= O

(
r(N)cd/d̃1

)
.

Therefore ‖S(ȟ1:N
0:T )− Q̃NT,hT ‖E = O(1), which concludes the proof.

B.5.3. Proof of the Corollary 2

To prove the result we first construct a probability measure Q̃NT,hT such that the point
set x̃1:N

0:T generated by Algorithm 3 becomes, as N increases, arbitrary close to the point
set x̌1:N

0:T obtained using a smooth backward step described in Theorem 6. Then, we show
that, if ‖S(x̌1:N

0:T )− Q̃T ‖E → 0, then‖S(x̃1:N
0:T )− Q̃T ‖E → 0.

To this aims, assume that, for all t ∈ 0 : T , the points h1:N
t are labelled so that

n < m =⇒ hnt < hmt . (Note that the inequality is strict because, by Assumption 1 of
Theorem 1, the points x1:N

t are distinct.) Without loss of generality, assume that h1
t > 0

and let h0
t = 0 for all t.

To construct Q̃NT,hT , let Q̂NT,h be such that F
Q̂NT,h

is strictly increasing on [0, hNT ] with

F
Q̂NT,h

(hnT ) = FQ̂NT,h
(hnT ) for all n ∈ 1 : N and, for t ∈ 1 : T , let KN

t,h(ht,dht−1) be such,

for all ht ∈ [0, 1), FKN
t,h

(ht, ·) is strictly increasing on [0, hNt−1] and

FKN
t,h

(ht, h
n
t−1) = FMh

t,Q̂N
t−1,h

(ht, h
n
t−1), ∀n ∈ 1 : N.

Let ȟ1:N
0:T be as in Theorem 6 (with Q̃NT,hT constructed using the above choice of Q̂NT,h

and KN
t,h(h1, dht−1)). We now show by a backward induction that, for any t ∈ 0 : T ,

maxn∈1:N ‖x̌nt − x̃nt ‖∞ = O(1).
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To see this, note that, by the construction of Q̂NT,h,

|ȟnT − h̃nT | ≤ ∆N
T , ∆N

T := max
n∈1:N

|hn−1
T − hnT |

where, by Gerber and Chopin (2015, Lemma 2), ∆N
T → 0 as N → +∞. Hence, using

the Hölder property of the Hilbert curve, this shows that maxn∈1:N ‖x̌nT − x̃nT ‖∞ = O(1).
Let t ∈ 0 : T − 1 and assume that maxn∈1:N ‖x̌nt+1− x̃nt+1‖∞ = O(1). Let wnt = h(x

ǎnt
t ),

where ǎnt is the index selected at iteration t of Algorithm 3 obtained by replacing x̃nt+1

by x̌nt+1. Then, by the construction of KN
t,h, maxn∈1:N |wnt − ȟnT | = O(1).

We now want to show that maxn∈1:N |wnt − h̃nT | = O(1). To simplify the notation,
let m̃t+1(xt,xt+1) = mt+1(xt,xt+1)Gt1(xt,xt+1). Then, using Assumption 4, simple
computations show that, for m ∈ 1 : N ,

|W̃m
t (x̃nt+1)− W̃m

t (x̌nt+1)| ≤
∣∣Wm

t m̃t+1(xmt , x̃
n
t+1)−Wm

t m̃t+1(xmt , x̌
n
t+1)

∣∣∑N
k=1W

k
t m̃t+1(xkt , x̃

n
t+1)

+Wm
t m̃t+1(xmt , x̌

n
t+1)

∣∣∣∑N
k=1W

k
t m̃t+1(xkt , x̌

n
t+1)−

∑N
k=1W

k
t m̃t+1(xkt , x̃

n
t+1)

∣∣∣(∑N
k=1W

k
t m̃t+1(xkt , x̃

n
t+1)

)(∑N
k=1W

k
t m̃t+1(xkt , x̌

n
t+1)

)
≤ ‖Gt‖∞

|m̃t+1(xmt , x̃
n
t+1)− m̃t+1(xmt , x̌

n
t+1)|

Nct

+ ‖Gtm̃t+1‖∞
∑N

k=1Gt(x̂
k
t−1,x

k
t )
∣∣m̃t+1(xkt , x̌

n
t+1)− m̃t+1(xkt , x̃

n
t+1)

∣∣
(Nct)

2
.

Let
ωt+1(δ) = sup

(x1,x2)∈X 2, (x′1,x
′
2)∈X 2

‖xi−x′i‖∞≤δ, i=1,2

|m̃t+1(x1,x2)− m̃t+1(x′1,x
′
2)|, δ > 0

be the modulus of continuity of m̃t+1. Then,

|W̃ i
t (x̃

n
t+1)− W̃ i

t (x̌
n
t+1)| ≤ max

n∈1:N

wt+1(|x̃nt+1 − x̌nt+1|∞)

N

‖Gt‖∞(ct + ‖Gtm̃t+1‖∞)

c2
t

=: ξ̃Nt

where, using the fact that m̃t+1 is uniformly continuous on X 2 (Assumption 5) and the
inductive hypothesis, ξ̃Nt = O(N−1). Also, we know that

min
m∈1:N

inf
xt+1∈X

W̃m
t (xt+1) ≥ ξNt :=

ct
N‖Gt‖m̃t+1‖∞

.

Then, let Nt be such that ξ̃Ntt < ξNtt so that, for N ≥ Nt, we either have h̃nt = wnt , or h̃nt =
wn+1
t or h̃nt = wn−1

t . Hence, maxn∈1:N |wnt − h̃nt | = O(1) and therefore maxn∈1:N |h̃nt −
ȟnt | = O(1). Finally, by, the Hölder property of the Hilbert curve, this shows that
maxn∈1:N ‖x̌nt − x̃nt ‖∞ = O(1).
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The rest of the proof follows the lines of Niederreiter (1992, Lemma 2.5, p.15). First,
note that the above computations shows that, for any ε > 0, there exists a Nε such
that ‖x̃1:N

0:T − x̌1:N
0:T ‖∞ ≤ ε for N ≥ Nε. Let B = [a, b], B+ = [a, b + ε] ∩ [0, 1)T+1 and

B− = [a, b− ε]. If ε > bi for at least one i ∈ 1 : (T + 1), B− = ∅. Then for N ≥ Nε, we
have

S(x̌1:N
0:T )(B−) ≤ S(x̃1:N

0:T )(B) ≤ S(x̌1:N
0:T )(B+). (25)

By the definition of the extreme metric, we have∣∣∣S(x̌1:N
0:T )(B+)− Q̃T (B+)

∣∣∣ ≤ ‖S(x̌1:N
0:T )− Q̃T ‖E,∣∣∣S(x̌1:N

0:T )(B−)− Q̃T (B−)
∣∣∣ ≤ ‖S(x̌1:N

0:T )− Q̃T ‖E.
(26)

Combining (25) and (26) yields:−
(
Q̃T (B)− Q̃T (B−)

)
− ‖S(x̌1:N

0:T )− Q̃T ‖E ≤ S(x̃1:N
0:T )(B)− Q̃T (B)

S(x̃1:N
0:T )(B)− Q̃T (B) ≤

(
Q̃T (B+)− Q̃T (B)

)
+ ‖S(x̌1:N

0:T )− Q̃T ‖E.
(27)

Using the fact that Q̃T admits a bounded density, we have for a constant c > 0

Q̃T (B)− Q̃T (B−) ≤ cλT+1(B \B−) ≤ c εT+1

Q̃T (B+)− Q̃T (B) ≤ cλT+1(B+ \B) ≤ c εT+1.
(28)

Therefore, combining (27) and (28), we obtain, for N ≥ Nε and for all B ∈ B[0,1)T+1 ,

−c εT+1 − ‖S(x̌1:N
0:T )− Q̃T ‖E ≤ S(x̃1:N

0:T )(B)− Q̃T (B) ≤ ‖S(x̌1:N
0:T )− Q̃T ‖E + c εT+1

and thus
‖S(x̃1:N

0:T )− Q̃T ‖E ≤ ‖S(x̌1:N
0:T )− Q̃T ‖E + c εT+1

and the result follows from Theorem 6.
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