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THE FICTITIOUS CONTROL METHOD FOR THE

INTERNAL CONTROLLABILITY OF UNDERACTUATED

SYSTEMS OF PDES

PIERRE LISSY

Abstract. These are lecture notes for a short winter course at the De-
partment of Mathematics, University of Coimbra, Portugal, December 6-

8, 2018. The course was part of the 13th International Young Researchers
Workshop on Geometry, Mechanics and Control. The aim of the lectures

was to explain how some ideas initially developed by Gromov in his fa-

mous book “Partial Differential Equations” (1986, Springer), in order to
find non-holonomic solutions to underdetermined partial differential equa-

tions, can be used in the context of control theory of coupled systems.

1. Introduction

1.1. Aim of the lecture notes. Studying the controllability for linear or non-
linear coupled systems of partial differential equations has been an intensive
subject of interest these last years. The main issue is to try to control many
equations with less controls than equations. We hope to act indirectly on the
equations that are not directly controlled thanks to the coupling terms.

A typical situation is when the control appears as a source term (possibly
localized in space and time) in our partial differential equation. Such a con-
trol is called an internal control. In this particular case, one way to prove a
controllability property can be described as follows.

(1) Firstly, control the system with a control acting on each equation. This
is in general simpler than the original underactuated problem and may
be performed by using classical tools. This first step has firstly been
used in [19] in the context of coupled systems of partial differential
equations.
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2 PIERRE LISSY

(2) Secondly, try to find a way to get rid of the control that should not
appear in order to obtain the desired result. This can be done by us-
ing the notion of “algebraic solvability”, which relies on a particular
construction of a solution for a related underdetermined linear partial
differential equation with a source term: the solution will be written
as a linear combination of the source term and its derivatives. This
property is strongly related to the inversion of differential operators as
presented in [20, Section 2.3.8].

The above strategy has been firstly introduced in [9], in the context of sta-
bilization of ordinary differential equations, and has been extended in [11] in
the context of controllability of partial differential equations. The goal of these
lecture notes is to explain the spirit of this “fictitious control + algebraic solv-
ability” method (that we will shorten in “fictitious control method”), in order
to highlight the main features, advantages, and drawbacks of this method.

The lecture notes are as self-contained as possible, up to two points: in Sec-
tion 2.1, the proof of the well-posedness of our abstract setting is skipped, and
in Section 3.1, the proofs of two controllability results on the scalar Schrödinger
equation are also skipped. We hope that it should not cause difficulties for un-
derstanding the main ideas. They are organized as follows. Firstly, in Section
1.2, we give a simple example of the algebraic solvability of a differential sys-
tem, in order to explain the spirit of the method we will use constantly in these
lecture notes. Then, in Section 1.3, we explain the link with the h-principle. A
very short introduction to controllability problems is provided in Section 2.1. In
section 2.2, we will explain the main ideas on a very simple system of ordinary
differential equations, following closely the presentation of [8, Second proof of
Theorem 1.18]. In Section 2.3, we make some comments on the method. Section
3 is devoted to proving a result of controllability for a system of linear partial
differential equations of Schrödinger type, which is a simplified version of the
results proved in [26]. We give some concluding remarks and perspectives in
Section 4.

1.2. An introducing example. In order to explain the main ideas of the fol-
lowing lecture notes, let us consider the following question. Let f ∈ C∞0 (R,R)
(that we denote from now on C∞0 (R)) and a1, a2, a3, b1, b2, b3 some real num-
bers.

Question: is it possible to find two functions x1 and x2, that are also in
C∞0 (R), verifying the equation

a1x1 − a2x1′ + a3x
′′
1 + b1x2 − b2x2′ + b3x2

′′ = f?(1.1)
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From an analytic point of view, this equation is underdetermined (there are
more unknowns (2, the functions x1 and x2) than equations (only 1)). We follow
here closely the ideas developed in [20, Section 2.3.8].

We rewrite (1.1) under the form L(x1, x2) = f and

L =
(
a1 − a2∂t + a3∂tt, b1 − b2∂t + b3∂tt

)
: C∞(R)2 → C∞(R).

Since we impose the solution (x1, x2) to be compactly supported, the following
remark is essential: the set C∞0 (R) is stable by differentiation and linear com-
bination. Moreover, for any ψ ∈ C∞0 (R), the support of any derivative ψ(k) is
included in the support of ψ. This suggests the following procedure: we aim
to find a solution to (1.1) that can be written as a linear combination of the
source term f and its derivatives. Such a solution will then be automatically
with compact support. In other words, we would like to find a solution (x1, x2)
under the form (x1, x2) = Mf , where M : C∞(R) → C∞(R)2 is a linear dif-
ferential operator. In an equivalent way, we would like to findM such that the
relation L ◦M = IdC∞(R) holds. In order to solve this equation, we need to
introduce the following tool.

Definition 1.1. Let (p, q, r) ∈ (N∗)3. For i ∈ [|1, r|], we consider Ci ∈Mp,q(R).
We also call tCi ∈Mq,p(R) the transpose of Ci.

We consider the following linear differential operator of order r with constant
coefficients

P : ϕ = (ϕ1, . . . ϕq) ∈ C∞(R)q 7→
r∑
i=1

Cr(ϕ
(r)) ∈ C∞(R)p.

We call the formal adjoint of P, that we denote by P∗, the following operator:

P∗ : ψ = (ψ1, . . . ψp) ∈ C∞(R)p 7→
r∑
i=1

(−1)rtCr(ψ
(r)) ∈ C∞(R)q.

The name “formal adjoint” comes from the fact that the following property
is verified: for any ϕ ∈ C∞0 (R)q and any ψ ∈ C∞0 (R)p, we have, using the
definition of tCi on the second line and an integration by parts on the third
line (there are no boundary terms since the functions we consider are compactly
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supported), ∫
R
〈Pϕ,ψ〉Rp =

r∑
i=1

∫
R
〈Cr(ϕ(r)), ψ〉Rp

=

r∑
i=1

∫
R
〈ϕ(r),t Crψ〉Rq

=

r∑
i=1

∫
R
〈ϕ, ((−1)rtCrψ)(r)〉Rq

=

r∑
i=1

∫
R
〈ϕ, (−1)rtCr(ψ

(r))〉Rq

=

∫
R
〈ϕ,P∗ψ〉Rq .

As for the usual adjoint of an operator, we can verify the involution property
(P)∗∗ = P and it is very easy to compute the formal adjoint of a composition
P ◦ Q (where Q is another linear differential operator with appropriate size)
and obtain the formula (P ◦ Q)∗ = Q∗ ◦ P∗.

Coming back to (1.1), our problem can be reduced to find some operator
N : C∞(R)2 → C∞(R) such that

(1.2) N ◦ L∗ = IdC∞(R).

Using the involution property of the formal adjoint, one can then recoverM by
posing M = N ∗. Obviously, the identity (1.2) implies the following injectivity
property: for any ψ ∈ C∞(R),

L∗ψ =

(
0
0

)
⇒ ψ(=M∗(L∗ψ)) = 0.

Now, we compute L∗ : C∞(R)→ C∞(R)2 according to the previous rule:

L∗ =

(
a1 + a2∂t + a3∂tt
b1 + b2∂t + b3∂tt

)
.

Let us solve L∗ψ = 0R2 . This system is now overdetermined from an analytic
point of view (we have 2 equations and 1 unknown ψ). However, from an
algebraic point of view, if we forget that ψ′ and ψ′′ are derivatives of ψ and
we consider ψ,ψ′, ψ′′ as independent algebraic unknowns, the system becomes
underdetermined because we have 2 equations and 3 unknowns. Now, we write
down explicitely what is the system of equations L∗ψ = 0R2 :
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(1.3)

{
a1ψ + a2ψ

′ + a3ψ
′′ = 0,

b1ψ + b2ψ
′ + b3ψ

′′ = 0.

In order to make this system being well-posed in an algebraic point of view (i.e.
we would like to have as many equations as independent algebraic unknowns),
we differentiate these two equations. We obtain

(1.4)

{
a1ψ

′ + a2ψ
′′ + a3ψ

′′′ = 0,

b1ψ
′ + b2ψ

′′ + b3ψ
′′′ = 0.

If we are interested in the system formed by (1.3) et (1.4), we remark that
if we see ψ,ψ′, ψ′′ and ψ′′′ as independent algebraic unknowns, we obtain a
system with 4 equations and 4 unknowns, that we can write under the form
C(ψ,ψ′, ψ′′, ψ′′′) = 0 with

C =


a1 a2 a3 0
b1 b2 b3 0
0 a1 a2 a3
0 b1 b2 b3

 .

Hence, under some generic algebraic relation between the coefficients of C (so
that C is invertible, i.e. the determinant of C is nonzero), necessarily, we have
ψ ≡ 0. Moreover, inverting the previous idea, the matrix C−1 can also be seen
as a differential operator, in the sense that C−1(y, y′, y′′, y′′′) = P(y) for some
linear differential operator P : C∞(R)→ C∞(R)4. More precisely, let us write
C−1 under the form

C−1 :=


c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

 .

We have the identity

C−1C


ψ
ψ′

ψ′′

ψ′′′

 =


ψ
ψ′

ψ′′

ψ′′′

 .

If we consider the first line of this system of 4 equations, we obtain notably

ψ = c11(a1ψ + a2ψ
′ + a3ψ

′′) + c12(b1ψ + b2ψ
′ + b3ψ

′′)

+ c13(a1ψ
′ + a2ψ

′′ + a3ψ
′′′) + c14(b1ψ

′ + b2ψ
′′ + b3ψ

′′′).
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Since we want to write it under the form N (L∗ψ) = ψ, where L∗ψ is given by

L∗ψ =

(
a1ψ + a2ψ

′ + a3ψ
′′

b1ψ + b1ψ
′ + b3ψ

′′

)
,

we choose

N :=
(
c11Id + c13∂t, c12Id + c14∂t

)
: C∞(R)2 → C∞(R),

so that

N ∗ =M =

(
c11Id− c13∂t
c12Id− c14∂t

)
: C∞(R)→ C∞(R)2.

Here, we say that we have solved algebraically the system L(x1, x2) = f . The
use of this notion of algebraic solvability and its link with the controllability
properties of underdetermined systems will be made more precise later on.

1.3. Link with the h-principle. In this section, we aim to explain briefly in
a more abstract way where the ideas that underly the approach of the previous
example come from. Interested readers may consult [16, Part 2] and [20, Section
2.3.8].

Consider some (linear or nonlinear, ordinary or partial) differential equation
that is written as

(1.5) Φ(ϕ, Jkϕ) = 0,

where ϕ = (ϕ1, . . . ϕn) is some smooth function (defined for instance on Rd
with d ∈ N∗) and Jkϕ represents all the derivatives up to order k ∈ N∗. Note
that it is a particular case of a closed partial differential relation, in the sense
of [16, Sections 5.1 and 5.2]. Clearly, one necessary condition for (1.5) to have
a solution is that the algebraic equation

(1.6) Φ(ϕ, Y ) = 0,

where Y = (y1, . . . yNk
), has a solution (Nk is the number of derivatives of the

components of ϕ up to order k). This leads to the following definitions.

Definition 1.2. A solution (ϕ, Y ) of (1.6) is called a formal (or non-holonomic)
solution of (1.5). A solution ϕ to the original problem (1.5) is called a genuine
(or holonomic) solution of (1.5).

Assume that (1.5) is an underdetermined system, i.e. there are more equa-
tions than “unknowns” (which are just the components of ϕ). In general, the
algebraic version (1.6) will be overdetermined if we consider all the algebraic
unknowns (ϕ, y1, . . . yNk

). To bypass this difficulty, as in the previous example,
we differentiate (with respect to all the variables) as many times as needed
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the equations of (1.5). Since new derivatives of ϕ appear, we make some new
unknowns and new equations appear.

In the case of a underdetermined linear partial differential equation with
constant coefficients, it can be proved theoretically (see [20, Section 2.3.8])
that we can differentiate enough times in order to have as many equations as
“algebraic unknowns” (meaning as before that ϕ and all its derivatives are
seen as independent algebraic unknowns). Then, under generic conditions on
the coefficients of Φ, we can invert this well-posed algebraic system in order
to solve (1.6). Hence, as in the previous example, we have found a genuine
solution to (1.5) just by selecting an appropriate equation between the ones at
our disposal. This leads to the following definition.

Definition 1.3. The system (1.5) satisfies the h-principle if any formal solution
(ϕ, Y ) of (1.5) can be deformed into a genuine solution g of (1.5) in the space of
formal solutions of (1.5), in the following sense: one can find an homotopy (i.e.
a continuous deformation) that brings (ϕ, Y ) to g, in the class of non-holonomic
solutions.

Note that all these definitions can be extended to the more general setting
of partial differential relations.

2. Controllability of a coupled system of ordinary differential
equations

2.1. Controllability. Consider some linear operator A (for instance, a matrix,
or a partial differential operator like−∆, where ∆ denotes the Dirichlet-Laplace
operator on some bounded domain of Rd for some d ∈ N∗), posed on some
real or complex Hilbert space (H, 〈·, ·〉H) (which is called the state space). We
consider a linear dynamical system of the form

(2.7)

{
y′(t) = Ay(t), t ∈ [0, T ],

y(0) = y0 ∈ H,

where for any t ∈ [0, T ], y(t) ∈ H. y is the state of the system: one has to
imagine some physical, chemical or biological quantity (e.g. the temperature,
the concentration of some substance), that evolves during the time.

Under reasonable assumptions on A (see Remark 2.2), this system is well-
posed: for any y0 ∈ H, there exists a unique solution to (2.7) in the space
C0([0, T ], H). This solution verifies: for any T > 0, there exists a constant
C(T ) > 0 such that for any y0 ∈ H, we have

||y||C0([0,T ],H) 6 C(T )||y0||H .
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This is a free evolution: As soon as y0 is fixed, we cannot choose the value
of y(T ). We cannot act on the dynamical system. Hence, one natural question
is to understand how we can introduce some way to influence the dynamics of
(2.7).

A good model is the following. Let us consider some other Hilbert space
(U, 〈·, ·〉U ) (which will be called the control space) and some B ∈ Lc(U,H) (the
space of linear continuous maps from U to H). B is called a linear bounded
control operator.

Definition 2.1. A linear control system is an equation of the form

(2.8)

{
y′(t) = Ay(t) +Bu(t), t ∈ [0, T ],

y(0) = y0 ∈ H,

where u ∈ L2((0, T ), U). u is called the control.

Remind that the definition of L2((0, T ), U) is given by

L2((0, T ), U) := {u : (0, T )→ U measurable s.t.

∫ T

0

||u(t)||2Udt <∞}.

(We could have introduced other functional spaces, but this choice is justified by
the fact that it is more convenient to work in Hilbert spaces). We assume that
we also have well-posedness, in the following sense: for fixed u ∈ L2((0, T ), U),
there exists a unique solution y to (2.8) in the space C0([0, T ], H), verifying
moreover: for any T > 0, there exists a constant C(T ) > 0 such that for any
y0 ∈ H, we have

||y||C0([0,T ],H) 6 C(T )
(
||y0||H + ||u||L2((0,T ),U)

)
.

This abstract setting is very useful to cover a wide range of situations, but not
all possible situations (e.g. nonlinear control systems).

Remark 2.2. Concerning the well-posedness of (2.7), a good framework is the
semigroup theory: we assume that A is a close unbounded operator on H with
dense domain, that verifies two additional properties:

• A is dissipative, i.e., for any x ∈ H, Re (〈x,Ax〉) 6 0,
• A is maximal, i.e., for any λ > 0, Id− λA is surjective.

We refer for instance to [28, Theorem 4.3, Page 14]).
Concerning the well-posedness of (2.8) under the above assumptions on A,

we refer to [8, Section 2.3] or [32, Chapter 4] for more explanations.

Now, if we consider (2.8) without fixing u, i.e. meaning that the pair (y, u)
is considered as an unknown, (2.8) becomes what we have already called an
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underdetermined system: if we imagine that a well-posed system like (2.7) re-
quires to have “as many equations as unknowns”, in a system like (2.8), we
have “more unknowns” than equations (u also appears at least in one equa-
tion). Moreover, it is likely that y(T ) depends strongly on the choice of our
control u. We have gained some “degree of freedom” to act on the equation.

One very natural question associated to (2.8) is the following: for any initial
condition, can we find a control that put the system at rest at some time T > 0?
This is exactly the purpose of the following definition.

Definition 2.3. The linear control system (2.8) is said to be null-controllable
if, for any y0 ∈ H, there exists some u ∈ L2((0, T ), H) such that y(T ) = 0 in
H.

This notion is particularly interesting: as soon as y(T ) = 0, if we switch
off the control (i.e., we set u = 0 on [T,∞)), up to a translation in time, we
are back to the free system (2.7) with “initial condition” 0 ∈ H. Since 0 is an
equilibrium of (2.7), the only solution is 0 and the solution stays at rest forever
for any t > T .

Question: what kind of condition we need on A and B to ensure that the
null-controllability property holds?

In such a general setting, this question does not really make sense, so we
will investigate some precise examples. To begin, let us consider the following
trivial example.

Example 2.4. We consider H = R, A = a ∈ R, B = IdR, and the following
very simple scalar linear ordinary differential equation with constant coefficients

(2.9)

{
y′(t) = ay(t) + u(t), t ∈ [0, T ],

y(0) = y0 ∈ R.

Let us fix some y0 ∈ R and some final time T > 0. Can we find u such that the
solution of (2.9) verifies y(T ) = 0?

The answer is yes, and it is very easy to construct “by hand” a control.
Consider any function y : R+ → R such that:

• y ∈ C∞(R+,R),
• y(0) = y0,
• The support (in the ambient space R+) of y is included in [0, T ].

We then introduce u(t) = y′(t)− ay(t). It is clear that:

• u ∈ C∞(R+,R) (so notably u ∈ L2((0, T ),R)),
• (2.9)1 is verified by construction of u (here and in what follows, (S)i

means that we consider the i-th line of system (S)),
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• (2.9)2 is also verified by construction of y,
• y(T ) = 0 since y is supported in [0, T ].

Of course, the above example is quite trivial, and does not really highlight
the deepness of the problems we will have to face in more complex situations.

Remark 2.5. In the above example, we have an infinite choice of functions for
y. Hence, we do not have uniqueness of the control u and the trajectory y in
the problem of null-controllability raised in Definition 2.1.

2.2. Systems of two linear ODEs with one control. Now, let us consider
the following system of two linear ordinary differential equations with constant
coefficients

(2.10)


y′1(t) = a11y1(t) + a12y2(t), t ∈ [0, T ],

y′2(t) = a21y1(t) + a22y2(t) + u(t), t ∈ [0, T ],

y1(0) = y01 ∈ R, y2(0) = y02 ∈ R.

Let us put this system in the abstract setting of (2.8). Here, H = R2, U = R.
The operator A ∈ L(R2) is the matrix of size 2× 2 given by

A =

(
a11 a12
a21 a22

)
,

and the control operator B ∈ L(R,R2) is the matrix of size 2× 1 given by

B =

(
0
1

)
.

We ask the same question: let us fix some initial condition (y01 , y
0
2) ∈ R2 and

some final time T > 0. Can we find u such that the solution of (2.10) verifies
y1(T ) = y2(T ) = 0? Of course, here, the method we used for the scalar equation
fails: if we choose any (y1, y2) regular enough verifying (y1(0), y2(0)) = (y01 , y

0
2)

and (y1(T ), y2(T )) = (0, 0), there is no reason for (2.10)1 to be verified.
Equation (2.10) is the prototype of what we will call an underactuated sys-

tem:

• We have two unknowns, y1 and y2, that are the states we would like to
control.
• But we have only one control u, on the last equation.

In other worlds, we control only “directly” the quantity y2, and we hope that
thanks to the coupling terms, we can “indirectly” control y1 “through” y2 (for
this reason, this situation is called a problem of “indirect control”).

This phenomenon can be observed in real-life models. For instance, in the
model of tumour growth presented in [6], three quantities are involved: the
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drug concentration, the healthy and the non-healthy cells. The resulting sys-
tem consists of three equations, that are coupled with some nonlinear reaction
terms. The control is a drug bolus inside a small subdomain. It only influences
directly the drug concentration, so that the structure of the coupling terms is
crucial to understand how we can kill all the non-healthy cells.

Question: What are reasonable conditions we need to impose on the cou-
pling coefficients a11, . . . , a22 in order to ensure controllability?

One necessary condition is clearly the following.

Lemma 2.6. In order that (2.10) is null-controllable, it is necessary to have
a12 6= 0.

Proof. If a12 = 0, then y1 verifies the equation

y′1 = a11y1.

The control u has no influence on the dynamics of y1. Hence, we can solve
explicitly this very simple ordinary differential equation and find that

y1(t) = y01e
a11t.

As soon as y01 6= 0, obviously y(T ) 6= 0, and we conclude that the system cannot
be null-controllable in this case. �

In fact, it is remarkable that this condition is also sufficient to ensure null-
controllability.

Theorem 2.7. If a12 6= 0, then (2.10) is null-controllable.

Proof of Theorem 2.7
In order to prove this Theorem, we will use a fictitious control argument,

in the spirit of [8, Second proof of Theorem 1.18]. The strategy can be briefly
described as folllows:

(1) Firstly, we control our system of equations with one control on each
equation, i.e. we solve the control problem

ŷ′1(t) = a11ŷ1(t) + a12ŷ2(t) + û1(t), t ∈ [0, T ],

ŷ′2(t) = a21ŷ1(t) + a22ŷ2(t) + û2(t), t ∈ [0, T ],

ŷ1(0) = y01 ∈ R, ŷ2(0) = y02 ∈ R,
ŷ1(T ) = 0, ŷ2(T ) = 0.

This can be done by a direct construction, which is very similar to
Example 2.4. Moreover, it is easy to construct û1 and û2 in such a way
that they are smooth and compactly supported in (0, T ) (their support
will be included in [T3 ,

2T
3 ]).
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(2) Secondly, we solve the auxiliary control problem
ỹ′1(t) = a11ỹ1(t) + a12ỹ2(t) + û1(t), t ∈ [0, T ],

ỹ′2(t) = a21ỹ1(t) + a22ỹ2(t) + û2(t) + ũ(t), t ∈ [0, T ],

ỹ1(0) = 0, ỹ2(0) = 0,

ỹ1(T ) = 0, ỹ2(T ) = 0.

(û1, û2) is the same as the one introduced in the previous step and
is seen as a source term. The unknowns are now (ỹ1, ỹ2, ũ). We are
typically in a situation that is similar to the introducing example ex-
plained in Section 1.2: the system is underdetermined, and we will find
a solution that can be written as a linear combination of the source
term (û1, û2) and its derivatives by applying the same procedure as in
Section 1.2.

(3) To conclude, we investigate the system that is verified by y1 = ŷ1 − ỹ1
and y2 = ŷ2 − ỹ2, and we prove that it provides a solution to our de-
sired control problem: there exists a control u such that (y1, y2) verifies
(2.10) together with y1(T ) = 0 and y2(T ) = 0. Moreover, during this
procedure, the “fictitious control” (û1, û2) disappears, justifying the
name of the method.

2.2.1. First step: analytic part. Let us introduce the following auxiliary control
problem

(2.11)


ŷ′1(t) = a11ŷ1(t) + a12ŷ2(t) + û1(t), t ∈ [0, T ],

ŷ′2(t) = a21ŷ1(t) + a22ŷ2(t) + û2(t), t ∈ [0, T ],

ŷ1(0) = y01 ∈ R, ŷ2(0) = y02 ∈ R,
ŷ1(T ) = 0, ŷ2(T ) = 0,

where we have now two controls û1 and û2, each acting on one of the equations.
This means that the control operator is now

B̂ =

(
1 0
0 1

)
.

As in the case of one equation described in Example 2.4, it is very easy to exhibit
a solution to (2.11). However, we will require some additional properties (for
some reasons that will become clear later on).

We introduce some function η : [0, T ]→ R such that :

• η is of class C∞ on [0, T ],
• η = 1 on [0, T3 ],

• η = 0 on [ 2T3 , T ].
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Now, we consider the solution to the (free) equation

(2.12)


yF ′1 (t) = a11y

F
1 (t) + a12y

F
2 (t), t ∈ [0, T ],

yF ′2 (t) = a21y
F
1 (t) + a22y

F
2 (t), t ∈ [0, T ],

y1(0) = y01 ∈ R, y2(0) = y02 ∈ R.

We introduce (
ŷ1
ŷ2

)
=

(
ηyF1
ηyF2

)
and (

û1
û2

)
=

(
ŷ′1 − a11ŷ1 − a12ŷ2
ŷ′2 − a21ŷ1 − a22ŷ2

)
.

(û1, û2) is called the fictitious control (for reasons that will appear at the end
of the next step).

Then:

• (ŷ1, ŷ2, û1, û2) verifies (2.11)1−2 by construction,
• We also have (2.11)3 by definition of (ŷ1, ŷ2), since η(0) = 1,

• (2.11)4 is also verified: η = 0 on [2T3 , T ], so this is also the case for ŷ1
and ŷ2,
• ŷ1, ŷ2, û1, û2 are C∞ on [0, T ], since yF1 , y

F
2 are clearly in C∞([0, T ],R)

and η is also in C∞([0, T ],R),
• The controls (û1, û2) are compactly supported in (0, T ). Indeed, on

[0, T3 ], by definition of (û1, û2) and since η = 1, using (2.12), we have(
û1(t)
û2(t)

)
=

(
yF ′1 (t)− a11yF1 (t)− a12yF2 (t)
yF ′2 (t)− a21yF1 (t)− a22yF2 (t)

)
=

(
0
0

)
,

and on [ 2T3 , T ], by definition of (û1, û2) and since η = 0, we also have

(û1, û2) = (0, 0) on [2T3 , T ].

2.2.2. Second step: algebraic part. Now, we would like to solve the following
auxiliary control problem:

(2.13)


ỹ′1(t) = a11ỹ1(t) + a12ỹ2(t) + û1(t), t ∈ [0, T ],

ỹ′2(t) = a21ỹ1(t) + a22ỹ2(t) + û2(t) + ũ(t), t ∈ [0, T ],

ỹ1(0) = 0, ỹ2(0) = 0,

ỹ1(T ) = 0, ỹ2(T ) = 0.

Note that (û1, û2) is the same as in (2.11), and has to be seen as a source term.
The unknowns are now (ỹ1, ỹ2, ũ).
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Remark that the system is now underdetermined : we have 2 equations and
3 unknowns. Hence, our intuition is that this system is likely to admit multi-
ples solutions. We will select some particular solution, thanks to the algebraic
solvability procedure that we explained in Section 1.2. This means that we will
express (ỹ1, ỹ2, ũ) as a linear combination of the source term (û1, û2) and its
derivatives. For the moment, we are only interested in (2.13)1−2 (the fact that
(2.13)3−4 are verified will be a consequence of our construction and will be ex-
plained at the end of the reasoning). We rewrite (2.13)1−2 in an abstract way
as

(2.14) L

ỹ1ỹ2
ũ

 = f,

where L : C∞([0, T ],R3)→ C∞([0, T ],R2) is the ordinary differential operator
given by

L

ỹ1ỹ2
ũ

 =

(
ỹ′1(t)− a11ỹ1(t)− a12ỹ2(t)

ỹ′2(t)− a21ỹ1(t)− a22ỹ2(t)− ũ(t)

)
,

and the source term f is given by

f =

(
û1
û2

)
.

We can reformulate in an equivalent way our question as follows: find some
right inverse to L, i.e. some linear differential operator M : C∞([0, T ],R2)→
C∞([0, T ],R3) such that

(2.15) L ◦M = IdC∞([0,T ],R2).

Indeed, the above equality applied to the source term gives L(M(f)) = f, so
that if we define

M(f) =

ỹ1ỹ2
ũ

 ,

we have found a solution to (2.14) by definition. Hence, our goal is now to solve
(2.15).

From (2.15), we get

(2.16) M∗ ◦ L∗ = IdC∞([0,T ],R2).

Here, ∗ correspond to the formal adjoint with respect to the L2−norm intro-
duced in Definition 1.1. According to this Definition, its expression is given
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here by

L∗ =

−∂t − a11Id −a21Id
−a12Id −∂t − a22Id

0 Id

 ,

i.e.

(2.17) L∗
(
ϕ1

ϕ2

)
=

−ϕ′1 − a11ϕ1 − a21ϕ2

−ϕ′2 − a12ϕ1 − a22ϕ2

−ϕ2

 .

Here, Id means the identity on C∞([0, T ],R).
Now, let us go back to our goal: we want to find some linear differential

operatorM∗ such that (2.16) holds. It means that we want to differentiate and
make linear combinations on the lines of (2.17) in order to recover ϕ1 and ϕ2.
In fact, in (2.17)3, ϕ2 is already there. Hence, we just have to recover ϕ1. In
order to reach this aim, we combine (2.17)2 with (2.17)3 in order to recover ϕ1,
by applying a differential operator of order 1 to (2.17)3:

(2.18) ϕ1 =
−(−ϕ′2 − a12ϕ1 − a22ϕ2) + (∂t + a22)(−ϕ2)

a12
,

were we have used our hypothesis a12 6= 0. Taking into account this computa-
tion, it is natural to introduce M∗ as

M∗
g1g2
g3

 =

(
−g2+g′3+a22g3

a12
−g3

)
.

By construction, using (2.17) and (2.18), we have

M∗
(
L∗
(
ϕ1

ϕ2

))
=

(
ϕ1

ϕ2

)
.

From Definition 1.1 and the fact that ∗ is an involution, it is easy to go back
to M(= (M∗)∗). Indeed, M∗ can be written in matricial form as

M∗ =

(
0 − Id

a12
∂t+a22Id

a12
0 0 −Id

)
,

so that

M =

 0 0

− Id
a12

0
−∂t+a22Id

a12
−Id

 .
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M is here a linear differential operator of order 1. Let us verify for the sake
of security that such a M answers the initial problem (2.13)1−2. Indeed, from
(2.14), we introduce ỹ1ỹ2

ũ

 =M
(
û1
û2

)
,

i.e. ỹ1ỹ2
ũ

 =

 0

− û1

a12

−û2 +
−û′1+a22û1

a12

 .

Let us verify that (2.13)1−2 holds. Indeed, we remark that:

• By definition of ỹ1, we have

ỹ′1 = 0,

and by definition of ỹ1 and ỹ2, we also have

a12ỹ2 + û1 + a11ỹ1 = 0.

We deduce that (2.13)1 is verified.
• By definition of ỹ2, we have

ỹ′2 = − û′1
a12

,

whereas by definition of ỹ1 and ỹ2, we have

a21ỹ1 + a22ỹ2 + û2 + ũ = −a22û1
a12

+ û2 − û2 +
−û′1 + a22û1

a12
= − û′1

a12
.

We deduce that (2.13)2 is verified.

Remark that the source term f = (û1, û2) is compactly supported in (0, T ).
Hence, this is also the case of (ỹ1, ỹ2, ũ): by our construction, these functions
only involve linear combinations and derivative (of order 1 here) of our source
term f . This implies that the support of (ỹ1, ỹ2, ũ) is included in the support of
f . This is in fact a crucial point and the main interest of the method. Hence, the
initial and final conditions (2.13)3−4 are verified automatically. This concludes
the algebraic part.

2.2.3. Conclusion. We combine both the analytic and algebraic part. We in-
troduce:

• y1 = ŷ1 − ỹ1,
• y2 = ŷ2 − ỹ2,
• u = −ũ.

Then, from (2.11) and (2.13), we have:
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• y1(0) = ŷ1(0) − ỹ1(0) = y01 − 0 = y01 , since ỹ1 is compactly supported
in (0, T ) (so that it vanishes on a neighbourhood of 0).
• y2(0) = ŷ2(0)− ỹ2(0) = y02 − 0 = y02 , for the same reasons.
• y1(T ) = ŷ1(T )− ỹ1(T ) = 0− 0 = 0, since ŷ1 is controlled to 0 at time
T and ỹ1 is compactly supported in (0, T ) (so that it vanishes on a
neighbourhood of T ).
• y2(T ) = ŷ2(T )− ỹ2(T ) = 0− 0 = 0, for the same reasons.
• By linearity,

y′1 = ŷ′1 − ỹ′1 = a11ŷ1 + a12ŷ2 + û1 − a11ỹ1 − a12ỹ2 − û1
= a11 (ŷ1 − ỹ1) + a12 (ŷ2 − ỹ2)

= a11y1 + a12y2

and

y′2 = ŷ′2 − ỹ′2 = a21ŷ1 + a22ŷ2 + û2 − a21ỹ1 − a22ỹ2 − û2 − ũ
= a21 (ŷ1 − ỹ1) + a22 (ŷ2 − ỹ2)− ũ
= a21y1 + a22y2 + u.

Hence, (y1, y2, u) solves the initial control problem (2.10).
We remark that the “fictitious control” (û1, û2) has disappeared. This jus-

tifies our terminology. �

2.3. The scope of the method. Let us enumerate some advantages and
drawbacks of the method:

• We can deal both with constant and non-constant coefficients (in time
and also in space, if we deal with PDEs). In fact, the non-constant case
is in some sense richer, because one can get some help from the non-
commutativity between the coefficients and the differential operators
(which of course does not happen in the case of constant coefficients),
that will add some extra coupling terms in our differentiation proce-
dure. This has notably be strongly used in [11].
• It can be also used for the study of nonlinear systems, because it com-

bines very well with the return method of Coron (see [9]). This method
relies on a linearization procedure around some particular trajectories
that we can choose in different ways (notably so that the algebraic
solvability procedure described above works). This is exactly the spirit
of the computations developed in [11].
• The method is purely local. It can be seen if we modify a little bit the

example developed in Section 2.2. Assume that we change the constant
coefficient a12 to a time-varying coefficient a12(t) that we choose to be
equal to 0 on [T3 ,

2T
3 ]. Then, since we are working locally on [T3 ,

2T
3 ]
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in the algebraic part, we do not “see” the coupling term a12 on this
time interval and then the algebraic solvability fails in this context. Of
course, this example is quite artificial (instead of controlling on [T3 ,

2T
3 ],

one can choose to control on a time interval where a12 is nonzero), but
in more complex situations (notably in the context of partial differ-
ential equations, where the coupling region can be disjoint from the
control region, notably in the space variable), it can become a real
problem. Notably, we know situations where the algebraic solvability
fails whereas the system is controllable (see e.g. [2]).

• This method relies on a differentiation procedure, hence it consumes a
lot of regularity: the control created by this procedure is less regular
than it “should” be. To be more precise, let us consider the following
example: assume that A is a differential operator and the initial con-
dition of the free system (2.7) is very regular. Then, in general, the
solution of (2.7) on [0, T ] × H will also be very regular, and will re-
main very regular if we add some source term f that is regular enough.
However, when we use our notion of algebraic solvability, we will need
to differentiate a system of the form “y′ = Ay+ f”, so that the control
obtained in the algebraic solvability procedure will be less regular than
f and y. Hence, even if we want to control a system like (2.8) with
controls in L2((0, T ), U) for instance, we will need to take initial data
that are not in the natural energy space H but that will be much more
regular (in the domain of some power of A).

For parabolic systems like systems of heat equations, this drawback
can sometimes be avoided: we have a regularizing effect that ensure
smoothness as soon as we are away from the initial condition and we
have regular enough coefficients (see e.g. [17, Theorem 7, Page 367]).
Hence, even if the initial condition is in H, after a short time on which
we does not control, it becomes very regular and we can use our alge-
braic solvability procedure. However, for hyperbolic or dispersive sys-
tems (like the wave equation or the Schrödinger equation), the regular-
izing effect does not exist, and it means that even if we want to control
a system with a low regularity control, we need to take very regular
initial data (see the following Section 3 and notably system (3.21) and
Theorem 3.6: the initial condition is very regular but the control is only
in L2). Hence, we lose sharpness in the results, in the sense that the
of initial data that can be controlled is not the entire energy space H
and has to be “artificially” reduced to make our argument work.

Let us mention that this method has been successfully used in different
contexts in [1, 10, 11, 13, 14, 15, 26, 31].
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3. System of Schrödinger equations

Now, we move from ordinary differential equations to an application of the
fictitious control method to systems of coupled partial differential equations.
The forthcoming example is coming from [26].

3.1. Controllability of the scalar Schrödinger equation. For the sake of
simplicity (in order to avoid problems with the boundary), we will consider the
following setting. We consider (M, g) a smooth compact Riemannian manifold,
without boundary. We denote by ∆ the Laplace-Beltrami operator on M . Since
−∆ is a selfadjoint and positive operator with compact resolvent, we can intro-
duce its eigenvalues {λk}k∈N∗ , (note that each eigenvalue has finite multiplicity
in this context), ordered such that 0 = λ1 6 λ2 6 . . ., each eigenvalue λk being
associated with a corresponding eigenfunction ek. We can construct the family
{ek}k∈N∗ in such a way that {ek}k∈N∗ forms a Hilbert basis of L2(M). Each
function f ∈ L2(M) can then be uniquely decomposed as

f =
∑
k∈N∗

akek,

where (ak)k∈N∗ ∈ l2(N∗). Moreover, Parseval’s identity gives

||f ||2L2(M) =

∞∑
k=1

|ak|2.

Now, let us consider some s ∈ R+. We introduce the Sobolev space Hs(M) as

Hs(M) := {f =
∑
k∈N∗

akek ∈ L2(M) s.t.

∞∑
k=1

(
1 + λ2sk

)
|ak|2 <∞}.

Hs(M) can alternatively be defined as the domain of the operator (−∆)
s
2 . For

more informations on Riemannian geometry, we refer to [22].

Example 3.1. The simplest example of such a manifold is given by M = Td
for some d ∈ N∗, i.e. the d−dimensional torus. From the point of view of partial
differential equations, this would correspond to the unit hypercube [−1, 1]d in
Rd endowed with the flat metric, with periodic boundary conditions. In Td seen
as the unit hypercube in Rd, the Laplace-Beltrami operator is just the usual
Laplace operator given by

∆ =

d∑
i=1

∂2x2
i
.

In this case, for s ∈ N∗,Hs(M) is the space of periodic function f ∈ L2((−1, 1)d)
verifying

∂α1
x1
. . . ∂αd

xd
f ∈ L2((−1, 1)d),
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Figure 1. Illustration of GCC. We represent the 2-
dimensional torus, the black lines have to be thought as peri-
odic boundary conditions. ω is represented in blue. One hori-
zontal, vertical and oblique ray are drawn in red. On the left
picture, GCC is not verified since neither the vertical ray nor
the oblique ray never encounter the control region. Conversely,
on the right picture, the control region verifies GCC.

for any multi-index (α1, αd) ∈ Nd such that α1 + α2 . . .+ αd 6 s.

We will need the following condition.

Definition 3.2. Let ω be an open subset of M . We say that ω verifies the
geometric control condition (shortened in GCC in what follows) if there exists
T > 0 such that every geodesic starting from any point of M traveled at speed
1 enters ω before the time T .

This condition is strongly related to the controllability of the wave equation.
It is notably proved in [30] and [3] that it is a sufficient condition of control-
lability, respectively for a manifold without and with boundary (in this last
case, some reasonable additional properties on the boundary are also needed).
Conversely, this condition is also necessary for the controllability of the wave
equation, see [29] and [4].

Let T > 0, ω an open subset of M verifying GCC, and u ∈ L2((0, T ),M).
We will be interested in the following evolution equation, called the linear
Schrödinger equation:

(3.19)

{
i∂ty + ∆y = 1ω(x)u,

y(0) = y0 ∈ L2(M).
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If u = 0, this equation describes the evolution in time of the wave function
associated to a free (i.e. without potential) quantic particle that moves into
the manifold.

Equation (3.19) is a linear control system in the sense of Definition 2.1.
Moreover, as in Section 2.1, it can be proved that for any y0 ∈ L2(M) and any
u ∈ L2((0, T ), U), there exists a unique solution y to (3.19) (see for instance
[8, Section 2.3] or [32, Chapter 4] for more explanations). As in the previous
Section, our goal is to obtain the following null-controllability property.

Definition 3.3. We say that (3.19) is null-controllable if, for any y0 ∈ L2(M),
there exists u ∈ L2((0, T )×ω) such that the corresponding solution y to (3.19)
satisfies y(T ) = 0L2(M).

Concerning controllability results, we have the following sufficient condition.

Theorem 3.4. Assume that ω verifies GCC for some time T ′ > 0. Then,
(3.19) is null-controllable for any time T > 0.

This theorem was first proved in [27], in the case of a bounded domain of Rn
and boundary control (but the same strategy applies for an internal control).
In a more elementary way, it can also be seen as a consequence of the abstract
result given in [32, Theorem 6.7.5], taking into account the already mentioned
result on the wave equation given in [30].

Note that contrary to the wave equation, in the case of (3.19), GCC is in
general far from being necessary, but it depends strongly and in a nontrivial
way on the global geometry (i.e. on M). For example, if M = Td, then any
nonempty open subset ω can be chosen to obtain the null-controllability of
(3.19) (see [21]).

We will also need the following refinement.

Proposition 3.5. Let n ∈ N∗. For any open subset Ω of M , we define the
following space:
(3.20)

Hn−1
0 ((0, T ), L2(Ω))

:= {u ∈ Hn−1((0, T ), L2(Ω))|ukt...t(0) = ukt...t(T ) = 0,∀k ∈ [|0, n− 2|]}.

Assume moreover that:

• y0 ∈ Hn−1(M) for some n ∈ N∗,
• 1ω is replaced by some regularized version 1̂ω ∈ C∞(M), which is

supported on some ω̃ containing ω with 1̂ω = 1 on ω.
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Then, there exists a control u such that

u ∈ Hn−1
0 ((0, T ), L2(ω̃))×

n−1⋂
k=0

Ck([0, T ], H2n−2k−2(ω̃))

and the solution of (3.19) verifies y(T ) = 0.

This proof of this result can be found in [18] (see also [12]).

3.2. A system version. Let (n,m) ∈ (N∗)2, with m < n. Let A ∈ Mn(R)
and B ∈ Mn,m(R). Let U = (U1, . . . Um) ∈ L2((0, T ) × Ω)m. We consider the
following system of coupled Schrödinger equations

(3.21)

{
i∂tY + ∆Y = AY +BU 1̂ω,

Y (0) = Y 0 ∈ Hn−1(M)n.

Here and in what follows, for Y = (Y1, . . . , Yn), we will write

∂tY =

∂tY1. . .
∂tYn

 and ∆Y =

∆Y1
. . .

∆Yn

 .

This is a system of n Schrödinger equations, that are coupled through the
matrix A. Remind that 1̂ω has been introduced in Proposition 3.5.

Since m < n, we have less controls than equations, meaning that as in
Section 2.2, we have an underactuated system. The typical situations are:

(1)

B

U1

. . .
Um

 =


U1

. . .
Um
0
. . .
0

 .

Some equations are directly controlled (the m first ones here) and some
are not controlled at all: we hope that the coupling terms will help in
order to control the equations. This situation is called indirect control-
lability, similarly to the case studied in Section 2.2.

(2)

B(U1) =

U1

. . .
U1

 .
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Here, all equations are controlled, with the same control on each equa-
tion. This situation (which is very different from the previous one) is
called simultaneous controllability.

We have the following characterization.

Theorem 3.6. We introduce the following matrix [A|B] ∈ Mn,nm(R), called
the Kalman matrix:

[A|B] = [B,AB,A2B, . . . An−1B].

(3.21) is null-controllable with U ∈ L2((0, T )×Ω) if and only if [A|B] is of full
rank n.

This condition is exactly the celebrated Kalman rank condition for the con-
trollability of linear ordinary differential equations (see [25] and [23]). Note that
by the Cayley-Hamilton Theorem, it is useless to include the matrices AkB for
k > n+ 1.

Remark 3.7. • The regularity of the initial condition is very high (but
it is necessary in our proof for reasons that will be clear later on).
However, it is likely that this is a purely technical assumption. One
should be able to obtain a result for initial condition in L2, but this is
an open problem.
• In the case where the Kalman matrix is not of full rank, we are also

able to express the initial conditions that can be controlled (that are
the ones in [A|B](Hn−1(M))).

Example 3.8. Consider

A =

(
a11 a12
a21 a22

)
, B =

(
0
1

)
.

Here, n = 2 and m = 1 < 2. Then, the Kalman matrix [A|B] ∈M2(R) is given
by

[A|B] = [B,AB] =

(
0 a12
1 a22

)
.

This matrix is of rank 2 if and only if a12 6= 0. We find back the necessary and
sufficient condition of controllability given in Section 2.2 for system (2.10).

Proof of Theorem 3.6 We only prove the “if” part (the “only if” part is
easier, and is similar to the finite-dimensional case, see e.g. [8, Proof of Theorem
1.16]). The strategy is the same as in Section 2.2. Let us describe it briefly.
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(1) Firstly, we control our system of equations with one control on each
equation, i.e. we solve the control problem

i∂tŶ + ∆Ŷ = AŶ + Û 1̂ω,

Y (0) = Y 0,

Y (T ) = 0,

where the fictitious control Û = (u1, . . . un) is acting on each equation.
This can be done by using a clever change of unknowns that enables
to decouple the system and apply the scalar result of Theorem 3.6 on
each equation.

(2) Secondly, we solve the auxiliary control problem{
i∂tỸ + ∆Ỹ = AỸ +BŨ + Û 1̂ω,

Ỹ (0) = Ỹ (T ) = 0.

The unknowns are (Ỹ , Ũ) and Û is the control created in the previous
analytic part, seen as a source term. We apply our algebraic solvability
procedure, which will make naturally the Kalman matrix [A|B| appear.
The Kalman rank condition will then be used to find a right inverse to
[A|B|.

(3) To conclude, we investigate the system that is verified by Y = Ỹ − Ŷ ,
and we remark that there exists a control U ∈ L2((0, T ),Ω)m such that
Y verifies (3.21) together with Y (T ) = 0.

3.2.1. First step: analytic part. We look at the fictitious control problem

(3.22)


i∂tŶ + ∆Ŷ = AŶ + Û 1̂ω,

Y (0) = Y 0,

Y (T ) = 0,

where the fictitious control Û = (Û1, . . . , Ûn) is acting on each equation. We

introduce the following change of unknowns: Z = eitAŶ . Then, since Ŷ verifies
(3.22), we have

i∂tZ = i
(
eitA∂tŶ + iAeitAŶ

)
= ieitA∂tŶ −AeitAŶ

= eitA
(
−∆Ŷ + Û 1̂ω

)
=
(
−∆Z +W 1̂ω

)
,
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where we have used ∆eitA = eitA∆ and we have introduced the new control
W = eitAÛ . Moreover, we have Z(0) = Y 0. Remark that Z verifies a new
control problem where the coupling term A has disappeared, i.e. the system is
uncoupled. Hence, we can apply Proposition 3.5 on each of the components of
Z and we obtain that

W ∈ Hn−1
0 ((0, T ), L2(ω̃))×

n−1⋂
k=0

Ck([0, T ], H2n−2k−2)(ω̃).

Going back to the original variables (Ŷ , Û), we obtain that (Ŷ , Û) verifies (3.22)
and moreover

(3.23) Û ∈ Hn−1
0 ((0, T ), L2(ω̃))×

n−1⋂
k=0

Ck([0, T ], H2n−2k−2(ω̃)).

3.2.2. Second step: algebraic part. We look at the following auxiliary control
problem:

(3.24)

{
i∂tỸ + ∆Ỹ = AỸ +BŨ + Û 1̂ω,

Ỹ (0) = Ỹ (T ) = 0.

The unknowns are (Ỹ , Ũ) and Û is the control appearing in (3.22), seen as a
source term. Remark that we have n + m unknowns and n equations, so that
the system is underdetermined.

We rewrite this system as

L(Ỹ , Ũ) = Û 1̂ω,

where

L(Ỹ , Ũ) = i∂tỸ + ∆Ỹ −AỸ −BŨ.
We forget the regularity issues for the moment and we consider L as an operator
acting on smooth functions.

We want to find some differential operator

M : (C∞((0, T )×M))n → (C∞((0, T )×M))n+m

such that

(3.25) L ◦M = IdC∞((0,T )×M)n .

Applying this identity to our source term Û 1̂ω, we deduce that

L(M(Û 1̂ω)) = Û 1̂ω.
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Hence, (Ỹ , Ũ) :=M(Û 1̂ω) will answer the question. Remark that here, we only
need to work “locally” in space on ω̃. Using the same strategy as before, we
pass to the formal adjoint and we rewrite the problem as

M∗ ◦ L∗ = IdC∞((0,T )×M)n .

We remark that

L : (C∞((0, T )×M))n+m → (C∞((0, T )×M))n

can be written in a matricial form as

L =
(
i∂t + ∆−A, −B

)
.

Hence, using Definition 1.1 (that still apply for partial differential operators),
we can compute its formal adjoint (using that ∆ is self-adjoint), which is given
by

L∗ =

(
−i∂t + ∆−A∗

−B∗
)
.

In other words, if ϕ = (ϕ1, . . . , ϕn) ∈ C∞((0, T ),M)n, we have

L∗ϕ =

(
−i∂tϕ+ ∆ϕ−A∗ϕ

−B∗ϕ

)
.

Our goal is to make some linear combinations of the lines of L∗ϕ and its
derivatives, in order to recover ϕ. The trick is the following:

• the m last lines of L∗ϕ are −B∗ϕ. We multiply it by −1 to recover
B∗ϕ.

• We would like to recover B∗A∗ϕ. We use the first n lines of L∗ϕ, and
we apply some appropriate differential operators to the m last lines.
We have

−B∗(−i∂tϕ+ ∆ϕ−A∗ϕ) + (i∂t −∆)(−B∗ϕ) = B∗A∗ϕ,

where we have used the commutativity relations

B∗(i∂tϕ) = i∂t(B
∗ϕ) and B∗(∆ϕ) = ∆(B∗ϕ).

• Assume that we have recovered B∗ϕ,B∗A∗ϕ, . . . , B∗(A∗)kϕ. Then, we
can recover B∗(A∗)k+1ϕ. Indeed, it is easy to see that

B∗(A∗)k+1ϕ = −B∗(A∗)k(−i∂tϕ+ ∆ϕ−A∗ϕ)

+ (i∂t −∆)(−B∗(A∗)kϕ).
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We can summarize the previous sequence of transformations in the following
differential N :

(3.26) N (L∗ϕ) =


B∗ϕ
B∗A∗ϕ
. . .

B∗(A∗)n−1ϕ

 ,

with

(3.27) N


ψ1

. . .
ψn
ψn+1

. . .
ψn+m

 =



−ψn+1

. . .
−ψn+m


−B∗

ψ1

. . .
ψn

+ (i∂t −∆)

ψn+1

. . .
ψn+m


. . .∑k−2

j=0 (−1)1+j(i∂t −∆)jB∗(A∗)k−2−j

ψ1

. . .
ψn


+(−1)k(i∂t −∆)k−1

ψn+1

. . .
ψn+m


. . . .


(we have written the generic term corresponding on the k-th line, for k ∈
[|2, n|]). Coming back to the definition of the Kalman matrix [A|B], we can
rewrite (3.26) as

N (L∗ϕ) = [A|B]∗ϕ.

Hence, we have

N ◦ L∗ = [A|B]∗.

Passing one more time to the formal adjoint and using the fact that ∗ is an
involution, we have for the moment

L ◦ N ∗ = [A|B].

N ∗ involves only linear combinations of derivatives of the form (−i∂t−∆)j ,
for j ∈ [|1, n−1|]. Now, we introduce [A|B]−1 ∈Mn,nm(R) as any right inverse
to [A|B| (such a right inverse exists, since [A|B] ∈ Mnm,n(R) and [A|B] is of
full rank). Hence, we have by linearity of all the operators

L ◦
(
N ∗[A|B]−1

)
= IdC∞((0,T )×M)n .

Hence, (3.25) is verified with M = N ∗[A|B]−1.



28 PIERRE LISSY

Now, let us go back to the problem of the regularity. Taking into account

that (3.23) holds, we see thatM(Û 1̂ω) ∈ L2((0, T )×M) sinceM involves only
linear combinations of derivatives of the form (−i∂t−∆)j , for j ∈ [|1, n− 1|].

Moreover, (Ỹ , Ũ) := M(Û 1̂ω) is a solution of (3.24)1, that is supported in

space in ω̃ (since it is made of linear combinations of the derivatives of Û 1̂ω).
To finish, we have to verify that the initial and final conditions in time (3.24)2

are also verified. Indeed, we have to look a little bit deeper at the structure of
N ∗: for ψ1, . . . , ψn, we apply differential operators up to order n − 1 in time
but, for ψn+1, . . . , ψn+m, we apply differential operators up the order n− 2 in
time only. Hence, when we go back to the operator N , it can be seen that, for
g ∈ C∞((0, T ) ×M)nm, N (g) (which is of size n + m) is such that on the n
first lines, we only have derivatives up to order n − 2 in time of g. From this
fact, one easily deduce that Ỹ (which is of size n) also involves derivatives of

the source term Û up to order n − 2 in time only (this would not be the case

for Ũ). Hence, from the definition given in (3.20) and the conditions on the end

points of Û given in (3.23), it is clear that Ŷ verifies (3.24)2. Hence, we have
found a solution to our algebraic problem (3.24).

3.2.3. Conclusion. As in Section 2.2, we set

Y = Ỹ − Ŷ , U = −Ũ .
Then, using (3.22) and (3.24), we conclude easily that (Y,U) is a solution to
the initial control problem (3.21) by similar arguments. �

4. Conclusion

In these lecture notes, our goal was to present the fictitious method coupled
with the algebraic solvability procedure, in order to derive results on underactu-
ated systems of ordinary differential equations or partial differential equations.
This method has the advantage of being quite systematic. We decouple the
problems into two simple ones: one “analytic part” where we prove a control-
lability result with as many controls as equations, and one “algebraic part”
where we take benefit of the structure of the coupling terms to perform the
algebraic solvability procedure.

As highlighted before, this method has already been fruitful to obtain dif-
ferent controllability results.

• In [11], the local null-controllability of the Navier-Stokes system with a
control only on one equation is obtained. The corresponding linearized
system around the trajectory 0 (i.e. the Stokes system) is not control-
lable. Hence, we need to perform a different linearization procedure
around particular families of trajectories. The first step is to establish
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a controllability result with controls on each equation and in a specific
form. Then, we use a slightly different version of the previous algebraic
solvability procedure in order to make the fictitious control disappear.
To finish, we go back to the nonlinear system by a standard inverse
mapping theorem. A similar procedure is used in [10] in order to study
a system of three coupled semilinear heat equations, the coupling terms
being in cascade form and cubic. In both cases, the choice of the family
of linearized trajectories is crucial for the algebraic part.
• In [13] and [14], some coupled systems of two heat equations with zero

and one order coupling terms is explored. In the case of constant cou-
pling coefficients, it is possible to recover a necessary and sufficient
condition. If we have non-constant coupling terms, the algebraic solv-
ability procedure naturally gives a generic condition in order to ensure
controllability. The case of constant coefficients was partially general-
ized in [31] in the case of more than 2 equations and constant coupling
coefficients.
• In [1], the authors study the case of quasi-linear hyperbolic systems,

using a linearization procedure. Due to the difference between the reg-
ularity of the initial data and the control explained in Section 2.3 and
highlighted in Section 3, going back to the quasi-linear system requires
the use of a Nash-Moser type theorem.
• In [15], a result of controllability to the non-zeros trajectories on the

Fokker-Planck equation is derived. One more time, a linearization pro-
cedure is needed, since the control system is bilinear in the control and
the state. Here we have a scalar equation, but the control (which in
some sense acts on the gradient of the solution) has d components if
we are working on Rd. The main novelty is that the algebraic solvabil-
ity is not performed on the control problem but on some dual problem,
in order to reduce the number of controls needed.

• Finally, in [26], we derive some Kalman-like conditions for abstract
systems of group of operators with application to Schrödinger and wave
systems, using ideas very similar to Section 3.

It is likely that this method can also be applied successfully to many other
problems. For instance, it would be interesting to investigate the following
problems.

• Larger classes of semilinear parabolic systems of reaction-diffusion type,
coming from real-life models. For instance, one could investigate the
model studied in [24] concerning reaction-diffusions systems arising
in chemistry, where results on local controllability around particular
classes of equilibriums. Is it possible to use the algebraic solvability
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method in order to get rid of the technical conditions present in this
article?

• Other models coming from fluid mechanics, for instance micropolar
fluids as in [7], or the Boussinesq system as in [5], in order to reduce
the number of controls.

• Give an extension of the results of [26] to general systems of semi-
groups, with constant or time-dependant coupling terms, under the
hypothesis that the “scalar” equation that is reproduced (for instance
the Schrödinger equation in Section 3) is controllable.

From a more theoretical point of view, the following issues to address would be
very promising.

• Is it possible to modify the algebraic solvability procedure in order to
handle the problem of the loss of derivatives that is in general artificial?
One can think to try to both differentiate and integrate in the solvabil-
ity procedure. However, integration does not preserve the support, so
that it is not clear if such a procedure will give satisfying results.

• In some sense, the algebraic solvability procedure gives “more” than one
we need: the support of the resulting solution and control is included in
the support of the fictitious control. However, in many situations, we
have a little bit of latitude: it will be not a problem if the support of
the resulting solution and control is “slightly larger” than the support
of the fictitious control. Is it possible to modify the method in such a
way?

Both of these two perspectives are challenging and may require to develop new
and different tools.
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