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Development of gravity currents on slopes under
different interfacial instability conditions

Antoine Martin1, M. Eletta Negretti1,† and E. J. Hopfinger1

1LEGI, UGA/CNRS, UMR 5519, 38000 Grenoble, France

We present experimental results on the development of gravity currents moving onto
sloping boundaries with slope angles θ = 7◦, 10◦ and 15◦. Different regimes of flow
development are observed depending on the slope angle and on the initial velocity
and density profiles, characterized by the Richardson number Ji = δig0

′/1u2
i , where δi,

1ui and g′
0 are, respectively, the velocity interface thickness, the maximum velocity

difference and reduced gravity at the beginning of the slope. For Ji > 0.7 and the
larger slope angle, the flow strongly accelerates, reaches a maximum at the beginning
of the Kelvin–Helmholtz instability, then decelerates and re-accelerates again. For
0.3 < Ji < 0.6, instability occurs earlier and velocity oscillations are less. When
Ji 6 0.3 the increase in velocity is smooth. The magnitude of velocity oscillation
depends on the combined effect of Ji and slope angle, expressed by an overall
acceleration parameter Ta = (δi/Ui)((Uc−Ui)/xc), which, to first order, is given by
Ji sin θ , where Uc and xc are, respectively, the velocity and position at instability
onset. The velocity increases smoothly up to an equilibrium state when Ta 6 0.06
and exhibits an irregular behaviour at larger values of Ta. The critical Richardson
number Jc decreases with increasing Ji (increasing δi/hi) which is due to wall effects
and δ/δρ 6= 1. After the beginning of Kelvin–Helmholtz instability, entrainment rates
are close to those of a mixing layer, decreasing to values of a gravity current after
the mixing layer reaches the boundary. It is shown here that the interfacial instability
during current development affects the bottom shear stress which can reach values of
cD ≈ 0.03 regardless of initial conditions. By solving numerically the depth integrated
governing equations, the gravity flow velocity, depth and buoyant acceleration in the
flow direction can be well predicted for all the performed experiments over the full
measurement domain. The numerical results for the experiments with Ji > 0.3 predict
that the current requires a distance of at least xn ≈ 40hi to reach a normal state of
constant velocity, which is much larger than the distance xn ≈ 10hi required in the
case of a current with Ji 6 0.3 that is commonly assumed for downslope currents.

Key words: gravity currents, stratified flows

1. Introduction

Gravity currents are ubiquitous in geophysical flows. In the ocean, dense shelf
water descends the continental slope over long distances toward the ocean bottom

† Email address for correspondence: eletta.negretti@legi.cnrs.fr

1



or interleaves at the level of neutral buoyancy. Along its path, ambient water is
entrained, diluting the current and thus changing its dynamics and the properties of
the water masses. A quantification of these dilution processes is relevant for example
to understand the transport of dense water from the Antarctic shelf toward the abyssal
plain, which is part of the meridional overturning circulation (Baines & Condie 1998).
Gravity currents are also important in morphodynamics, causing sediment erosion,
sediment transport and creating bed forms (Garcia & Parker 1993; Sequeiros et al.
2010; Zordan et al. 2018). A knowledge of the bottom drag of developing as well
as equilibrium state currents is therefore essential for understanding these transport
processes.

Most laboratory experiments considered gravity currents on horizontal or constant,
small slope boundaries, using lock exchange, finite volume releases or constant
supply conditions (Simpson & Britter 1979; Britter & Linden 1980; Simpson 1982;
Altinakar, Graf & Hopfinger 1990; Cenedese & Adduce 2010; Ungarish 2011).
Studies of constant supply gravity currents on sloping boundaries, with slope angles
varying over a large range, have focused on the normal, constant velocity state of
the current (Ellison & Turner 1959; Britter & Linden 1980). This state is considered
to be reached at a distance from the supply of ≈10hi (Odier, Chen & Ecke 2014),
where here hi is the initial depth of the current. The flow up to this equilibrium
state and the dependency of the current development on initial conditions and slope
angle, including the spatial development of the current due to topography changes,
has received little attentions.

Pawlak & Armi (2000) considered the development region of an arrested wedge
flow over a sill on slopes up to 14.5◦ and found entrainment rates in the initial
region two to three times larger than those known for a developed current on these
slope angles. Similar results have been obtained by Odier et al. (2014) for a constant
inflow light gravity current moving up a sloping boundary of 10◦. It may be expected
that the current development will depend on initial interfacial instability conditions in
addition to the slope. However, until the paper of Negretti, Flòr & Hopfinger (2017),
this has been ignored. Further, excepting Negretti et al. (2017), no simultaneous
measurements of the bottom drag and entrainment in gravity currents on slopes
considering their mutual interaction have been conducted. Gravity currents may often
be in a developing state and the properties of the developed current will depend
on its history i.e. interfacial entrainment and bottom drag during flow development.
Field measurement by Van Haren et al. (2014), in the Romanche fracture channel,
clearly indicate that different initial conditions at the beginning of the slope drastically
influence the further development of the current. In a recent paper Zordan, Schleiss
& Franca (2019) also point to the importance of initial conditions of turbidity current
development.

Negretti et al. (2017) considered only flow development of large interfacial
Richardson number before moving on to concave or linear slopes. The resulting
down-slope current development exhibited a behaviour completely different from
that of low initial Richardson number, considered by Pawlak & Armi (2000). Three
distinct development regions have been identified: (i) nearly free fall acceleration,
(ii) beginning of Kelvin–Helmholtz instability (KHI) with high entrainment and
related high bottom drag, (iii) subsequent collapse of KH billows and readjustment
of the current to a force equilibrium. Under these conditions gravity currents, even
at x ≈ 30hi, (distance of experimental observation) were far from equilibrium, i.e. a
normal state, constant velocity current. Similar observations have also been reported
by Kostaschuk et al. (2018), which include data from numerical and laboratory
studies and from field observations.
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In nature, slope changes are frequent and consequently, gravity currents may often
not be in a normal state, contrary to what is generally assumed to be the case
(Dallimore, Imberger & Ishikawa 2001; Danabasoglu, Large & Briegleb 2010). There
is therefore sufficient motivation to clarify the effects of the flow conditions of the
current at the beginning of the slope on its further development on the slope.

We present here experimental results demonstrating the dependency of initial
conditions on the current development. Different flow development regimes are
observed that depend on the value of an overall acceleration parameter (introduced
here) which also determines the distance required to reach an equilibrium, constant
velocity regime. The slope angles considered, i.e. 7◦ to 15◦, are relevant for ocean
applications (see also Pawlak & Armi 2000) and with these small slopes we cover
already the current behaviour characteristic of large slopes, expressed by a relatively
large value of acceleration parameter, i.e. large velocity oscillations with large
entrainment and bottom drag; when this parameter is small the approach of an
equilibrium state is smooth (no velocity oscillations). We present measurements of
both bottom drag and interfacial entrainment, whereas most previous studies focus on
one only, because these two processes are often considered to be uncorrelated. We
show here that the bottom drag is correlated with interfacial instability (interfacial
entrainment) and can thus take values much larger than estimated from boundary
layer considerations. For equilibrium currents a correlation between bottom drag and
entrainment has been considered by Dallimore et al. (2001). Using the estimated
entrainment and drag coefficient (E and cD) we solve the governing equations
reporting a good agreement with the experimental data and allowing us to predict the
distance required for the current to reach the equilibrium.

The paper is organized as follows: in § 2 we present the experimental set-up, and
the measurement techniques. In § 3 the initial conditions are defined and discussed.
Section 4 includes the derivation of the governing equations and in § 5 we classify
the different flow regimes depending on the characteristic parameters of the spatially
evolving flow. Using the entrainment and drag estimated in § 6, we compare the
experimental data to the numerical solution of the governing equations in § 7.
Section 8 summarizes the results and includes concluding remarks.

2. Experimental procedures

2.1. Experimental set-up

A schematic of the experimental set-up is shown in figure 1. The buoyancy driven
flow has been generated using saline solutions injected at the bottom of one channel
end at constant flow rate Q = qb, via a pump, from an external 800 l reservoir. The
first portion of the channel is elevated by 30 cm, and is horizontal of total length of
L = 230 cm and width b = 25 cm. The end of the horizontal portion is followed by a
sloping boundary of slope angle θ on which the flow accelerates. Once the pump was
switched on, the outlet at the opposing end of the tank was opened in order to enable
the flow to evacuate to prevent a return flow and ensure a constant total water depth
H0. The whole tank downstream of the gate was filled with fresh water with density ρa

to a level of H0 =18±0.5 cm from the bottom of the elevated channel and the portion
upstream of the gate was filled with salt water. The density ρs of the saline solution
was measured just before each experiment with a densimeter (DMATM35, Anton Paar).
The experimental conditions are summarized in table 1.

The gate positions on the horizontal portion are D = 160 cm (experiments D2) and
D = 23 cm (experiments D1) with gate opening h0 = 6 cm. A weak return flow exists
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FIGURE 1. (Colour online) Sketch of the experimental set-up.

D θ B0 Ui hi δi Ji xc

Exp. (cm) (deg.) (cm3 s−3) (cm s−1) (cm) (cm) (cm)

D0-7 0 − AW 7 109 4.2 6.0 3.5 0.39 11.4
D0-15 15 113 4.5 5.8 3.1 0.31 9.4

D1-7* 23 7 69 4.0 4.0 2.9 0.53 16.6
D1-15* 15 64 4.1 3.6 2.9 0.53 14.1

D2-7* 160 7 76 4.0 4.4 3.5 0.72 37.8
D2-10 10 67 3.9 4.0 3.8 0.77 24.5
D2-15 15 71 4.0 4.2 3.1 0.67 24.4

TABLE 1. Summary of the experimental parameters (cf. figure 1 for the notations) of the
particle image velocimetry (PIV) velocity measurements. The flow rate imposed by the
pump was Qp = 0.4 l s−1, the total water depth in the channel H0 = (18 ± 0.5) cm and
the reduced gravity g′

0 = g((ρs − ρa)/ρa) = 4.3 ± 0.1 cm s−2 were kept equal in all the
experiments. D represents the distance of the gate from the beginning of the slope. The
gate opening was h0 = 6 cm and was completely removed in D0 experiments (arrested
wedge condition, AW). The Richardson number is Ji = g′

0δi/(1ui)
2. hi and Ui are the

current height and average velocity at 5 cm upstream of the beginning of the slope and
given by the integrals (4.2.a,b) (see figure 1). The overall and integral scale Reynolds
numbers are Re = uh/ν ∼ 3000, ReL = u′2√15/(νǫ) ∼ 60, respectively. The field of view
(FOV) was between −10 cm < x < 76 cm. In the experiments marked with an asterisk ∗
also runs with fluorescent dye (Rhodamine 6G) were conducted. The distance xc, measured
from the beginning of the slope, corresponds to beginning of KHI.

of up to 10 % of the dense current velocity. In addition, experiments with complete
removal of the gate at D = 5 cm (experiment D0) were run and were thus similar
to those of Pawlak & Armi (2000), with h0 ≈ H0/2. The return flow was in these
experiments was larger, approximately 30 % of the dense current velocity. The slope
angles were varied at 7◦, 10◦ and 15◦. The depth integrated initial velocity Ui, the
integral current height hi (see (4.2.a,b)) and the interface thickness δi, given in table 1,
have been determined from the PIV experimental data at a distance of 5 cm upstream
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of the beginning of the slope (x = 0 cm) (see figure 1). The corresponding hydraulic
initial conditions are expressed in terms of an initial Froude number Fr2 = Ui

3/B0 =
0.94 ± 0.07, where B0 = g′

0q is the initial buoyancy flux, q = Uihi is the initial flow
rate per unit width and g′

0 = ((ρs − ρa)/ρa)g is the initial reduced gravity.

2.2. Measurement technique

The velocities were determined using the optical, non-intrusive experimental technique
of PIV. The PIV set-up consisted of a light source, light sheet optics, seeding particles,
a camera and a PC equipped with a frame grabber and image acquisition software.
Polyamide particles (PA12, Vestosint 1101 white) with a diameter in the range
dp = 100–250 µm with a specific density of ρp = 1.060 g cm−3 were added in
both sides of the channel containing fresh and salt water as tracer material for the
PIV measurements. It turned out that an appropriate particle density in the water
body could be achieved by adding ≈0.04 g particles per litre. Because of the small
density difference between the two reservoirs and the given density distribution
of these specific particles, it was possible to use these as seeding material for
both the fresh water and the salty water. With the estimated particle time response
τp = d2

pρp/18µ ≈ 4.8 × 10−4 and the Kolmogorov time scale τK = (ν/ǫ)0.5 ≈ 0.04, with

ǫ ≈ u′3/h ≈ 0.01 cm2 s−3, the Stokes number was estimated to be St = τp/τK ≪ 1 thus
particles are considered to follow the fluid streamlines closely.

A 6 Watt argon–ion laser (Coherent) operating in multimode (λb = 488 nm,
λg = 514 nm) has been used as a continuous light source. The beam was transmitted
through a fibre optic cable to a line generator with spherical lenses (OZ Optics
Ltd., Nepean, Ontario). The generated laser sheet on the slope had a length of
approximately 1 m and a width of 5 mm and was positioned in the middle of the
channel.

Images of 86 cm × 65 cm were captured with a CCD camera (FlowMaster3, 14
bit, 1600 × 1200 pixels) at a frame rate of 23.22 Hz and an exposure time of
9000 µs. A wide angle lens (SIGMA AF EX 1.8/24 DG Macro AF for Nikon) was
used at a distance of 2 m to the field of view, leading to a spatial resolution
of 0.540 mm pixel−1. Time series of 300 s leading to 7000 raw images were
stored in real time on a raid system. The raw images were then processed using
a cross-correlation PIV algorithm to compute the velocity fields, each from two
consecutive raw images, using the software package DaVis (LaVision). An adaptive
multipass routine was used, starting with an interrogation window of 64 × 64 pixels
and a final window size of 16 × 16 pixels with 50 % overlap. Each vector of the
resulting vector field represents an area of approximately 0.43 cm × 0.43 cm. The
velocity vectors were post-processed using a local median filter and checked by the
distinctiveness of the highest correlation peak. Given the velocities encountered in
the experiments, the experimental error in the instantaneous velocity is estimated to
be approximately 3 %. Further error estimations from the experiments are given in
appendix A.

For dye visualizations Rhodamine 6G was added to the salt water of the gravity
current with a concentration of less than 20 µg l−1, and they were used to estimate
the density profiles and some averaged values of the density field by normalizing
locally each vertical section with the maximal value.

3. Initial conditions and parameters

The initial density interface is strongly affected by the gate position and configura-
tion. Figure 2(a,d,g) shows instantaneous images of dye visualizations with insets
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FIGURE 2. (Colour online) Images (a,d,g) showing dye visualization of the instantaneous
gravity flow with insets showing time sequence of the density interface fluctuations 5 cm
upstream of the beginning of the slope for experiments D2-7 (a), D1-7 (d) and D0-10
(g); (b,e,h), time-averaged vertical profile of streamwise velocity with experimental profile
(symbols) and the confidence interval on the time average being the grey shadow; the
black symbols are selected data points for the theoretical hyperbolic tangent fit (black
dashed line). Images (c, f,i) show the local Reynolds stress u′w′/U2 with 85 % and 15 %
bounds of the local maximum velocity um contours (black continuous lines) as a measure
of the shear layer thickness for experiments D2-7 (c), D1-7 ( f ) and D0-10 (i).

showing time sequences of vertical sections at x = −5 cm highlighting interfacial
density fluctuations for experiments D2-7 (a), D1-7 (d) and D0-10 (g). It is seen that
the density interface fluctuations increase as the release distance (distance of gate
before the beginning of the slope) is reduced: in experiments D2-7 and D1-7, the
dye interface indicates the existence of Holmboe waves before the beginning of the
slope, decaying in conditions D2, while for experiment D0-10 KHI appears close to
the beginning of the slope.

The initial vertical profile of the streamwise velocity is also strongly affected by the
gate position and configuration. Figure 2(b,e,h) shows time-averaged vertical velocity
profiles, with the confidence interval on the time average (grey shadow), along with
a fit with the hyperbolic tangent function (black symbols). While for experiments
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D1-7 (e) and D0-10 (h) the fit reproduces well the experimental profile, in experiment
D2-7 (b) the fit fails in the upper part of the profile and close to the bottom. The
discrepancy at the bottom is due to the development of a boundary layer on the
relatively long horizontal boundary and in the outer part viscous diffusion and some
mixing by Holmboe waves affect the velocity profile.

Holmboe instability (HI) is expected to exist when the velocity shear layer
thickness δ is larger than the thickness of the density interface δρ and Hazel (1972)
demonstrated that HI exists at any weak shear provided δ/δρ > 2. The Holmboe
instability is characterized as two sets of waves with one layer cusping into the upper
layer and the other into the lower layer, and propagating in the opposite direction.
The cuspids can be seen in the insets of figure 2(a,d). Theoretical studies by Haigh
& Lawrence (1999) of salinity stratified flows showed that when the bulk Richardson
number J, defined as

J =
δg0

′

(1u)2
(3.1)

is less than 0.071, KHI dominates, even when δ/δρ > 2, in agreement with the
experimental findings by Koop & Browand (1979). Zhu & Lawrence (2001) observed
symmetric HI in the subcritical region of an exchange flow over a sill, which
decayed when J > 0.65–0.75 depending on Reynolds number. Similar results have
been reported by Strang & Fernando (2001) and Hogg & Ivey (2003).

To evaluate the Richardson number J, it is necessary to measure the shear interface
thickness δ. Since in the D2 experiments the velocity interface cannot be fitted by a
tanh distribution, we determined δ by using the same method as in Pawlak & Armi
(2000), i.e. the best linear fit through the normalized velocity profile between the 15 %
and 85 % values,

δ =
(

∂u

∂z

∣

∣

∣

∣

u(z)=0.85

u(z)=0.15

)−1

, (3.2)

where u is the velocity normalized by the local velocity difference 1u = u(z)|max −
u(z)|min. The initial values δi are given in table 1 together with the initial Richardson
number values. In experiment D2, Ji ≈ 0.72, the Holmboe waves are of much lower
amplitude than in experiment D1 where Ji ≈ 0.53 (figure 2a,d,g). This agrees with the
observations by Zhu & Lawrence (2001), i.e. Holmboe waves decay when J > 0.7.

Figure 2(c, f,i) shows the change in shear layer thickness on the slope defined as
the 15 %–85 % bounds of the maximum velocity um (black continuous lines) in the
downstream direction along with the Reynolds stress u′w′, which will be discussed in
§ 6.2.

4. Governing equations

Following the procedure of Ellison & Turner (1959), Negretti et al. (2017) derived
the governing equations of the depth integrated velocity and density on slopes
including angle variations. The assumptions made were two-dimensional stationary
flow with the boundary layer and Boussinesq approximations. The x-momentum, the
mass and buoyancy flux conservation equations are

dU2h

dx
+

1

2

d

dx
(S1g′h2 cos θ) = S2g′h sin θ − cDU2, (4.1a)

dq

dx
= EU, (4.1b)
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B = g′q = B0, (4.1c)

where cD = τw/ρU2 and E are respectively the bottom drag and entrainment
coefficients, and τw the bottom shear stress, θ the slope angle, q = Uh is the flow
rate per unit width and B = g′Uh the buoyancy flux, which is equal to the buoyancy
flux supplied at the gate, B0. The parameters S1 and S2 are the empirical shape
factors which will be discussed in more detail in appendix B. The depth integrated
velocity U, the corresponding depth h and the depth integrated reduced gravity g′

are quantities defined making use of the similarity hypothesis, which implies the
following relations:

∫ ∞

0
u dz = Uh,

∫ ∞

0
u2 dz = U2h, (4.2.a,b)

∫ ∞

0
g′ dz = S2g′h,

∫ ∞

0
g′z dz =

1

2
S1g′h2, (4.2c,d)

that depend on x only. We note that the system of differential equations (4.1) reduces
to a shallow water model (Ungarish 2011) when fixing S1 =S2 =1, which is equivalent
to considering ‘top-hat’ density and velocity profiles.

All dimensional variables (x, h, u, q and g′), denoted below by ·̃, are made
dimensionless using the characteristic length and velocity scales L = (q2

0/g′
0)

1/3 =
Fr0

2/3h0 ⋍ hi and U = (g′
0q0)

1/3 =
√

g′
0h0 = Fr0

−2/3U0 ⋍ Ui because at xi = −5 cm,
Fri ⋍ 1, i.e.

{{x, h}, u, q, g′} = {L{x̃, h̃}, U ũ, q0q̃, g′
0g̃

′}. (4.3)

Equations (4.1) represent a system of three differential equations with the unknown
variables U, h, g′ and can be combined and rewritten to finally give

dq̃Ũ

dx̃
+

1

2

d

dx̃

(

S1
q̃

Ũ2
cos θ

)

= S2
1

Ũ
sin θ − cDŨ2. (4.4)

Equation (4.4) can be solved numerically provided the entrainment law E = E(x) and
the variation of the bottom friction coefficient cD = cD(x) are known functions of x.
Note that cD is of order E and cannot be neglected (Negretti et al. 2017; Kostaschuk
et al. 2018).

As outlined in Negretti et al. (2017), when the Richardson number at the beginning
of the slope is large, Ji ≈ 1, the interface is KH stable at the beginning of the slope
and in the initial acceleration region, up to xc, E = cD ≈ 0. In this case (4.4) can be
simplified to

d

dx̃

(

Ũ +
1

2
S1

1

Ũ2
cos θ

)

= S2
1

Ũ
sin θ, (4.5)

which has the implicit solution

Ũ2 + S1
2

Ũ
cos θ = C0 + 2S2x̃ sin θ. (4.6)

The integration constant C0 = (1 + 2S1 cos θ) is determined imposing the initial
condition Ũ = Ũi, for X̃ = 0 and assuming the hydraulic condition at the beginning
of the slope for the Froude number Fr = 1. We point out that (4.6) differs from the
free fall solution presented in Negretti et al. (2017) by the pressure term multiplied
by S1. The different theoretical solutions and their comparison with experiments will
be presented and discussed in § 7.
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5. Flow development regimes

In this section time-averaged quantities are presented. For each experiment, all
values have been averaged in time by taking into account only the steady layer flow
(after the current head has passed). A moving averaging filter of spatial width L is
applied and data are sub-sampled with the same spatial scale to improve the clarity
of the figures. A detailed estimation of the errors is given in appendix A.

Dimensionless time-averaged velocities U/Ui and current heights h/hi as a function
of x/hi are presented in figures 3(a,c) and 3(b,d), respectively for experiments at
θ = 15◦ (a,b) and 7◦ (c,d). Different symbols and grey scales correspond to the
release distances (D2,A; D1,6; D0,@). The grey shades in figure 3(a,b) represent
the confidence interval of the time-averaged velocities. Figure 3(a,c) shows that in
experiments D2 and D1, a strong acceleration of the current occurs until a certain
distance, xc. At this position, in D2 (A) experiments, the current velocity reaches
a maximum and then decreases rapidly, whereas in D1 (6) experiments, an abrupt
change in velocity increase occurs at xc. In D0 (@) conditions, only a small change in
velocity increase at xc is observed. This critical position xc corresponds to beginning
of KHI, as already observed by Negretti et al. (2017), and is marked by vertical
arrows in figure 3(a,c). They vary from xc/hi ≈ 6–8 (15 and 7◦ respectively) in D2
experiments, to xc/hi ≈ 4 in D1 experiments and to xc/hi ≈ 2 in D0 experiments.
Similar considerations hold for the current height h (figure 3b,d): a strong decrease
until a minimum at xc/hi is observed in experiments D2 and D1, while in the D0
configuration the depth of the current remains nearly constant over the full measured
domain.

From these results it is clear that the conditions at the beginning of the slope
strongly affect the development of the flow on the slope. As already mentioned in
§ 3, the current released far upstream from the slope (D2 experiments) has a large
interfacial Richardson number Ji ≈ 0.67–0.77 (cf. table 1) at the beginning of the
slope, implying that the Holmboe waves, that are present some distance downstream
of the gate, are decaying (Zhu & Lawrence 2001). When the gate is closer to the
beginning of the slope, the initial Richardson number is Ji = 0.53 (D1 experiments)
and the interface remains Holmboe unstable at the beginning of the slope. In the D0
experiment, Ji ≈ 0.3 and the current is KH unstable shortly after the beginning of
the slope. Also, the effect of the slope is evident. In general, larger slopes generate
larger changes in velocity and depth of the current, while on the smallest slope, 7◦,
the change in velocity is smoother.

Figure 4 gives the variation of J as a function of x/hi for the experiments of slopes
15◦ (a) and 7◦ (b). Again, the different symbols correspond to the different release
distances (D2, A; D1, 6; D0, @). It is seen that the larger is Ji, the lower is the
critical value of the Richardson number: Jc ≈ 0.24 for D0, ≈0.2 for D1 and ≈0.13
for D2.

Onset of KHI depends on the ratio δ/δρ and on the wall proximity, expressed
by (δ/h)c. As has been shown by Hazel (1972), the critical Richardson number Jc

decreases with increasing ratio δ/h, as evident from figure 4(c) from our experiments.
In the D2 experiments, Ji is large (weak Holmboe wave mixing) and (δ/h)c ≈ 1,
hence a low value of Jc and the current will accelerate over a longer distance to
reach this value. In the D1 experiment (δ/h)c < 1 and Holmboe waves are more
intense and can mix the density interface so that δ/δρ −→ 1, hence a larger value of
Jc is expected. In the D0 experiment Jc ≈ 0.24 because δ/δρ ≈ 1 and (δ/h)c ≈ 0.5.
Figure 5 shows the normalized velocity profiles u/Ui before the beginning of the
slope at x = −5 cm (a) and at the location of minimum Richardson number, at xc
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for slope angle 15◦ (b). At the beginning, the velocity profiles are similar (with the
exception of the D0 experiment, which has a larger return flow–lock exchange effect),
but at the location of minimum Richardson number, the velocity maximum of D2
experiment is much closer to the bottom boundary. In experiments D1 and D0 the
thickness of uniform velocity is much larger. The variation of the ratio δ/h is shown
in figure 6 for experiments with 15◦ (a) and 7◦ (b). In the D0 and D1 experiments
δ/h . 1, while in experiments D2, δ/h ≈ 1. In the latter, the KH billows are thus
larger and closer to the wall, causing boundary layer separation and large cD, as has
been shown by Negretti et al. (2017).

Negretti et al. (2017) explained the current development on slopes by introducing
an overall acceleration parameter Ta = (hi/xc)(1U/Um), with the velocity difference
1U from the beginning of the slope to xc. They suggested that when Ta > 0.05
velocity oscillations exist whereas when Ta < 0.05 the velocity increase is regular,
approaching an equilibrium state within approximately 10h0. In the more general
case, where the initial conditions are varied (which was not the case in Negretti et al.
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2017), a physically more appropriate definition of an overall acceleration parameter
is

Ta =
δi

Ui

Uc − Ui

xc

. (5.1)

This acceleration parameter can be expressed in terms of the initial Richardson number
and slope angle by relating Uc to the critical Richardson number Jc and getting xc

from assuming free fall up to xc. This gives

Ta ≈ Ji sin θ
2C

(

1 +
(

δi

Jchi

)1/3
) , (5.2)
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where C is a function of the ratio of um/U and of (um − umin)/U. In experiments
D1 and D2, C ≈ 1.1 and in D0, with larger back flow, C ≈ 1.3, giving respectively
Ta ≈ 0.8Ji sin θ and ≈1.1Ji sin θ . A similar dimensionless number is defined in
Negretti, Socolofsky & Jirka (2008), using a temporal linear stability, normal modes,
analysis of a two-layer stratified exchange flow. There it is shown that the growth
rate of the instability depends on the acceleration parameter. Figure 7 shows Ta as a
function of Ji sin θ for all the performed experiments, including those of Negretti et al.
(2017) and Pawlak & Armi (2000). The pre-factor 0.8 shown in the figure by the
dashed line compares reasonably well with the experimental value determined from
(5.1). Although the definition of Ta differs from that of Negretti et al. (2017), we
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see that transition from no velocity oscillations to oscillations of increasing amplitude
with increasing Ta is at Ta ≈ 0.06. In experiment D2-15 for instance, with Ta ≈ 0.12
velocity oscillations are large. When Ta 6 0.05, D0, the increase in velocity up to an
equilibrium state is smooth.

6. Entrainment and bottom drag

6.1. Determination of the entrainment coefficient

The entrainment rate is defined as the volume of ambient fluid engulfed into the
current along its descent. It can obtained from the discretization of (4.1b), i.e. taking
the difference between the input and the output fluxes in a control volume with a
longitudinal width 1x, here taken equal to hi. The entrainment coefficient is thus

Eq =
1

U(x)

q(x + hi/2) − q(x − hi/2)

hi

. (6.1)

Figure 8(a,b) shows the variation in volume flux as a function of x/hi. As is
evident from the data, a direct calculation of the gradient would give large variations.
A primary source of error in these estimates of the volume flux gradient results from
the slow variation at the origin of the instabilities. In order to reduce the variations,
the gradient is determined using a moving averaging filter of spatial width L =L and
sub-sampling the data with the same spatial scale. The dashed lines in figure 8(a,b)
at x/hi > 10 indicate the expected entrainment rate of an equilibrium current. It is
seen that in figure 8(a) there is good agreement whereas in the experiments with a
slope of 7◦ in figure 8(b) there is a relatively large variation because values are very
small.

The entrainment coefficients obtained using (6.1) are shown in figure 8(c,d). In
experiments D0 (@) the highest entrainment coefficient is near the beginning of the
slope, corresponding to the beginning of KHI, it then decreases along the slope down
to a value of approximately 0.02 on slope 15◦, whereas in the experiments on slope
of 7◦, Eq decreases to approximately 0.005. This is in agreement with the behaviour
observed by Pawlak & Armi (2000). While in experiments D2 and D1, the final values
are similar, the highest values are observed shortly after KHI. These highest values of
entrainment rates are close to 0.065 ± 0.005 for larger slope angles and 0.04 ± 0.1 for
the smallest slope angles, which are values similar to what is observed in free shear
layers.

Another estimate of entrainment is obtained from the velocity wh normal to the
interface as proposed by Morton & Turner (1956). The z-integrated continuity equation
gives

Ew = −
wh

U
. (6.2)

To minimize errors, we estimated the velocity wh at the interface from the PIV
velocity data by averaging three values of the normal velocity around the averaged
value of h for each x-position and normalizing with the depth integrated velocity
at the same location. We also compared the values obtained directly from averaged
velocity fields and interface positions and from instantaneous velocity fields and
interface positions averaged after. The differences between the two methods is small.
Details on the experimental errors relative to the entrainment are given in appendix A.

The entrainment rates Ew are shown in figure 8(e, f ) for the experiments with slope
of 15◦ and 7◦, respectively. As already reported by Odier et al. (2014), there are large
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differences in Eq and Ew. In general, the entrainment Ew is larger than Eq and after
the first acceleration region and establishment of the shear layer, the two differ by a
factor of two at x/hi > 10: Ew ≈ 0.05 and Eq ≈ 0.02 for the larger slopes and Ew ≈ 0.02
and Eq ≈ 0.01 for θ = 7◦. These values are similar to those obtained by Odier et al.

(2014) (cf. their figure 13): Eq ≈ 0.02 and Ew ≈ 0.04.
In figure 9 these differences are highlighted by plotting Eq (dashed lines), Ew

(continuous lines) and Ta = (h/U) dU/dx (grey dash-dotted lines) for experiments
D2-15 (a) and D0-7 (b). After the acceleration region, in which entrainment is small
or nearly inexistent in the absence of interfacial instabilities, in the D2-15 experiment
both Eq and Ew increase and reach a maximum value of ≈0.07 and then Eq decreases
rapidly down to 0.02, while Ew ≈ 0.05. In the experiment D0-7, we observe a
discrepancy at the beginning, with Eq > Ew until the beginning of KHI, while the
discrepancy between the two definitions is smaller further downstream in this case.
The grey dash-dotted lines in both figures represent the acceleration parameter
Ta = (h/U)dU/dx, which can be seen as part of the entrainment, Eq = Ta + dh/dx,
as outlined in Negretti et al. (2017). In experiment D2-15 (figure 9a), Ta is large at
the beginning, is negative after the beginning of KHI to become weakly positive at
x/hi ≈ 12. For experiment D0-7 (figure 9b) we see that for 0 < x/hi < 4, Ta ≈ Eq, so
that the current depth is nearly constant, and then decreases toward zero. Since
at slope angles θ 6 15 equilibrium entrainment rates are very small, errors in
measuring entrainment rates can be large, particularly in Eq. Nevertheless, entrainment
coefficients determined from the change in volume flux Eq tend toward the values
known for equilibrium flow conditions as seen in figure 10 by comparing (a) and (b)
for experiments D2 and D0, respectively. Red arrows highlight the path toward the
equilibrium values for the two release cases: it is direct in the D0 experiments with
a smooth increase, while for the D2 experiments there is also an oscillation in the
Richardson number before reaching a constant equilibrium value in figure 4(a). This
behaviour is consistent with the variation with downstream distance of the Froude
number Fr (figure 10c), which also tends toward the equilibrium values expected for
the slopes considered. The expected equilibrium is represented in figure 10(a,b) by
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the empirical relations proposed by Turner (1986) and Cenedese & Adduce (2010)
deduced from gravity currents at equilibrium; Ew, in contrast, overestimates the values
known for equilibrium flow conditions. Odier et al. (2014) suggest taking an average
between Ew and Eq for the equilibrium entrainment value, which is hardly satisfying.

Krug et al. (2013) also find Ew = 0.04 for their gravity current on a slope of 10◦,
and suggest that this is the correct entrainment coefficient at equilibrium state of the
current. The difference with respect to Ellison & Turner (1959) is attributed to larger
Reynolds numbers in their experiments. Visibly, this is not the case. In the present
experiments we also obtain Ew ≈ 0.04, but Eq ≈ 0.02 when the equilibrium state is
approached, in agreement with Pawlak & Armi (2000), van Reeuwijk, Holzner &
Caulfield (2019), Odier et al. (2014) and even Krug et al. (2013). Indeed, from their
figure 12, we obtain Eq = dh/dx close to 0.02 in the equilibrium state at a distance
ten times the inlet height, i.e. at x > 52 cm. In the present experiments Ew ≈ Eq at
the beginning of KH instability when the mixing length ℓm is expected to be large
(large scale overturning), but when the equilibrium state is approached the mixing
length decreases and Eq < Ew. Krug et al. (2013) present measurements of W over
a large range of z and it is seen that W/U = 0.04 at the interface and drops to zero
at 1z ≈ 0.3h away from it. This is indicative of a small mixing length; in Krug et al.
(2013) ℓm ≈ h/10. For the foregoing reasons we take Eq as the physically correct
entrainment coefficient.

6.2. Bottom drag coefficient

In viscous flows, cD is inversely proportional to the Reynolds number, as has been
shown by Cenedese et al. (2004) for a gravity current of Re < 300. In the present
experiments Re > 1400 (for D2-15, Re = Uh/ν ≈ 1700 at the beginning of the slope
and is Re ≈ 2800 at x/hi = 15). Hence, the boundary layer region is turbulent after
onset of KH instability. In this case we use known values and expressions for a
turbulent boundary region. For a wall jet (that has a velocity profile similar to a
gravity current) of Reynolds number Rem = umzm/ν ≈ 103, where zm is the height of
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maximal velocity, um ≈ 8 cm s−1 the maximal velocity and ν ≈ 10−2 cm2 s−1 the
viscosity, cD ≈ 5 × 10−3 (George et al. 2000). For a turbulent boundary layer cD

is given by the empirical relation cD = 0.0113Rem
−0.178, which gives a value close

to the bottom drag coefficient for a wall jet at the same Reynolds number. These
bottom drag coefficients are small compared with the large values determined for
gravity currents on slopes in the present experiments (see figure 11 and also 12) and
those of Negretti et al. (2017). This is due to the interaction of KH billows with
the boundary region and not due to boundary layer turbulence. Therefore, the known
Reynolds number dependency of the boundary layer drag coefficient does likely
not apply for gravity currents on slopes, whereas for gravity currents on horizontal
boundaries, the classical boundary layer values apply with the drag coefficient tending
asymptotically towards 10−3, when Reynolds numbers are very large (Cossu & Wells
2012).

Since accurate velocity measurements are difficult close to the bottom boundary, we
estimated cD using an average of the Reynolds stresses u′w′ and the local averaged
velocity

cD =
1

δB

∫ z(u=um)

z(u=0)

u′w′

U2
dz, (6.3)

where δB is the distance from the bottom boundary where the local velocity becomes
maximum. Figure 11 shows the variation of cD with downstream distance x/hi on
slope 15◦ (a) and slope 7◦ (b). We see that in the first region on the slope the
values of cD are very small in all conducted experiments, O(10−3). In D0 and
D1 experiments, where δ/h < 1, there is a shift between the location of maximum
entrainment and maximum cD, while in D2 experiments where δ/h ≈ 1 these locations
coincide. This is also evident from figure 2(c, f,i), where the Reynolds stress u′w′/u2

m

reaches a maximum both in the boundary layer and at the interface, with opposite
signs, in the D2 experiment (c), while there is a shift between the maximum Reynolds
stress in the shear layer and at the bottom boundary for the experiments D1 ( f ) and
D0 (i). From figure 11 the maximum values reached by cD are of O(10−2), and thus
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very large, as already reported by Negretti et al. (2017). The values are respectively
cD ≈ 0.03 and 0.015 for the 15◦ slope and 7◦ slope.

In order to highlight the relation between current acceleration, entrainment and
bottom drag, we display in figure 12 the variation with downstream distance of
the three quantities for experiments on slope θ = 15◦. Figure 12(a) suggests that
the strongest decrease in velocity after its maximum value takes place when the
maxima of entrainment and bottom friction are correlated (D2 experiment). In the
D2 experiment the current accelerates when both entrainment and bottom drag are
small. At maximum velocity, entrainment and drag start to increase rapidly and the
current velocity starts to decrease to then increase again after maximum values of
Ew and cD. This figure also shows the correlation between entrainment and bottom
drag. In D1 and D0 experiments (figure 12b), the rate of velocity increase changes
when Ew reaches a maximum and cD starts to increase. Here, there is a shift between
maximum entrainment and maximum bottom drag and this is larger in the D0
experiment (figure 12c).

In D2 experiments, the bottom drag cD increases when the entrainment coefficient
Eq increases. The link between the upper and the lower part of the gravity current in
the D2 configuration is evident in figure 2: we observe that the normalized Reynolds
stress u′w′/U2, at the interface and at the bottom, increases at the same location (with
opposite signs). The spatial correlation coefficient that we estimated between these two
terms is above 0.75 for the D2 configuration and below 0.25 for the D0 configuration.

Dallimore et al. (2001) use the turbulent kinetic energy budget of Sherman,
Imberger & Corcos (1978) for a uniform flow to link entrainment to the bottom
drag. This correlation does not apply in the present strongly developing flow. In
general cD = f (Eq, δ/h, Fr, τν), where τν is the viscous shear stress. Since Eq depends
on Fr and τν is negligible, the important parameters are Eq and the wall proximity,
expressed by δ/h, which introduces a shift in cD with respect to Eq when δ/h < 1 at
instability onset. Maximum cD occurs when the interfacial layer approaches the wall,
i.e. when δ/h> 1. The D2 experiments (figure 12d) indicate a linear relation between
Eq and cD of the form

cD ≈ B(Eq − Ei), (6.4)

with B ≈ 0.6 and the initial value Ei ≈ 0.01. In figure 12(d) the bottom drag coefficient
cD is plotted as a function of Eq and compared with the empirical expression (6.4).

The experimental entrainment coefficients and bottom drag are used in the following
section to solve numerically the integrated equation (7.1).

7. Comparison with numerical solutions of the governing equations

Equation (4.4) has been solved numerically to obtain the three unknown variables U,
h, g′ using a Runge–Kutta scheme of order 4 (RK4) with a step dx = 10−2 mm, using
the experimental entrainment E = Eq(x) and bottom friction cD(x). The shape factors
were obtained from the 2.5 layer model derived in appendix B, and are S1 = 0.5 and
S2 = 0.6. Neglecting the spatial variations of S1, S2 and S3, the numerical solution has
been obtained solving the following equation:

dŨ

dx̃
=

S2Ũ2 sin θ − Ũ5(cD + E) − S1E cos θŨ/2 − (q̃/R̃)(S3EŨ4 + S1 sin θŨ/2)

q̃(U3 − S1 cos θ)
. (7.1)

Figure 13 presents the comparison between the experimental data (symbols) of
the depth integrated Ũ and maximum ũm velocities (a,d), the current depth h̃ (b,e)
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and the depth integrated buoyant acceleration g̃
′

(c,f ) to various solutions for two
contrasted experiments D2-15 (a–c) and D1-7 (d–f ). The experimental values of g̃

′
in

figure 13(c, f ) have been calculated indirectly as g̃
′ = B0/(Uh) since the downstream

spatial variation of the density fields could not be extrapolated from the fluorescent
dye visualizations. The numerical solution of (7.1) is represented by continuous lines,
black lines using Eq and grey lines using Ew. The free fall solution proposed in
Negretti et al. (2017) is represented by dashed lines and the implicit shallow water
(SW) solution (4.6) with S1 = S2 = 1 by dotted lines. We tested the numerical solution
for all experiments and found a very good agreement, the best agreement for all
variables Ũ, h and g̃

′
using the numerical solution of (7.1), Eq and cD from figure 11,

over the full measured domain.
The SW solution (4.6) reproduces fairly well the data for ũm and badly those

relative to h in the first accelerating region, in which entrainment and bottom friction
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FIGURE 13. Comparison of the theoretical models and numerical solutions (lines) and the
experimental data (symbols) for D2-15 (a–c) and D1-17 (d–f ). RK4 Numerical solution
(continuous line) for Ew (grey line) and Eq (black line) and for S1 and S2 obtained from
the 2.5 layer model (appendix B). Implicit shallow water solution (dotted line), free fall
velocity with S2 = 0.75 (dashed line). (a,d) Ũ (grey symbols) and ũm (white symbols);
(b,e) h̃ and (c,f ) g̃

′
.

can be neglected. It is curious to see how the free fall relation proposed by Negretti
et al. (2017) reproduces well the data for Ũ in the same region, neglecting the
pressure term with respect to the SW model: the positive contribution given by the
pressure term is compensated by the shape factor S1. Also, the critical distance xc is
well detected for both the velocity and the current depth. We tested solving (7.1)
initialized using the constant entrainment coefficient of Turner (1973) (not shown)
and constant cD = 10−3 and observed a bad agreement with the experimental data.
Sensitivity tests with different shape factors show that the numerical solution for Ũ,
h and g̃

′
strongly depends on these parameters, which justifies the importance in their

proper estimation as we made in appendix B.
We can use the numerical solution to predict the distance needed to reach the

equilibrium between the gravity and the drag terms xn where acceleration ceases
and the flow attains a constant velocity. The dimensionless equilibrium velocity Ũn

defined in Negretti et al. (2017) from their (2.11) and here obtained from (4.4) is

Ũn =
(

S2 sin θ

cD + E
(

1 + 1
2 S1Ri

)

)1/3

=







S2 sin θ −
1

2
S1E cos θ

cD + E







1/3

, (7.2)

where Ri = B0 cos θ/U3. The right-hand side term of (7.2) is deduced from the
differential equation for Ri in Ellison & Turner (1959) (their equation (13)) by
assuming dRi/dx = 0.
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FIGURE 14. (Colour online) Predictions of the equilibrium state velocity Ũn using (4.6)
and (7.2) with {S1, S2} = {0.67, 0.75} for (a) D2-15 (A) and (b) D2-7 (6). For x̃ < 18 the
experimental entrainment Eq and bottom drag cD have been used to solve the numerical
model. For x̃ > 18, E = 2 × 10−2, cD = 3 × 10−3 (−·) and cD = 3 × 10−2 (−−) (a) and
E = 1.5 × 10−2, cD = 5 × 10−3 (b) from the equilibrium values. The horizontal red dashed
and dash-dotted lines are the equilibrium velocities from (7.2).

In figure 14 the solutions of (7.1) are shown for experiments D2-15 (a) and D1-7
(b). The equilibrium values, given by (7.1) are indicated by the horizontal red lines,
for experiment D2-15: Ri = 0.25, E = 0.02 and cD = 3 × 10−3 (higher value of Ũn,
dash-dotted line) and cD = 3 × 10−2 (lower value of Ũn, dashed line), as extrapolated
from figures 8 and 11. It is interesting to point out that the two relations proposed by
Ellison & Turner (1959) for E(θ) and E(Ri) coincide only if assuming a large cD: the
dashed line in figure 14(a) is equivalent using E(θ) and E(Ri) only if a large value
of cD = 3 × 10−2 is used. Figure 14(b) shows the velocity variation for D2-7, taking
in this case E = 0.015 and cD = 0.005 (cf. figures 8 and 11).

Figure 14 indicates that the gravity current needs a distance of 40x̃ to reach an
equilibrium state, which is much larger than the commonly assumed distance of 10x̃.
No extrapolation is needed for the D0 experiment because, as seen in figure 12(c), Ũ

has practically reached its equilibrium value at x̃ ≈ 10.

8. Further discussion and conclusions

The four important conclusions that emerge are: (i) the development of gravity
currents on slopes can be regular or highly irregular depending on the interfacial
instability conditions at the beginning of the slope and on slope angle and this is
expressed by an overall acceleration parameter; (ii) the bottom drag coefficient is large
and cannot be neglected even in an equilibrium current and, more importantly, it is
related to the interfacial entrainment rate; (iii) the entrainment coefficients determined
from the change in volume flux Eq = (dq/dx)/U on the one hand and from velocity
measurements at the outer interface of the current Ew = −wh/U on the other, are
different when flow equilibrium is approached, as already observed by Odier et al.

(2014). While Odier et al. (2014) suggest taking an average between Ew and Eq for
the equilibrium entrainment value, we give arguments, based on turbulent shear stress
measurements, that the equilibrium value is Eq, in accordance with Pawlak & Armi
(2000); (iv), when the initial interfacial Richardson number and slope angles are such
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that Ta is large, an equilibrium state is reached at a distance of approximately 50h0

(instead the usually assumed distance of 10h0).
The current development is shown to depend on slope angle and on the interfacial

Richardson number at the beginning of the slope Ji = δig0
′/1u2

i , where δi, 1ui and
g0

′ are, respectively, the velocity interface thickness, the maximum velocity difference
and reduced gravity at slope origin. When Ji is small, here Ji < 0.3, as is the case
in outflow over a sill (Pawlak & Armi 2000) or inflow at the beginning of the
slope (here D0 experiment), an equilibrium flow of constant velocity is reached at the
expected downstream distance of approximately 10hi, where hi is the current height at
the beginning of the slope estimated with (4.2.a,b). For this reason, the development
phase is often neglected as in Dallimore et al. (2001) or Odier et al. (2014). However,
as has already been demonstrated by Negretti et al. (2017), the flow development can
be entirely different, approaching equilibrium much further downstream, when the
initial interfacial Richardson number and slope angle are large. The flow development
is shown to depend on an overall acceleration parameter Ta = (δi/Ui)(Uc−Ui/xc),
which, to first order, is given by Ji sin θ , where Ui is the velocity at the beginning
of the slope and Uc and xc are, respectively, the velocity and position at instability
onset. When Ta < 0.06 the velocity increases steadily toward an equilibrium state,
whereas at large values of Ta the development is highly irregular with large velocity
variation.

To summarize the current development, there are three different regimes depending
on the overall acceleration parameter. When Ta is large, Ta ≈ 0.12, as in the D2-15
experiments, the current strongly accelerates up to x = xc, reaching a maximum of
velocity at the beginning of KHI, then decelerates and finally re-accelerates again. In
this case the velocity oscillations are large, due to the large scale, intense vortical
structures at the start of KHI that cause sudden large entrainment and boundary layer
separation because (δ/h)c > 1, and thus spatially correlated high values of the bottom
drag coefficient (see § 6). In the second regime, 0.06 < Ta < 0.1, corresponding to the
D1 experiments, the current undergoes an abrupt change in acceleration at x = xc. In
this case, the interface is thinner, 0.3 < Ji < 0.6 and δ/δρ ≈ 1, so that KHI occurs
at higher J and thus at a shorter distance from the beginning of the slope. The third
regime is characterized by Ta < 0.06, here corresponding to the D0 experiments, and
represents the case were a smooth monotonic increase of the velocity occurs, with
an initial Ji 6 0.3, and KHI is already present near the beginning of the slope. In
this regime, an equilibrium, with constant current velocity, is generally reached within
approximately 10hi.

Numerical integration of the depth integrated momentum equation, using experimen-
tal values of E and cD, reproduces well the current development and clarifies the
validity of free fall assumption versus a shallow water model. Furthermore, the
numerical solution has been used to predict the distance xn required to reach
the equilibrium or normal state with an asymptotic constant velocity, assuming
constant entrainment and bottom friction coefficients, as reported experimentally after
re-adjustment of the current. When Ta > 0.06 this distance is xn ≈ 40h0, and thus
much larger than that predicted when assuming a current in the D0 regime with an
unstable interface close to the beginning of the slope (Ji < 0.3).

The entrainment coefficient has been determined from the change in volume flux
and from a direct measurement of the velocity normal to the current velocity. The
overall behaviour is similar, however, when the normal state is approached, with a
difference of approximately a factor of two. This difference has also been measured
by Odier et al. (2014), who chose the larger value obtained by the direct method. At
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slope angles θ 6 15, equilibrium entrainment rates are very small so that errors in
the measurement of entrainment rates are large. Nevertheless, entrainment coefficients
Eq determined from the change in volume flux tend toward the values known for
equilibrium flow conditions. These values have therefore been used in the numerical
extension of the experimental results to predict the current equilibrium.

After beginning of the KHI at Jc < 0.25, observed entrainment rates are close to
those of a mixing layer, decreasing to values of a gravity current after the mixing layer
has reached the bottom boundary. This large entrainment rate affects the bottom shear
stress with the bottom drag coefficient reaching, in all cases, O(10−2). When δ/h > 1
at Jc, the bottom drag is directly correlated with entrainment, whereas when δ/h < 1
at Jc there is a lag in bottom drag, reaching its maximum value when the shear layer
has grown down to the boundary. This large values of bottom drag during current
development are of importance for applications where slope changes are frequent and,
consequently, gravity currents may often not be in an equilibrium state. Also, large
bottom drag is indicative of the capability of the current to pick up sediment.
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Appendix A. Error estimation of experimental data

For the experiment D2-15, we made a more detailed estimation of the errors due
to the measurement technique and so we considered the time-averaged velocity field
over 4000 images. We took then the 3 % error estimated from the PIV measurements
for each velocity and assumed a Gaussian distribution of the errors, independent from
each other. After 4000 random selections per final interrogation window, the typical
error bar on the estimation of U and h over the full selection of 4000 has been
determined: the absolute error is less than 0.19 cm s−1 and 0.10 cm, for U and h,
respectively, for 95 % of the velocities, and a relative error is less than 3 % for U and
h for 93 % of the velocities. The corresponding error bar is reported in figure 3(a,b).

We also estimated the error on the time-averaged velocity and current depth due
to the time variability using a de-correlation time scale τ = 3 s corresponding to the
time scale of the KHI. For instance, in the experiment D2-15, before the onset of
the KHI, the absolute and relative errors for the integral velocity U are respectively
0.07 cm s−1 and 1 %. After the onset point of the KHI, the absolute and the relative
errors for U are respectively 0.30 cm s−1 and 6 %.

Before the onset point of the KHI, the absolute and relative errors for the integral
height h are respectively 0.04 cm and 1 %. After the onset point of the KHI, the
absolute and the relative errors for h are respectively 0.20 cm and 6 %. The error on
the time average due to the time variability is relatively small (∼1 %) before the onset
of the KH but becomes at least 6 times higher after the onset of the instability.

The experimental error due to the measurement technique for the entrainment
coefficient E is estimated by using the same method as for the velocity U and the
depth h errors. The relative error is smaller than 18 % for 95 % of the values and the
absolute error is smaller than 0.0023 for 95 % of the values.
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Appendix B. Shape factors

Gravity currents are often modelled by shallow water equations (Ungarish 2011;
Wirth 2011) that assume a constant layer-averaged density and velocity and which lead
to an overestimation of the driving force due to the pressure gradient by 33 %, and
up to 50 % depending on the chosen approximated shapes of the profiles (Pokrajac,
Venuleo & Franca 2017). Figure 15 displays time-averaged density (dashed lines) and
velocity (continuous lines) profiles for the experiment D2-7 at x = −5 cm (a) and
at x = 50 cm (b). The density and velocity profiles are close to the ‘top-hat’ shape
upstream of the slope (figure 15a) as long as the interface is stable and little mixing
at the interface takes place, whereas when the shear layer develops a triangular shape
is approached for both density and velocity profile. For the experiments D0 the initial
velocity and density profiles are closer to the ‘top-hat’ profile. After the beginning of
the KHI, both profiles are very similar for all experiments and close to the triangular
profile as highlighted in figure 15(b).

The shape factors introduced by Ellison & Turner (1959) allow us to take into
account the deviation of the instantaneous velocity and density profiles from the
simplified rectangular (top-hat) profile by assuming the self-similarity of these profiles,
and hence to correct the shallow water solution.

The integral velocity U and current depth h of the current are deduced from the
experimental observations by integrating the velocity profile as in (4.2c,d) over a depth
hv at which the velocity has become a percentage of the maximum velocity um. In this
paper this percentage is set to 8 % based on the experimental resolution of the velocity
data.

Figure 16(a,b) displays the different depths: the integral velocity layer depth h (grey
dashed line), the integral density layer depth hρ (black dotted line) and the constant
maximum density layer ηB (black continuous line) for D2-7 (a) and D1-7 (b). We see
that the depth of the density layer hρ (dashed line in figure 16a,b) behaves similarly to
h, while the bottom constant density layer ηB (continuous line in figure 16a,b) always
decreases in the downstream direction to reach a thickness of a few centimetres only,
thus suggesting that a triangular shape is approached moving downstream.
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Using (4.2c,d) and assuming a ‘top-hat’ density profile with a constant reduced
gravity g′ through the depth hρ , we get the following relations for S1 and S2:
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S1 =
g′

g′

(

hρ

h

)2

, S2 =
g′

g′
hρ

h
. (B 1a,b)

The corresponding shape factors assuming a triangular shape of the density profile are
obtained multiplying the above values of S1 and S2 by 1/3 and 1/2, respectively.

The shape factors estimated using ‘top-hat’ and triangular shapes of the density
profile and no assumption on the velocity profile are illustrated in figure 16(c–f ) using
dash-dotted and continuous lines, respectively. In the ‘top-hat’ case, the factors are
both of O(1) over the full distance considered with standard deviations of 0.12 and
0.05 for S1 and S2, respectively, larger for S1 because of the squared relation in (B 1).
The constant value around one for this shape confirms that the pressure and gravity
terms are overestimated in this case. Using triangular shapes, the values start from
0.3–0.5 for S1 and 0.55–0.7 for S2 at x̃ = 0 and increase in downstream direction to
reach finally values of approximately 0.7 for S1 and 0.75–0.9 for S2 at x̃ = 20 for
both experiments, in accord with the observed development of the velocity and density
profiles of the gravity flow.

So far, no assumption has been made on the shape of the velocity profile. If it is
assumed, for example, that the velocity and density profiles are both triangular with
a height hρ = hv = (4/3)h, the shape factors S1 and S2 become

S1 =
16

27

g′
0

g′ and S2 =
2

3

g′
0

g′ , (B 2a,b)

and S3 can be estimated by assuming u = um(1 − z/hv) from which follows
(cf. equations (4.2c,d)): U = 2/3um, h = 3/4hv and S3 = 2/3. The shape factors
obtained using triangular profiles for both the density and velocity profiles are
represented in figure 16(c–f ) by the dashed lines. They differ from the continuous
lines, where no assumption on the velocity profile has been made, in the first
developing region (0 < x̃ < 5), but vary similarly for x̃ > 5.

An alternative way to estimate the shape factors, which is more sophisticated than
considering a two-layer system, as is the case in the SW model, is to take into account
an additional layer of thickness δI , as depicted in figure 17. The top layer is assumed
quiescent and the shear layer velocity is supposed to be half of the velocity of the
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bottom layer, but the model can be easily extended to any other ratio between the
velocities in the shear and bottom layer. Similarly, the density is assumed to be half
of the density of the bottom layer in the sheared velocity layer, and constant, but the
approach can be adapted to other interface configurations. Neglecting the drag terms
we have,

dũ2
m

dx̃
+ 2

d

dx̃

(

h̃B +
δ̃I

2

)

cos θ = 2 sin θ, (B 3a)

dq̃B

dx̃
= 0, (B 3b)

dq̃I

dx̃
= 0, (B 3c)

where ũm = um/U corresponds to the dimensionless maximum free-stream velocity,
h̃B = hB/L is the dimensionless bottom layer thickness, q̃B = qB/q0 = ũmh̃B and q̃I =
qI/q0 = ũmδ̃I/2. The unknowns are ũm, h̃B and δ̃I . Equation (B 3a) can be analytically
solved to give the implicit solution,

ũ2
m + 2

(

h̃B +
δ̃I

2

)

cos θ = 2x̃ sin θ + ζ , with ζ = ũ2
m0 + 2

(

h̃B0 +
δ̃I0

2

)

cos θ, (B 4a,b)

where ũm0 and h̃B0 are estimated using the initial condition F2 = 1 and are linked to
Ũ0 and h̃0 through Turner’s integrals (4.2.a,b),

ũm0 = χ0Ũ0, (B 5a)

h̃B0 + δ̃I0/2 = χ−1
0 h̃0, (B 5b)

χ0 =
h̃B0 + δ̃I0/2

h̃B0 + δ̃I0/4
. (B 5c)

The variable χ0 links Turner’s variables (Ũ, h̃) to the free-stream layer variables

(ũm, h̃B). Combining (B 5b) and (B 5c) we get χ0 = 2(h̃0 −
√

h̃2
0 − h̃0δ̃I0)/δ̃I0.

The shape factors can now be obtained as S1 = χ−2(g′
0/g′) and S2 = χ−1(g′

0/g′)
and are represented in figure 16(c–f ) by the grey continuous lines. We see that S1 =
0.56–0.87 and S2 = 0.75–0.93. The so obtained values will be finally used to solve the
system (4.1) since they are the most representative, considering both the shear layer
thickness and the bottom layer, and are also shown to produce better agreement when
comparing the numerical solution with the experimental data as in § 7.
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