N
N

N

HAL

open science

ChessY: A Mathematica toolbox for the generation,
visualization and analysis of positional chess graphs.
Michelle Rudolph-Lilith

» To cite this version:

Michelle Rudolph-Lilith. ChessY: A Mathematica toolbox for the generation, visualization and anal-

ysis of positional chess graphs.. SoftwareX, 2019, 9, pp.39-43. 10.1016/j.s0ftx.2018.12.004 .

02391009

HAL Id: hal-02391009
https://hal.science/hal-02391009v1
Submitted on 3 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02391009v1
https://hal.archives-ouvertes.fr

SoftwareX 9 (2019) 39-43

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX g

ChessY: A Mathematica toolbox for the generation, visualization and N

analysis of positional chess graphs
Michelle Rudolph-Lilith

Check for
updates

Unité de Neurosciences, Information et Complexité (UNIC), CNRS, 1 Ave de la Terrasse, 91198 Gif-sur-Yvette, France

ARTICLE INFO ABSTRACT

Article history: The game of chess is undoubtedly one of the most popular two-player strategy board games in history,
Received 9 August 2018 enjoyed by casual players and competing celebrated professionals alike, and serves as prototype research
Received in revised form 17 December 2018 subject in a vast variety of fields. Although a plethora of parsers on a large number of different platforms

Accepted 17 December 2018

is readily available for processing records of chess games provided in online databases, Mathematica
remains, somewhat surprisingly, exempt. ChessY attempts to fill this gap, by providing a simple set of

Iéle-l}:;zord& tools for handling Portable Game Notation (PGN) chess records and their translation into positional chess
PGN parser graphs, thus opening the door for a systematic analysis of chess games within the powerful confines of
Graph theory graph theory using Mathematica.

Game theory © 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

Mathematica

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0

https://github.com/ElsevierSoftwareX/SOFTX_2018_142

BSD-2-Clause

none

Wolfram Mathematica

Mathematica v10.0 or above
http://mrudolphlilith.github.io/publications/Peer-ReviewedArticles/A38/A38.html
rudolph@unic.cnrs-gif.fr

1. Motivation and significance

With its 64 squares, 32 pieces of 6 types, and discrete moves
of pieces between squares governed by a strictly limited, arguably
simple set of rules, chess can undoubtedly be viewed as a classical
example of a network in graph theory [1]. Although many chess-
related problems and their solutions, such as the Knight's Tour Puz-
zle or Queens Domination Problem, find representations within a
graph-theoretical framework (e.g., see [2,3]), a systematic analysis
of available datasets of chess games recorded over many decades
within a graph-theoretical context remains, however, scarce and
mostly restricted to visualizing various chess strategies and search
algorithms (e.g., see [4] and references therein).

One reason hindering a thorough graph-theoretical analysis of
chess games is certainly the inherent difficulty associated with
parsing online PGN (Portable Game Notation) databases. PGN

E-mail address: rudolph@unic.cnrs-gif.fr.
URL: http://mrudolphlilith.github.io.

https://doi.org/10.1016/j.s0ftx.2018.12.004

records utilize the Standard Algebraic Notation (SAN) standardized
by FIDE (Fédération Internationale des Echecs; [5]) to encode
positional changes during a chess game by specifying the type and
target square of the piece being moved. However, such a compact
representation is subject to potential ambiguities, for instance,
multiple pieces can reach a given target square, which require
sophisticated and often computationally demanding parsing algo-
rithms in order to be fully resolved. Although a whole plethora
of both open-source and proprietary parsers and chess game en-
gines in a variety of programming languages is readily available
(see [6] for a recent and comprehensive review), such engines
focus exclusively on assessing game positions using evaluation
functions not unlike that originally proposed by Shannon [7], and
selecting advantageous moves through searches in vast databases
of available chess games. Moreover, the API of many of these
parsers and engines provides only limited access to the full set of
possible moves of chess pieces in a given position, thus rendering
the construction of chess graphs difficult and dependent.

Another and perhaps more important reason limiting the wider
exposure of chess games within the graph-theoretical literature is

2352-7110/© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.softx.2018.12.004
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.12.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2018_142
http://mrudolphlilith.github.io/publications/Peer-ReviewedArticles/A38/A38.html
mailto:rudolph@unic.cnrs-gif.fr
mailto:rudolph@unic.cnrs-gif.fr
http://mrudolphlilith.github.io
https://doi.org/10.1016/j.softx.2018.12.004
http://creativecommons.org/licenses/by/4.0/

40 M. Rudolph-Lilith / SoftwareX 9 (2019) 39-43

the peculiar makeup of positional chess graphs. Each square on
the chessboard corresponds to one graph node, and all potential
moves which the pieces occupying squares on the chessboard can
legally perform comprise the set of edges between these nodes, as
exemplified in Fig. 1. However, the defining makeup of positional
chess graphs deviates from that of the unweighted undirected
relational, i.e. simple, graphs which most prominently feature in
classical and applied graph theory (see [8] for a comprehensive
recent presentation on the subject). Indeed, most software pack-
ages available for the analysis of real-world networks are only
equipped for handling simple graphs, with an inclusion of chess
graphs typically requiring the manual alteration of core data and
procedural structures.

With data structures and functions tailored to handle positional
chess graphs, ChessY provides a basic set of tools to parse, validate
and visualize available PGN chess game records, and to construct,
manipulate and analyze chess graphs. ChessY, thus, opens the door
for a systematic and thorough study of chess games using the
computer algebra environment Mathematica [9] as a powerful
explorative engine. Unfortunately however, despite the historical
role of chess as a most prominent board game, to the best of
the Author’s knowledge, no package or toolbox is yet available
in Mathematica for both the parsing of available PGN records and
the construction of chess graphs from such records, thus render-
ing ChessY the first thorough attempt in opening the door for a
more systematic analysis of the game of chess using the graph-
theoretical and algebraic tools made available on this powerful
platform.

ChessY was already successfully utilized in a study of chess
games between Grandmasters and computer players, aimed at
identifying and characterizing strategical approaches employed
in the gameplay of human players and computer chess algo-
rithms [10]. This study found that for both Grandmasters and
computer players the retention of more and higher-value pieces
in conjunction with maintaining a high potential connectivity to
squares on the board is an integral part of a winning strategy.
However, a computer player leverages such a rigid “strength in
number” strategy, at average, to a far greater extent compared to a
Grandmaster. With such findings, ChessY might help to stimulate
further studies of the intriguing game of chess within a graph-
theoretical context, and contribute to delineating strategical and
decision-making nuances observed in human players for potential
incorporation into chess game engines.

2. Software description

ChessY is a small collection of high-level functions and data
structures written in the Mathematica language for generating,
visualizing and analyzing positional chess graphs. Chess positions
and their associated graphs can be constructed either manually or
through parsing available PGN chess game records. All generated
data objects are provided as easily accessible multidimensional
lists, thus are readily available for further manipulation within the
Mathematica environment, outside the functional core provided by
ChessY.

2.1. Software architecture

ChessY is built around three principal types of data objects,
the chess position P, nodes A/, and edges £. While the position
object contains a list of pieces, their location on the chessboard, and
supplementary information characterizing a given position, nodes
and edges are 1-dimensional and 2-dimensional lists, respectively,
uniquely describing the positional chess graph associated with a
given position:

P = {info, {{i1, p1}, {i2, 2}, . . }},
N = {S], S92, .. .},
£ = {{iiource7 itlargEt, si, 1, {izource, itzﬂrget7 51‘2}7 oL

were i denotes a unique square, or node, identifier ranging from
1 to 64, starting in the lower left-hand corner with the al square
on the chessboard and ending in the upper right-hand corner (h8
square), p is a piece identifier containing color (w and b for white
and black pieces, respectively) and type (K, Q,R, B,N, and P for king,
queen, rook, bishop, knight and pawn, respectively), and s is the
node state, e.g.s = —1 or s = 1 for squares occupied by white or
black pieces, respectively, or s = 0 for unoccupied squares. Finally,
info denotes a simple association list with information about the
target node of a possible en passant move, the possibility of castling
moves, as well as an eventually issued check or checkmate. This
information is used by ChessY to process records of complete chess
games, and to construct valid chess graphs associated with each
position during a game.

The data objects presented above are returned by functions
for the generation of chess positions and chess graphs, as well
as ChessY’s parser for PGN chess game records, and are used as
arguments in functions for the visualization of chess positions,
graphs and complete games, as well as the analysis of positional
chess graphs. The following list provides an overview of functions
made available in ChessY.

Generation of chess positions:
getPositionFromPieceFileRank[{p;, P2, -..}]
getPositionFromPieceNode[{p], pj, .. .}]
getPositionsFromGamePGN[{m;, my, ...}]

Functions for generating a chess position P by either manually

placing individual pieces on the chessboard, or by parsing a valid

PGN chess game record. Here, p € {w, b}{K,Q,R,B, N, P}{a, ...,

h}{1, ..., 8} is a 4-character string identifying a piece placement
through color, type, file and rank, p" € {w, b}{K,Q,R, B,N, P}
{1, ..., 64} a string identifying a piece placement through color,

type and node ID, and m a PGN-formatted string of a single chess
move.

Generation of chess graphs:

getNodesFromPosition[P]

getEdgesFromPosition[P]
Given a chess position P, these functions deliver the complete
set of nodes and edges which define a positional chess graph
by returning A, a 1-dimensional list of length 64 containing all
node states, and &, a 2-dimensional list of all weighted edges,
respectively.

Visualization of chess graphs:
showChessPosition[P]
showPositionalChessGraph[N, £]
Functions for generating graphics objects displaying a chess posi-
tion P in a classical, pieces-on-chessboard style, and a chess graph
with nodes A and edges &, respectively.
animateChessPositions[{m, my, ...}, {P1, P1,...}]
animatePositionalChessGraphs[{\7, N3, ...},
{81, 527 . '}]
Functions returning interactive animated graphics objects display-
ing multiple chess moves m; and positions 7;, or multiple positional
chess graphs defined by their nodes N; and edges &;, respectively.
These functions are used to animate complete chess games.

Analysis of chess graphs:
getNumber0fNodes[N]
getNumberOfEdges[£]
Functions returning a list with the number of nodes of specific
types, color or being occupied in a given node state N, and the
number of edges E given a list of edges &, respectively.
getAdjacencyMatrix|[€]
Function returning the adjacency matrices a;; of a chess graph.



M. Rudolph-Lilith / SoftwareX 9 (2019) 39-43 41

ﬁ

|
\

§

XD

/i

7654321

1234567

Fig. 1. Example of a chess position and its associated positional chess graph, generated by ChessY (Example 1). The left panel visualizes a chess position in classical format,
the center and right panel the positional chess graph with 8 x 8 and linear node layout, respectively. The height of the arched edges in the linear layout indicates the
chessboard (Chebyshev) distance between source and target nodes. The position depicted is move 11 (black) of Round 3 between Spassky (white) and Fischer (black) during

the 8th World Championship in 1972.

getConnectednessl[E]
Function returning the connectedness of a chess graph, defined as
the ratio between the number of edges E and the number of edges
in a fully connected graph with the same number of nodes.

getControl[N, ]

getMobility[N, &]

getDominance[N, £]
Functions which, given a positional chess graph defined by N
and &, return respectively the control, defined as the fraction of
unique unoccupied nodes and nodes occupied by the opponent
targeted by nodes in a given state, mobility, defined as the fraction
of unique unoccupied nodes targeted by nodes in a given state, and
dominance, defined as the fraction of unique unoccupied nodes,
source nodes in a given state and target nodes occupied by the
opponent.

getAverageNodeReach[N, €]
Function returning the number of unique nodes targeted by edges
emanating from nodes in a given state, normalized by the total
number of nodes in that state.

getOffensiveness([N, €]

getDefensiveness[N, P]
Functions which, given a positional chess graph defined by A" and
&, return the number of nodes in a given state which target occu-
pied nodes in the opposite state (offensiveness) and the number of
nodes in a given state which yield potential edges to nodes in the
same state (defensiveness), respectively.

2.2. Software functionalities

ChessY’s primary focus is on providing tools for the generation
of positional chess graphs and their associated data objects for vi-
sualization and subsequent analysis from PGN chess game records.
The construction of positional chess graphs from these records
starts with the conversion of the file-rank square identification fr
commonly utilized in chess records into a numerical node identi-
fieri € [1, 64] using the function

if,r)=8x(r—1)+¢ —-1)+1,

were the board’s files are successively mapped to numbers, i.e.a —
1,...,h — 8.Each node i can have one of three states s;, depending
on whether the corresponding square is occupied by a white or
black piece (s; = —1 and s; = 1, respectively), or empty (s; = 0).
Each occupied node i serves then as source for the graph’s edges
to target nodes j, depending on the legal moves a piece occupying
the source square can potentially perform, thus populating an
adjacency matrix with elements a; = s;. For potential capture
moves, with the exception of en passant, the state of the target

node is s; = —s;. For castling moves, two source and target nodes
exist with s;; = s;, and s;;, = s;, = 0, while for all other legal
moves, including en passant and non-capture promotions, s; = 0.
Special moves (castling and en passant) require a reduced record
of earlier game positions, carried by the association list info in
P. Finally, if a given position yields an edge to a node in state s;
and occupied by the king (check), then the set of potential edges
emanating from nodes in the same state s; is solely restricted to
elements which remove this node as potential target in the next
position. If this set is empty, the given graph marks the end of a
chess game (checkmate). With this, a complete description of the
graph representing a given chess position is achieved.

The generated positional chess graphs are fully described by
their nodes N and associated edges &, and, together with the
positions P obtained manually or by parsing valid PGN game
records, are available for visualization and analysis using tools
provided in ChessY, or the explorative potential of the embedding
platform Mathematica. Specifically, both the list of edges £ as
well as the adjacency matrix a; returned by ChessY’s respective
getEdgesFromPosition and getAdjacencyMatrix functions
(see Section 2.1) provide data objects which serve as arguments
for the construction of graph objects utilizing Mathematica’s native
graph construction and representation library.

2.3. Performance evaluation

In order to assess the performance of ChessY, a PGN database
containing 2000 records of chess games was analyzed on a 2013
model Mac Pro (3.5 GHz 6-Core Intel Xeon E5, 64 GB of 1866 MHz
DDR3 ECC) running on OSX 10.11 (El Capitan). The average CPU
time for parsing a single PGN chess game record and generating the
associated game positions (function getPositionFromGamePGN)
was 1.95 s with a standard deviation (SD) of 0.77 s, the CPU time
for constructing positional chess graphs for each position during
an average game (functions getNodesFromPosition and get-
EdgesFromPosition) was 6.03 s (SD of 2.34 s). The comparably
large error is these evaluations is a direct consequence of the inher-
ent variability of chess games, with an average number of positions
of 74 (SD of 40) in the investigated sample dataset. Finally, with
nodes and edges generated, the analysis of the generated positional
chess graphs during a game with the complete set of analysis
functions listed in Section 2.1 took an average CPU time of only
0.41 s (SD of 0.19 5), a direct consequence of the comparably small
size of positional chess graphs (64 nodes and a sparse connectivity
of, at average, 1.5%).



42 M. Rudolph-Lilith / SoftwareX 9 (2019) 39-43

connectedness control defensiveness

0.020F T T T ™ T T T
04} X

0.015 1
0.3h

0.010
0.2} 1

0.005 1 o4l |

20 40 60 80 20 40 60 80 20 40 60 80
ply ply ply

Fig. 2. Visualization of the results obtained in Example 2 for the complete game between Spassky (white) and Fischer (black) during the 8th World Championship in 1972.
Shown are the total connectedness, defined as the ratio between the number of actual and possible edges, control, defined as the fraction of unique unoccupied nodes and
nodes occupied by the opponent targeted by nodes in a given color state, and defensiveness, defined as the number of nodes in a given color state which yield potential
edges to nodes in the same state, of white and black pieces as a function of the position during the game.

3. Illustrative examples

Example 1. To illustrate the use of ChessY, the first example
presents the generation of the chess graph for the infamous posi-
tion 23 (move 11, black) of Round 3 between Spassky (white) and
Fischer (black) during the 8th World Championship (July 16, 1972,
Reykjavik), with the output shown in Fig. 1.

position = position23SpasskyFischer1972; (* defined in
ChessY.m *)

nodes = getNodesFromPosition[position];

edges = getEdgesFromPosition[position];

gl = showChessPosition[position];

g2 = showPositionalChessGraph[nodes,edges];

g3 = showPositionalChessGraph[nodes,edges,
NodeLayout->'"LinearV",EdgelLayout->"Chessboard",
ShowFrame->True] ;

GraphicsGrid[{{gl,g2,g3}}]

Example 2. In the second example, the complete game between
Spassky and Fischer is processed. After extraction of the ordered
list of moves from the PGN game record, a list of valid chess
positions is generated by parsing all moves, and lists of nodes
and edges associated with each position are generated. Finally,
the position, node and edge data objects are used to analyze the
game graph-theoretically, specifically the connectedness, control
and defensiveness of white and black pieces are assessed as a
function of the ply during the game. The results of this analysis are
shown in Fig. 2.

(* ... load PGN file and extract the list of moves ...
*)
(* get list of game positions, nodes and edges *)
positions = getPositionsFromGamePGN [moves];
For[i=1,i<=Length[positions],i++,
nodes =
Append [nodes,getNodesFromPosition[positions[[1]1]]1];
edges =
Append[edges,getEdgesFromPosition[positions[[i]]]]
(* analyze all positions of game *)
For[i=1,i<=Length[positions],i++,
ne = Append[ne,getNumberOfEdges[edges[[i]],
State->"Simple'"]];
co = Append[co,getConnectedness[ne[[1]]]];
¢ = Append[c,getControl[nodes[[i]],edges[[i]1]11];
d = Append[d,getDefensiveness[nodes[[i]],

positions[[i111];

1;
(x ... display results ... *)
4. Impact

Although the game of chess with its finite and discrete spatio-
temporal makeup can be viewed as a prototypical example of a
network in graph theory, systematic studies of the vast number of
available chess game records within the powerful confines of graph
theory remains, to date, scarce, mainly due to the inherent diffi-
culties associated with the construction of chess graphs from PGN
game records, and the peculiar nature of positional chess graphs.
The ChessY toolbox attempts to bridge this gap, by providing a
basic set of data objects and functions for both the efficient parsing
of PGN records and the construction of positional chess graphs
associated with these records using Mathematica.

The computer algebra environment Mathematica was chosen as
its explorative, sandbox-like nature allows for an easy extension of
the tools provided in ChessY, as well as an almost limitless potential
for further examination of chess graphs by employing its numerical
and algebraic capabilities. To our best of knowledge, ChessY is the
first serious attempt to provide a coherent set of functions and
data structures for the construction, visualization and analysis of
chess graphs in Mathematica, and was already successfully utilized
in the analysis of chess games between Grandmasters and com-
puter players aimed at identifying and characterizing strategical
approaches used by humans and computer players [10].

The goal of ChessY is to provide an easy-to-use and expand-
able toolbox for researchers studying chess games in a graph-
theoretical context, and, thus, to facilitate the understanding of
the dynamical complexity inherently associated with this intrigu-
ing boardgame by making chess game records accessible to the
mathematical field of network analysis. With the choice of Math-
ematica as embedding platform, ChessY will hopefully stimulate
the consideration of new approaches for studying chess games
beyond a mere numerical analysis, towards more formal algebraic
and operator graph-theoretical avenues. Finally, by opening the
door to systematic graph-theoretical investigations, ChessY might
bring us closer to the ambitious goal of understanding the cog-
nitive processes at the heart of strategical thinking and decision
making, and the conception of more human-like computer chess



M. Rudolph-Lilith / SoftwareX 9 (2019) 39-43 43

algorithms beyond linear evaluation functions or sophisticated
adaptive searches in complex decision trees forming the concep-
tual basis of most contemporary chess programs.

5. Conclusions

The software package ChessY provides an easily accessible and
coherent set of functions and data structures for parsing PGN
records of chess games, as well as the construction, visualization
and analysis of positional chess graphs for the Mathematica en-
vironment [9]. Together with the unlimited explorative potential
of the latter, ChessY is a venue for the systematic numerical and
formal-algebraic study of chess games within the powerful con-
fines of graph theory.

Acknowledgments

The author wishes to thank Audrey “Hepburn” Le Reun for
valuable comments and stimulating discussions surrounding the
subject presented here. Moreover, the author wishes to thank JAG
Willow, CO Cain, S Hower and LS Dee for their valuable contribu-
tions to this study. Research supported in part by CNRS.

Conflict of interest

We wish to confirm that there are no known conflicts of interest
associated with this publication and there has been no significant
financial support for this work that could have influenced its out-
come.

References

[1

Watkins JJ. Across the Board: The Mathematics of Chessboard Problems.
Princeton University Press; 2004.
Benjamin A, Chartrand G, Zhang P. The Fascinating World of Graph Theory.
Princeton University Press; 2015.
Johnson K. On the domination chain of m by n chess graphs. (Master thesis),
Murray State University; 2018.
Lu W-L, Wang Y-S, Lin W-C. Chess evolution visualization. IEEE Trans Vis
Comput Graphics 2014;20:702-13.
World Chess Federation. Fédération Internationale des Echecs, FIDE, Hand-
book. http://www.fide.com/fide/handbook.htmI?id=207&view=article.

[6] Levy DNL. Computer Chess Compendium. Springer; 2009.

[7] Shannon C. Programming a computer for playing chess. Phil Mag

1950;41:256-75.

[8] Newman ME]. Networks: An Introduction. Oxford Univ. Press; 2010.

[9] Wolfram Mathematica. Wolfram research Inc.; 2016.
[10] Rudolph-Lilith M. How about a nice game of chess? IEEE Transactions on
Games 2018. submitted for publication.

2

3

[4

5


http://refhub.elsevier.com/S2352-7110(18)30168-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb1
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb2
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb2
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb2
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb3
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb3
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb3
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb4
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb4
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb4
http://www.fide.com/fide/handbook.html?id=207&view=article
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb6
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb7
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb8
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb10
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb10
http://refhub.elsevier.com/S2352-7110(18)30168-7/sb10

	ChessY: A Mathematica toolbox for the generation, visualization and analysis of positional chess graphs
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Performance evaluation

	Illustrative examples
	Impact
	Conclusions
	Acknowledgments
	Conflict of interest
	References


