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Vacancies in simple cubic crystals of hard cubes are known to delocalize over one-dimensional
chains of several lattice sites. Here, we use computer simulations to examine the structure and
dynamics of vacancies in simple cubic crystals formed by hard cubes, right rhombic prisms (slanted
cubes), truncated cubes and particles interacting via a soft isotropic pair potential. We show
that these vacancies form a vacancy analogue of the crowdion interstitial, generating a strain field
which follows a soliton solution of the sine-Gordon equation, and diffusing via a persistent random
walk. Surprisingly, we find that the structure of these “voidions” is not significantly affected by
changes in density, vacancy concentration, and even particle interaction. We explain this structure
quantitatively using a one-dimensional model that includes the free-energy barrier particles have
to overcome to slide between lattice sites and the effective pair interaction along this line. We
argue that voidions are a robust phenomenon in systems of repulsive particles forming simple cubic

crystals.

Many material properties of crystals are determined
by the formation and diffusion of small collections of
point defects inside the lattice. In crystals consisting of
spherical particles, these point defects are typically fairly
localized, primarily affecting the location of only a few
particles, and diffuse inside the crystal through hopping
motions. Therefore, imagining a point defect as localized
to one specific lattice point is fundamentally correct in
many cases, and forms a crucial ingredient in theories of
solid-state self-diffusion [1].

However, in some cases point defects take on forms
that are significantly extended in space, such as the in-
terstitial crowdion, which was proposed by Paneth in the
1950s [2], and explored in multiple atomic crystals [3-6].
In a crowdion, the lattice distortion due to the interstitial
particle is largely one-dimensional, displacing particles in
a chain along a specific lattice direction, which can extend
over a large number of lattice sites. Such defects have
been shown to exhibit fundamentally different diffusion
properties compared to their localized counterparts [6, 7],
and have triggered the formulation of simple models that
can capture their essential traits [8-12]. Specifically, one
interesting trait of the crowdion defect is that the dis-
placements of the particles in the defect are essentially
one-dimensional and can be accurately captured by the
Frenkel-Kontorova model [8, 12], which in the continuum
limit reduces to the sine-Gordon equation. Recent exper-
imental work has hinted that a vacancy-equivalent of this
extended configuration, called an “anti-crowdion” [9] or a
“voidion” [13], may exist in metals, where N —1 particles
are spread over N lattice sites in a chain [13]. However,
as the atomic structure around these extended defects is
typically not accessible in experiments it remains unclear
whether these voidions exist, and to what extent they are
related to crowdions.

Hard colloidal particles with different shapes have

emerged as an excellent model system for exploring crys-
talline phase behavior (e.g. [14-36]). An intriguing fam-
ily of such colloidal model systems was shown to form
crystals containing extended vacancy defects [32-34]. Al-
though particles in this family have a variety of shapes
and symmetries, including cubes, truncated cubes, and
right rhombic prisms (“slanted cubes”), they are all pre-
dicted to form a simple cubic crystal phase with an ab-
normally high defect concentration, orders of magnitude
higher than that of the archetypical hard-sphere crystal
[37]. Experimentally, these delocalized defects have in-
deed been observed directly in crystals of (almost hard)
cubic gold nanoparticles [35]. The presence of these de-
fects has a profound effect on the crystal dynamics close
to melting, resulting in self-diffusion rates as high as 30%
of those in the corresponding fluid [32]. Both the delocal-
ization and high diffusivity of these vacancies are strongly
reminiscent of crowdion interstitials, suggesting that they
may be a direct realization of the hypothesized voidion.

To test this hypothesis, we use computer simulations
to examine the structure and dynamics of point defects
in simple cubic crystals formed by hard cubes, slanted
cubes, truncated cubes and particles interacting via a soft
isotropic pair potential. We show that both vacancies
and interstitials are characterized by a strain field closely
following a soliton solution of the sine-Gordon equation
and that the dynamics of the vacancies are well-described
by a persistent random walk, similar to that seen in crow-
dions [6, 7, 12]. We then show that the structure of the
vacancies can be explained quantitatively by considering
the free-energy barrier particles have to overcome to slide
between lattice sites. Surprisingly, our results demon-
strate that this structure is not significantly affected by
changes in density, vacancy concentration, and even par-
ticle interaction. Moreover, as we observe these defects
in all the simple cubic crystals of repulsive particles we
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FIG. 1: (a) Typical local structure of a vacancy in a crystal of hard cubes at packing fraction ¢ = 0.65 (top) and an interstitial
at ¢ = 0.60 (bottom) delocalized over a chain of particles. Particles which are part of the defect are colored red. (b) Tracking
results revealing the position, direction and length of extended vacancies in a crystal of hard cubes at ¢ = 0.65. Particles
which are part of a vacancy are shown at their actual size while the other particles are shown much smaller. (c) Averaged
displacement field along the vacancy (solid markers) and the interstitial (open marker) for a hard-cube system at ¢ = 0.60.
The displacements inside these defects follow the soliton solution to the sine-Gordon equation (black lines).

have investigated - ranging from hard anistropic parti-
cles to a much longer ranged soft isotropic potential - we
argue that voidions are a robust phenomenon in systems
of repulsive particles forming simple cubic crystals.

We begin our investigation by characterizing the dis-
placement field of particles around defects in equilib-
rium crystals of hard cubes (i.e. overlaps between par-
ticles are not allowed), with edge length 0. We perform
Monte Carlo (MC) and event-driven molecular dynam-
ics (EDMD) simulations [32, 38, 39] of three-dimensional
crystals of N particles. Each simulation is initialized as
a perfect crystal containing its net equilibrium concen-
tration of vacancies a = (N, — N)/Ny,, where Ny, is the
number of lattice sites. Note that in principle, additional
vacancy-interstitial pairs can form which increase the to-
tal number of vacancies. The net equilibrium vacancy
concentration for each crystal density is taken from previ-
ous free-energy calculations presented in Refs. 32 and 34.
In each simulation, we track the defects, their length, and
their orientation by examining the occupancy of Wigner-
Seitz cells in the crystal (see Supplemental Information
(SI) [40]). Examples of a vacancy and an interstitial are
shown in Fig. 1(a). Clearly in both cases, the defect is
extended over a long chain of lattice sites. Note that the
number of vacancies is much larger than the number of
interstitials in these systems. To provide a better image
of the distribution of defects in a crystal, Fig. 1(b) shows
all vacancies in a typical crystal of hard cubes, illustrat-
ing that the defects are delocalized with random positions
and orientations along the three crystal axes. Interest-
ingly, as shown in the SI [40] and discussed briefly in
Ref. 32, despite the high concentration of these defects,
they essentially do not interact.

In order to characterize the structure of the defects, we
measure the average particle displacements u,, = x,, —an
around vacancies and interstitials, along the defect direc-
tion, where x,, is the position of particle n along the de-
fect, and a is the crystal lattice spacing. We choose n = 0

FIG. 2: (a) Mean squared displacement of the center of the
vacancies for the hard-cube system at different packing frac-
tions. (b) Trajectory of the center of a vacancy in the hard-
cube system at a packing fraction ¢ = 0.65.

to correspond to the particle just before the defect center
and use “standard” boundary conditions: up—_o = a,
Up—oo = 0 for the interstitial and u,—_o = 0, Up—0o = a
for the vacancy. We plot these displacement fields for
a system of hard cubes at packing fraction ¢ = 0.60 in
Fig. 1(c), where ¢ = Nuvy/V with vy the volume of the
particle and V' the volume of the system. From these
displacement fields we see that the vacancies affect the
behaviour of about 10 particles on average, while for the
interstitials, it is closer to 20.

One important characteristic of a crowdion defect is
that the displacements of the particles in the defect are
essentially one-dimensional and can be well described by
the Frenkel-Kontorova model [8, 12]. Hence, to deter-
mine whether the defects are realizations of crowdions
and voidions, we compare our results to the soliton so-
lution of the sine-Gordon equation (black lines), i.e. the
continuum limit of the Frenkel-Kontorova model using
a single fitting parameter to match the extension of the
defect (see ST [40]). As Fig. 1(c) shows, we observe excel-
lent agreement for the interstitial defects and good agree-
ment for the vacancy defects, indicating that at least the



structure of the defects is consistent with crowdions and
voidions. This is somewhat surprising, since the clas-
sic Frenkel-Kontorova model assumes harmonically inter-
acting particles in a periodic sinusoidal potential, while
the interactions between hard cubes are strongly anhar-
monic.

As vacancies are the predominant type of defect in
these crystals, in the rest of this Letter we focus purely
on the voidions.

To further confirm that the vacancies are indeed well-
identified as voidions, we now turn our attention to their
dynamics using EDMD simulations. In Fig. 2(a), we plot
the mean squared displacement as a function of time for
the center of the vacancies in crystals of hard cubes at
their equilibrium vacancy concentration. Here our time
unit is 7 = \/fmo?2, where m is the mass of a particle
and 8 = 1/kpT with kg Boltzmann’s constant and T the
temperature. Counter-intuitively, the vacancy diffusivity
goes up with increasing packing fraction in contrast to
vacancy diffusion in most systems, where the diffusivity
goes down drastically with increasing packing fraction
(e.g. Ref. 41). A typical trajectory of such a defect
is shown in Fig. 2(b). Clearly, the vacancy diffuses by
gliding along the main crystalline lattice directions, and
from time to time, by reorienting. The gliding process
itself requires very little activation energy, requiring only
very small displacements of each particle in the defect.
Reorienting, on the other hand, requires the vacancy to
shrink to a single lattice site, and then regrow in a new
direction. This is an activated process that occurs on
time scales much slower than the gliding diffusion, re-
sulting in a persistent random walk as seen in crowdions
[6, 7, 12].

The diffusion in this system is thus governed by two
separate time scales: the one-dimensional diffusion, and
the time scale associated with reorientations. Interest-
ingly, as shown in the SI [40], the reorientation time in-
creases with packing fraction, implying that the defects
glide for longer along the same axis and resulting in a
faster overall diffusion. Note that since the equilibrium
defect concentration decreases rapidly with packing frac-
tion [32], the total self-diffusivity of the particles in the
crystal still slows down with increasing packing fraction.

In summary, the vacancies observed in the simple cubic
crystals of hard cubes clearly show strong similarities to
crowdions in atomic systems, both in terms of structure
and diffusive behavior. Hence, we identify these vacan-
cies as a vacancy-analogue of crowdions: voidions.

To determine the robustness of these defects in sim-
ple cubic lattices, we use MC and EDMD simulations
in the canonical ensemble to explore three additional
model systems for repulsive particles that form simple
cubic lattices, namely slanted cubes with a slant angle
0 = 72.5° [34], truncated cubes [33] (see SI [40]), and
a soft isotropic repulsive pair interaction (ISO), intro-
duced in Refs. 42, 43. A model of the slanted cube and

BUiso(r)

(un/a)

FIG. 3: (a) Model of a slanted cube with slant angle § = 72.5°.
The vectors spanning the shape are given by vi = {0,0,0},
vy = {0,0,0}, and vz = {ocos0,0,0sin6}. (b) Plot of the
soft isotropic interaction potential from Refs. 42, 43. Note
that here o is an arbitrary length unit. (c) Averaged displace-
ment field along the vacancy at different ¢ for cubes (circles)
and slanted cubes (crosses). (d) Averaged displacement field
along the vacancy for a simple cubic crystal of spheres inter-
acting through the isotropic potential shown in (b), for differ-
ent densities. The black lines in (c, d) correspond to fitting
the data to the soliton solution to the sine-Gordon equation.

the ISO pair interaction are shown in Figs. 3(a) and (b),
respectively. In Fig. 3(c), we plot the average displace-
ment field around a vacancy for both cubes and slanted
cubes (with slant angle § = 72.5°) at several packing frac-
tions. Surprisingly, the displacement fields for the differ-
ent packing fractions ¢ and for the two particle shapes
collapse onto a single curve when the displacements are
normalized with respect to the lattice spacing a. Further-
more, in Fig. 3(d), we plot the same displacement fields
for the ISO potential, at several number densities in the
regime where the simple cubic lattice is stable. We again
observe a similar defect-shape, which is independent of
the density. A similar result for truncated cubes is shown
in the SI [40]. In all cases, the displacement fields suggest
an average length of vacancies of around 10 particles.

In order to understand the mechanism which controls
the length of these defects, we draw inspiration from the
Frenkel-Kontorova model and consider our defect as a
one-dimensional row of particles, which experiences an
effective periodic potential due to the rest of the crystal.
However, instead of assuming harmonically interacting
particles in a sinusoidal potential, we use the true particle
interactions and measure the effective free-energy land-
scape. To measure this effective potential, we perform
Monte Carlo simulations of defect-free crystals where a
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FIG. 4: (a) Free-energy barriers U(z) for the ISO system
at different densities. (b) The resulting displacement fields
obtained by single-row simulations for a vacancy using these
free-energy barriers (crosses), compared to the displacement
fields as measured in the full system (circles). (c,d) Free-
energy barriers and displacement fields for the hard-cube sys-
tem. In (b, d) colors are the same as in (a, ¢). The black lines
in (b, d) correspond to fitting the data to the soliton solution
to the sine-Gordon equation.

single row of particles is subject to an additional exter-
nal periodic potential V(x), where x is measured along
the axis of the chosen row. This potential is then tuned
(see SI [40]) until the density profile p(x) along the row
is constant, indicating that the imposed external po-
tential exactly cancels out the effects of the rest of the
crystal on the particle positions along the row. Hence,
the particles in the row experience an effective poten-
tial U(z) = —V(z) from the rest of the crystal, on top
of the interactions experienced between particles within
the row.

We plot U(x) for several number densities of the ISO
system in Fig. 4(a). In all cases, U(x) shows a clear
minimum at z = 0, corresponding to the equilibrium
lattice position, and a peak at © = a/2, representing a
free-energy barrier inhibiting sliding between lattice sites.
We now impose the measured potentials U(x) to simu-
late a simplified model of the defect by fixing a row of
particles (interacting via the ISO interaction) along the
r-axis with a single vacancy, and we again measure the
displacement field around the defect. The resulting dis-
placement fields are compared to those measured in the
full crystal in Fig. 4(b), showing excellent agreement for
all densities. Note that the agreement at different densi-
ties is not trivial, as both the strength of U(x) and the
spacing between the particles (and hence their interac-
tion strength) are density-dependent (see ST [40]).

We repeat this procedure for the system of hard cubes,
and show the effective free-energy barrier U(z) in Fig.
4(c). In comparison to the isotropic potential, the bar-
rier shape for cubes is significantly more complex, with
the top of the barrier flattening and even showing a sec-
ondary minimum at high packing fractions. In this case,
simulating a one-dimensional system using U(x) is com-
plicated by the presence of rotational degrees of freedom,
which are inhibited by interactions with the rest of the
crystal. To approximate this, we simulate cubes con-
fined in a mean-field square “tunnel” consisting of four
hard walls at a distance set by the lattice constant (see
ST [40]). Within this approximation, we again find ex-
cellent agreement for the displacement field around a va-
cancy, as shown in Fig. 4(d). Note that including the
rotational degrees of freedom is essential in order to cap-
ture the correct vacancy length and shape.

This toy model clearly shows that the vacancy dis-
placement fields arise from a subtle competition between
the free-energy barriers and effective interparticle repul-
sions. Specifically, the density-independent displacement
field in the cubes can be explained by an increase in bar-
rier height and width as a function of density, which is
compensated by a stronger inter-particle repulsion due
to the smaller lattice spacing. As shown in the SI [40],
increased particle alignment also affects the effective re-
pulsion, but is dominated by the effects of the lattice
spacing. Similarly, in comparison to the cubes, the ISO
system has much higher barriers, but also much stronger
effective repulsions, resulting in a similar defect length.
What remains a mystery, however, is why in each case of
repulsive particles forming simple cubic crystals studied
so far, this competition serendipitously results in essen-
tially the same displacement field — with a length of ap-
proximately 10 particles — almost entirely independent of
interaction, particle shape, and density.

The dependence of the defect structure on the compe-
tition between the free-energy barriers and the interpar-
ticle repulsions hints at a reason we observe these defects
in simple cubic crystals of hard particles, and not in more
highly coordinated lattices like face-centered-cubic crys-
tals. Specifically, on lattices with low coordination num-
bers, the number of particles contributing to the barrier
is low, resulting in lower barriers in comparison to the in-
terparticle interactions. Moreover, this mechanism also
explains why such defects have not been observed more
frequently: in attractive systems, which are more com-
monly found in nature, the attractions can both increase
the barrier and remove the repulsions necessary to have
the particles spread along the rows. Indeed, attractive in-
teractions have been demonstrated to strongly suppress
vacancy delocalization in simple cubic crystals of cubic
nanoparticles [44]. Hence, the attractions in such sys-
tems need to be tuned to be weak in order to observe
delocalized vacancies [35].

In conclusion, we have demonstrated the existence of



voidions in simple cubic crystals formed by a range of
repulsive potentials, and in fact, every repulsive poten-
tial we have examined shows stunningly similar vacancy
structures that are essentially density independent. We
have also elucidated a mechanism which accurately cap-
tures the extension of the vacancies, demonstrating that
the length of the vacancies is controlled by a complex in-
terplay between (low) free-energy barriers in rows of par-
ticles, and the particle interactions. Our results clearly
demonstrate that voidions are a common property of sim-
ple cubic lattices of repulsive particles.
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