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High-temperature series for the magnetic susceptibility and hypersusceptibility of the S = 1 /2 Heisenberg ferromagnet have been extended to 14 th order in x = J/kT for four common lattices. Hence improved estimates have been deduced for the critical points, xc = 0.2491(1) (fcc), 0.3968(2) (bcc), 0.596(1) (sc), 1.124(2) (diamond), as well as for the critical exponents, γ = 1.428(3) and ∆ = 1.814(6). The latter are distinct from the respective values for the classical (S = ∞) Heisenberg model, γ ≈ 1.40 and ∆ ≈ 1.77.

Introduction

The Heisenberg model is widely believed to be the most realistic model of ferromagnetism. The corresponding Hamiltonian is given by

Ĥ = -2J ij Ŝi • Ŝj + gµ B H N i=1 Ŝz i (1)
Here J is the exchange integral, J > 0, Ŝi stands for the spin operator for the i th lattice site, and the summation in the first instance is over all pairs of nearest-neighbor sites. Our consideration is limited to three-dimensional (3D) lattices; only such systems can order ferromagnetically. No exact solution has been found for the problem of statistical treatment of the Hamiltonian (1) in 3 dimensions. Among the approximate techniques it is particularly worth to mention the high-temperature series (HTS) expansion proposed by Kramers and put to practice by Opechowski [START_REF] Opechowski | On the exchange interaction in magnetic crystals[END_REF]. In the Kramers-Opechowski method a ferromagnet is viewed from a remote paramagnetic temperature range, high above the Curie point, T T C ∼ J/k. The magnetic equation of state, M (H, T ), is constructed in two stages. (I) The magnetization is expanded in powers of applied magnetic field,

M = χH -χ 3 H 3 + ... , (2) 
where χ is magnetic susceptibility, χ 3 is (magnetic) hypersusceptibility, etc. Only odd powers of H may enter, due to the time-reversal symmetry. The minus sign before χ 3 is introduced for convenience, in order to have χ 3 > 0. The term 'magnetic hypersusceptibility' is not widely used in the physics literature, but there is no better, more generally accepted name for χ 3 .

(II) Temperature dependence of χ, χ 3 , ... is presented as HTS,

χ = N g 2 µ 2 B 4kT ∞ n=0 a n 2 n n! x n (3) 
χ 3 = N g 4 µ 4 B 48(kT ) 3 ∞ n=0 b n 2 n n! x n (4) 
Here x = J/kT , a n and b n are integers obtainable exactly for any n, and the consideration has been restricted to S = 1 /2 for the rest of this work. In reality, finding a n and b n involves much computational effort and a n are known for n ≤ 14 in the best-studied cases (S = 1 /2 on the simple cubic and bcc lattices [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]), whereas the only information on b n was published more than half-a-century ago and limited to n ≤ 8 [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF]. My attention was drawn to χ 3 as I was seeking to evaluate Landau's coefficient [4], b = χ 3 /χ 4 , employed in a model equation of state proposed some time ago [START_REF] Kuz | min, Landau-type parametrization of the equation of state of a ferromagnet[END_REF]. This project necessitated an extension to n ≤ 14 of all HTS for χ 3 , as well as of that for χ on the fcc lattice, previously known to 12 th order [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]. I added to that 14 th -order series for the little studied diamond lattice.

After the extended HTS had been obtained, it became clear that b → 0 as T → T C and so my original intention could not be realized. The thrust of this work was then redirected toward the outstanding problems of Heisenberg ferromagnets. (I) The availability of two independent quantities, χ and χ 3 , enables one to determine all critical exponents as well as the critical point x c = J/kT C . The last complete revision of the critical exponents of the S = 1 /2 Heisenberg ferromagnet was undertaken more than half-a-century ago [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF]; it was based on 10 th -order HTS for χ (9 th -order in the case of the fcc lattice) and 8 th -order HTS for χ 3 . The latest partial revision, involving γ and x c , is nearly a quarter of a century old [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]; the analyzed HTS were of order 14 (sc and bcc lattices) and 12 (fcc). I emphasize the lag of the fcc series because they provide the better-converged estimates. (II) The lack of agreement between the critical exponents of the S = 1 /2 and the classical (S = ∞) Heisenberg models requires clarification.

This paper is organized as follows: after a brief description of the calculation of the coefficients (Section 2), the series are analyzed at some length in Section 3, followed by a Discussion (Section 4) and a Conclusion (Section 5).

Calculation of series coefficients

Table 1 contains the integers a n and b n entering in the HTS for χ and χ 3 , Eqs. (3) and (4), respectively, for four different lattice types and n ≤ 14. (The trivial zeroth-order factors, a 0 = b 0 = 1, are not included.) The calculations were performed by using the finite cluster technique as described by Baker et al. [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF]. The advantage of Baker's formulation of the method is that it is immediately suitable for the calculation of χ and χ 3 , as well as higher-order hypersusceptibilities, χ 5 , χ 7 etc. It should be noted that the calculation of b n , in addition to a n , involves no extra computational cost but a certain programming effort. The algorithm of Ref. [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF] consists of six stages, two of which (Nos. 4 and 6) are trivial.

(1) Generation of 603,927 free connected graphs with bonds and up to + 1 vertices, ≤ 14. This task was carried out by running sequentially the programs gen.f and sort.f provided by J. Oitmaa as a supplement to his book [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF]. Both programs were used essentially unchanged and only took a short time to run. The only modification was to extend the format of the symmetry number to 12 characters; this was necessary for the so-called star graphs, whose symmetry number equals ! (2) Computing the expansion coefficients A n and B n for each graph (leading to a n and b n , respectively). This proved to be the most time-consuming part of the entire project because an own, rather inefficient program had to be used. On the positive side, this stage of the calculation is carried out independently for each graph and is therefore massively parallelizable.

(3) Embedding all smaller graphs into a given graph. This was also done by using an own program that took about two months to run.

(5) Embedding all graphs into a crystal lattice was carried out by using J. Oitmaa's programs count.f and treecnt.f. The latter accelerates considerably the calculation in the case of tree graphs, as explained in Chapter 2.2 of Ref. [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF]; it was used (together with count.f and my own program selecting the non-tree graphs) for the lattices having high coordination numbers, bcc and fcc, where count.f is too slow. For the diamond structure, which is not a Bravais lattice, the program count.f was modified so as to allow for two differently coordinated sites.

Some of the values presented in Table 1 were compared and found consistent with earlier results. This concerns a n with n ≤ 14 (sc and bcc) and n ≤ 12 (fcc) previously computed by Oitmaa and Bornilla [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF] as well as b n with n ≤ 8 (sc, bcc, and fcc) obtained by Baker et al. [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF]. For the diamond structure, a test calculation of a n (n ≤ 12) was performed by J. Richter and R.O. Kuzian who used the Magdeburg HTS code [START_REF] Lohmann | Tenth-order high-temperature expansion for the susceptibility and the specific heat of spin-s Heisenberg models with arbitrary exchange patterns: Application to pyrochlore and kagome magnets[END_REF], now extended to 12 th order; the result was in agreement with Table 1.

Analysis of the Series

Padé approximants method: critical points x c

The technique has been known since the 1960s, a recent concise description can be found, e.g., in Ref. [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF]. It is based on the assumption that near T C the quantity of interest (in this case the susceptibility χ) depends on temperature as

χ ∼ (T -T C ) -γ , T ≈ T C , T > T C , (5) 
or, in terms of x, as

χ ∼ (x c -x) -γ , x ≈ x c , x < x c , (6) 
where γ is a constant called critical exponent. The symbol '∼' in the above expressions implies the presence of a prefactor that is nonzero at T C (or x c ) and may depend smoothly on T or x. One considers the inverse logarithmic derivative of χ(x),

χ(x) χ (x) = 1 γ (x c -x) , (7) 
and notes that this quantity has a simple zero at x = x c , where its derivative equals -1/γ. Computationally, one proceeds from Eq. ( 3), omitting the prefactor of the sum. (This prefactor is nonzero at T = T C and smooth in the vicinity of T C .) Now the lefthand side of Eq. ( 7) -a ratio of two polynomials of orders 14 and 13 -is re-expanded in powers of x. The result is a polynomial of order 13. One constructs a number of Padé approximants [n, d] to this result, n+d ≤ 13, and seeks for each of them the least positive root, x c . (A Padé approximant [n, d] is a ratio of two polynomials of orders n (numerator) and d (denominator); the reason for using Padé approximants is that they converge better than power series.) 

x c =        0.2491(1), fcc, 0.3968(2), bcc, 0.596(1), sc, 1.124(2), diamond. (8) 
From this point on x c will be regarded as a known quantity. The Padé technique also offers the possibility to find the critical exponent γ. To this end, derivatives of the just constructed approximants [n, d] should be evaluated at x = x c , cf. Eq. [START_REF] Lohmann | Tenth-order high-temperature expansion for the susceptibility and the specific heat of spin-s Heisenberg models with arbitrary exchange patterns: Application to pyrochlore and kagome magnets[END_REF]. The resulting Padé tables converge slowly and do not yield but rough estimates of γ (an example for the bcc lattice was given in Ref. [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF], Table 7.9). Several more sophisticated techniques allowing for a confluent correction term in χ(x) were tried out by Oitmaa & Bornilla [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]. These attempts resulted in no improvement and it was concluded that the amplitude of the confluent term was small. I therefore chose to use the more direct ratios method for the determination of γ (and ∆).

Ratios method: critical exponents γ and ∆

This a yet older technique dating back to the 1950s; a modern description can be found in Ref. [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF]. We begin with stating the method aimed at the determination of γ and regarding x c as already known. A central quantity here is the ratio of the n th coefficient in the HTS for χ, Eq. ( 3), to the preceding coefficient,

r n = 1 2n a n a n-1 . (9) 
If χ(x) obeys Eq. ( 6), the asymptotic behavior of r n for n large is given by

r n = 1 x c 1 + γ -1 n + O 1 n 2 . ( 10 
)
That is, for 1/n small, the r n -vs-1/n dependence is a straight line having an intercept of 1/x c and a slope of (γ -1)/x c . Thus, the slope yields γ immediately, since x c is already known. Graphic evidence for the fcc lattice is presented in Fig. 1a. The solid line is a linear fit through all the points, including the isolated point in the bottom-left corner, (0, x -1 c ), x c = 0.2491. The other points are (1/n, r n ), n ≥ 6, as found from Eq. ( 9) with a n from Table 1. Two factors contribute to the error in the determination of the slope of the fit: (i) imperfect alignment of the points, treated statistically even though the coordinates of all but one of them are known exactly; (ii) uncertainty in the ordinate of the bottomleft point, x -1 c , known approximately. At a later stage, as the slope is converted to γ, γ = 1 + x c × slope, the uncertainty in x c results in extra error (iii). The procedure used to determine γ in this work took into account all three sources of error.

First, the upper limit for γ was found by shifting the bottom-left point to its lowest possible position, by taking x c = 0.2492 instead of 0.2491. The standard least-squares technique was then applied, which yielded a slope of 1.7322 ± 0.0065, or a maximum slope of 1.7387. Finally, γ max was obtained by taking the maximum slope and the highest x c ,

γ max = 1 + 1.7387 × 0.2492 = 1.433 .
To find the lower bound for γ, x c was reduced to 0.2490, so that the bottom-left point in Fig. 1a rose to its highest possible position. The linear-fit slope was determined to be 1.7155 ± 0.0076, the minimum slope 1.7079. Hence

γ min = 1 + 1.7079 × 0.2490 = 1.425 .
Both estimates are summarized as

γ = 1.429(4) . ( 11 
)
Figure 1b is a ratios plot for χ 3 of the fcc lattice. In that case the ratios r n were de-fined by Eq. ( 9) with a n replaced by b n . Two modifications to Eq. ( 10) were necessary: (i) γ + 2∆ had to be substituted for γ and (ii) a term in 1/n 2 had to be included to allow for a non-negligible upward curvature. The latter fact bore little on the determination of ∆: a standard parabolic least-squares fitting routine was employed; the only output information used for further processing was the factor of 1/n (initial slope) and its standard deviation. The procedure of finding the mean value and error bar was essentially the same as the one described above for γ and resulted in γ + 2∆ = 5.062 [START_REF] Butera | N-vector spin models on the simple-cubic and the body-centered cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order β 21[END_REF] , whence, by Eq. ( 11),

2∆ = 3.633(17) . ( 12 
)
Ratios plots for the bcc lattice are shown in Fig. 2. The fit is a straight line in the upper panel, representing r n for χ, while it is a parabola in the lower panel, relevant to χ 3 . The determination of γ and ∆ was quite similar to that for the fcc lattice, albeit rather less accurate. The results are as follows:

γ = 1.420(11) , (13) 
2∆ = 3.613(26) . (14) 
Ratios plots for the lattices with lower coordination numbers (simple cubic and diamond) were too erratic to be reproduced here. 

Discussion

Table 3 containts the values of x c found in this work as well as those of earlier authors, deduced from shorter series. We observe that the estimates converge more rapidly and are more accurate -for a given number of terms in the HTS -for structures with higher coordination numbers, first and foremost, for the face-centered cubic lattice (Z = 12). This observation concerns to a yet higher extent the critical exponents and one may suggest that future efforts should be concentrated on the fcc lattice. To accelerate the convergence, one may even consider investigating lattices with yet higher Z, e.g., sc or fcc with equally strong exchange between first-and second-nearest neighbors (Z = 18) etc.

At the other end of the spectrum there is the diamond lattice, with Z = 4. A favorite object of study in the 1950s [START_REF] Rushbrooke | On the high-temperature susceptibility for the Heisenberg model of a ferromagnet[END_REF][START_REF] Rushbrooke | On the Curie points and high temperature susceptibilities of Heisenberg model ferromagnets[END_REF], this lattice was later abandoned, apparently due to lack of convergence. Now armed with an HTS of order 14, we observe that convergence does set in and we obtain a reasonably accurate estimate of the Curie temperature. It would be interesting to go further in this direction and investigate a 3D structure having a still lower coordination number, Z = 3. This can be constructed on the basis of the simple cubic lattice by assuming that only one-half of the pairs of nearest neighbors are exchange-coupled -those connected with bold lines in Fig. 3. The system with Z = 2 is trivial; it can only be a linear chain, with no magnetic order. The case of Z = 3 is non-trivial: ferromagnetic ordering may or may not take place; this certainly merits a special study. The middle part of Table 3 is less interesting. Here we faithfully reproduce the results of Ref. [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF], which is hardly surprising given that the authors already knew all a n with n ≤ 14.

Incidentally, the previous authors failed to appreciate the dependence of accuracy on Z. Thus, Baker et al. [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF] believed their x c to have the same 'error of perhaps 10 -3 ' for all lattices. In actual fact, their fcc result is clearly more accurate than that. Oitmaa and Bornilla did get a better precision for the bcc than for the simple cubic lattice, [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF] both HTS being known to 14 th order. Yet their fcc result was less accurate (because the HTS was of order 12) and so no clear trend could be observed.

Concluding the discussion of x c , the most accurate result is obtained for the fcc lattice. A comparison of the values deduced from HTS of orders 9 [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF], 12 [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF], and 14 (this work) reveals no systematic shift of x c , but rather a systematic decrease of the uncertainty. One can be reasonably confident of the result, x c = 0.2491(1). Turning now to the critical exponents γ and ∆, we note that the error intervals found for the fcc and bcc lattices [START_REF] Le Guillou | Critical exponents from field theory[END_REF][START_REF] Guida | Critical exponents of the N-vector model[END_REF][START_REF] Butera | N-vector spin models on the simple-cubic and the body-centered cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order β 21[END_REF][START_REF] Misguich | Specific heat of the S=½Heisenberg model on the kagome lattice: High-temperature series expansion analysis[END_REF] do overlap. Assuming that γ and ∆ are lattice-independent, one can narrow down the uncertainty limits to the intersection of the intervals for both lattices:

γ = 1.428(3) (15) 
and ∆ = 1.814 [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF]. ( 16)

Other critical exponents can be found from the scaling relations [START_REF] Stanley | Introduction to Phase Transitions and Critical Phenomena[END_REF], e.g.,

α = γ -2(∆ -1) = -0.200(15), (17) 
β = ∆ -γ = 0.386(9), etc. (18) 
The estimates [START_REF] Oitmaa | Diamond lattice Heisenberg antiferromagnet[END_REF]16) respect both the fcc and the bcc error bars [START_REF] Le Guillou | Critical exponents from field theory[END_REF][START_REF] Guida | Critical exponents of the N-vector model[END_REF][START_REF] Butera | N-vector spin models on the simple-cubic and the body-centered cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order β 21[END_REF][START_REF] Misguich | Specific heat of the S=½Heisenberg model on the kagome lattice: High-temperature series expansion analysis[END_REF] and, indeed, those obtained for the simple cubic and diamond lattices -too broad to be useful. The values [START_REF] Oitmaa | Diamond lattice Heisenberg antiferromagnet[END_REF]16) are in perfect agreement with the results of Ref. [START_REF] Baker | High-temperature expansions for the spin-½Heisenberg model[END_REF], deduced from much shorter series,

γ = 1.43(1) (19) 
and ∆ = 1.815 [START_REF] Oitmaa | Diamond lattice Heisenberg antiferromagnet[END_REF].

From the comparison of respective values one can conclude that extending the series by 5 orders (for fcc, which is decisive) has not resulted in any significant shift of the uncertainty intervals; they have just become narrower. In other word, the lower bounds have risen and the upper ones decreased. As a result, values of γ under 1.425 can be ruled out for the spin-½Heisenberg model. It is rather surprising that a discrepant result,

γ = 1.41(2), (21) 
should be deduced from series of intermediate length [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]. The discrepancy is hard to understand, given the good agreement of the critical points in Table 3. A careful perusal of Ref. [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF] makes an impression that the authors consciously sought agreement with what they believed to be the correct result, γ = 1.39 [START_REF] Le Guillou | Critical exponents from field theory[END_REF][START_REF] Guida | Critical exponents of the N-vector model[END_REF], as confessed on p. 167 of Ref. [START_REF] Oitmaa | Series Expansion Methods for Strongly Interacting Lattice Models[END_REF], whereas their own data yielded γ = 1.42 and even γ = 1.425, with a much smaller uncertainty than ±0.02.

Our most solid piece of evidence is Fig. 1a. By Eq. ( 10), the slope of the plot equals (γ -1) x -1 c , where x c is known rather precisely, cf. Table 3. In order to reconcile our slope, 0.43 x -1 c , with the 'expected' one, 0.39 x -1 c , one needs to account for the 10% discrepancy -a hard task because of the exact nature of the data plotted. Thus, the top-right point is at ( 1 6 , 914601 212684 ) and this is not likely to change in the centuries to come. The reader is invited to judge if he or she can see a 'considerable residual curvature' in the plot presented in Fig. 1a (the quotation is from Ref. [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]). In the absence of any reasonable explanation, one has to admit that the critical exponents of the spin-½Heisenberg ferromagnet [START_REF] Oitmaa | Diamond lattice Heisenberg antiferromagnet[END_REF]16) differ from those of the classical (S = ∞) Heisenberg model [START_REF] Butera | N-vector spin models on the simple-cubic and the body-centered cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order β 21[END_REF], γ = 1.404(4), sc, 1.396(3), bcc,

and ∆ = 1.775 [START_REF] Lohmann | Tenth-order high-temperature expansion for the susceptibility and the specific heat of spin-s Heisenberg models with arbitrary exchange patterns: Application to pyrochlore and kagome magnets[END_REF], sc, 1.765 [START_REF] Kuz | min, Landau-type parametrization of the equation of state of a ferromagnet[END_REF], bcc.

(

) 23 
where the values of ∆ (23) have been obtained from the ν's of Ref. [START_REF] Butera | N-vector spin models on the simple-cubic and the body-centered cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order β 21[END_REF] by using the scaling relation, ∆ = 1 2 (γ + 3ν). In other words, the critical exponents of the 3D Heisenberg model are not independent of the quantum number S. The importance of this statement is such that it should be put to a test as a matter of priority -by extending the HTS and concentrating on the fcc lattice. The only reason why the present series are limited to terms in x 14 is the author's inexpert programming. An example of a 17 th -order HTS was published as long as 15 years ago [START_REF] Misguich | Specific heat of the S=½Heisenberg model on the kagome lattice: High-temperature series expansion analysis[END_REF], unfortunately, for the specific heat of a 2D lattice only. Nowadays, an expert calculation should be able to go still further.

Conclusion

High-temperature series for the susceptibility and hypersusceptibility of the spin-½Heisenberg ferromagnet have been carried to 14 th order in x = J/kT for four common cubic lattices. Critical points x c and critical exponents γ and ∆ have been determined with improved precision. The accuracy is best for the lattice having the highest coordination number -fcc (Z = 12). There are realistic prospects of further improvement of the precision by way of (i) extending the series to order 18 and/or (ii) going over to lattices with higher coordination numbers, such as sc or fcc with 1 st and 2 nd nearest neighbors (Z = 18).

As regards the more loosely-packed structures, convincing evidence has been obtained that the diamond lattice orders ferromagnetically at x c = 1.124 [START_REF] Oitmaa | High-temperature-series study of the spin-½Heisenberg ferromagnet[END_REF]. It is proposed to extend the analysis to a yet more open structure (Z = 3) shown in Fig. 3.
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 1 Figure 1. Ratios plots for the face-centered cubic lattice.

Figure 2 .

 2 Figure 2. Ratios plots for the body-centered cubic lattice.

Figure 3 .

 3 Figure 3. Proposed semi-simple cubic structure, space group I2 1 3 (T 5 ).

Table 1 .

 1 Numerators of the coefficients of the series (3) and (4).

		n	a n	b n
	fcc	1	12
		2	240
		3	6624	160
		4	234 720	11 002
		5	10 208 832	835 122
		6	526 810 176	69 686 304
		7	31 434 585 600	6 349 093 780
		8	2 127 785 025 024	627 660 411 821
		9	161 064 469 168 128	66 948 437 049 348
		10	13 483 480 670 745 600	7 666 174 328 536 528
		11	1 237 073 710 591 635 456	938 215 064 459 053 977
		12	123 437 675 536 945 410 048	122 232 651 377 642 004 885
		13	13 308 034 251 238 570 770 432	16 892 421 264 218 383 510 585
		14	1 541 580 126 710 320 881 573 888	2 468 497 065 918 097 771 353 243
	bcc	1	8
		2	96
		3	1664	42
		4	36 800	1 829
		5	1 008 768	86 898
		6	32 626 560	4 536 371
		7	1 221 399 040	258 696 566
		8	51 734 584 320	16 010 149 161
		9	2 459 086 364 672	1 069 341 645 185
		10	129 082 499 311 616	76 689 197 386 625
		11	7 432 690 738 003 968	5 879 364 215 165 460
		12	464 885 622 793 134 080	479 898 240 528 262 455
		13	31 456 185 663 820 136 448	41 557 856 836 061 600 710
		14	2 284 815 238 218 471 260 160	3 805 742 298 941 631 538 200
	sc	1	6
		2	48
		3	528	15
		4	7920	451
		5	149 856	14 443
		6	3 169 248	506 983
		7	77 046 528	19 391 190
		8	2 231 209 728	803 563 967
		9	71 938 507 776	35 917 588 432
		10	2 446 325 534 208	1 722 930 773 726
		11	92 886 269 386 752	88 283 216 264 288
		12	3 995 799 894 239 232	4 813 925 139 748 448
		13	180 512 165 153 832 960	278 435 490 119 778 459
		14	8 443 006 907 441 565 696	17 025 958 848 008 604 254
	diamond	1	4
		2	16
		3	64
		4	736	49
		5	11 584	858
		6	43 072	16 479
		7	-607 232	323 727
		8	50 435 584	6 921 055
		9	1 204 185 088	176 780 333
		10	-38 340 475 904	4 611 877 660
		11	-563 767 881 728	106 623 185 145
		12	73 927 460 466 688	3 130 312 628 383
		13	311 178 505 633 792	133 547 209 652 518
		14	-151 984 023 599 341 568	3 703 926 000 353 837

Table 2 .

 2 Padé matrices of the critical point xc.

	lattice	d	n = 4	5	6	7
	fcc	4	0.24921	0.24894	0.24903	0.24907
		5	0.24367	0.24903	0.24910	0.24909
		6	0.24897	0.24907	0.24909	0.24914
		7	0.24918	0.24908	0.24908	-
	bcc	4	0.3953	0.3958	0.3969	0.3968
		5	0.3971	0.3968	0.3968	0.3969
		6	0.3967	0.3968	0.3968	0.3968
		7	0.3969	0.3970	0.3968	-
	sc	4	0.5964	0.5956	0.5950	0.5948
		5	0.5950	0.5949	0.5955	0.5957
		6	0.5949	0.5950	0.5957	0.5950
		7	0.5973	0.5965	0.5963	-
	diamond	4	1.107	1.054	1.107	1.142
		5	1.073	1.098	1.125	1.123
		6	1.333	1.149	1.123	1.124
		7	1.815	1.074	1.125	-

The so obtained approximate values of x c , for 4 ≤ n ≤ 7 and 4 ≤ d ≤ 7, are collected in

Table 2 .

 2 One can see them converge as n and d increase. The limits are estimated as follows:

Table 3 .

 3 Values of xc from various sources.

	lattice	Z	x c [3]	x c [2]	x c (this work)
	fcc	12	0.2492(10) 0.2490(4)	0.2491(1)
	bcc	8	0.3963(10) 0.3968(2)	0.3968(2)
	sc	6	0.5972(10) 0.5960(5)	0.596(1)
	diamond	4	-	-	1.124(2)
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Note added in proof

After this Letter had been submitted, J. Oitmaa brought to my attention a recent paper of his [15] containing data equivalent to the a n 's of Table 1 for the diamond lattice.