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ABSTRACT

Surface soil moisture (SSM) controls the the energy and

water transfers between soil, vegetation and atmosphere.

A better representation of this variable in Land Surface

Models (LSMs) could reduce significantly the uncertain-

ties associated to future climate predictions. Thanks to its

large spatio-temporal coverage, the new ESA CCI multi-

instruments dataset offers a good opportunity to benchmark

LSMs and improve their parametrization with data assimi-

lation techniques. In this study, the ESA CCI surface soil

moisture (SSM) combined product is confronted with the

different simulated soil layers of the ORCHIDEE LSM (the

continental part of the IPSL earth system model), in order to

assess whether it can be used to improve the model using data

assimilation.

Index Terms— surface soil moisture, land surface model,

satellite data, sensing depth

1. INTRODUCTION

Soil moisture plays an important role in the water, carbon

and energy exchanges between the land surface and the at-

mosphere. It is a vital variable which needs to be better un-

derstood and controlled since it links these critical cycles. In

particular, due to the coupling between water and carbon cy-

cles at the leaf level, it is a major constraint for the assimi-

lation of carbon by the vegetation through photosynthesis. A

better representation of this variable in Land Surface Mod-

els (LSMs) could significantly reduce the uncertainties asso-

ciated to future climate predictions.

To improve the representation of such variables in LSMs,

the model can be confronted with the observations. These

observations can be measured in situ or remotely, for exam-

ple, using satellites. Since soil moisture is difficult to ob-

serve at large scales due to its high spatial and temporal vari-

ability, satellite data can provide a much needed consistent

global dataset. The new ESA CCI multi-instruments dataset

has a large spatio-temporal coverage. This offers a good op-

portunity to benchmark LSMs and, through data assimilation

techniques, to improve their parametrizations. When work-

ing with this product however, we must be wary of its multi-

constellation nature.

Various studies have already evaluated the quality of the

ESA CCI SM product at a global scale. Liu et al. (2011 [1],

2012 [2]) showed that merging active and passive products

increases the number of observations while minimally chang-

ing the accuracy. The final blended product was shown to

carry the relative dynamics of the original passive and active

microwave retrievals. Subsequently, Dorigo et al. (2012 [3])

revealed that most of the major trends in the blended prod-

uct between 1988 and 2010 were also visible in modeled and

in situ measured dataset. Albergel et al. (2013 [4]) demon-

strated that product performed well in capturing the annual

cycle of SSM and its short-term variability by comparing it

to re-analysis and in situ measurements. Loew et al. (2013

[5]) undertook the task of summarizing potential and limita-

tions of the ESA CCI SM product for model evaluation. They

mentioned its promising use for data assimilation in LSMs.

Finally, Dorigo et al. (2015 [6], 2017 [7]) validated previous

studies by indicating that the merged product has a similar

or better quality than the individual products and that quality

shows an upward trend over time by confronting it to a large

number of in situ observations.

Further studies have already shown the potential of such

product to study land-atmosphere-biosphere interactions ([8],

[9]) and agree that assimilating together active and passive

microwave observations give maximum accuracy and cover-

age to improve LSM ([10]). These results give encourag-

ing prospects on the ability of the ESA CCI SM product to

improve land surface modeling with data assimilation tech-

niques.

The comparison of observations with the model output is

a mandatory first step in data assimilation. This vital step

allows us to firstly assess whether the physical properties in

both the observations and model output are comparable, and

secondly to explore their different weaknesses and errors. It

is a method used to evaluate whether the observations have

the ability to improve the model through assimilation or not.

When comparing the ESA CCI SM satellite data and the

output from a LSM, three limitations need to be kept in mind:

• SSM variability is largely driven by precipitation and

therefore the meteorological forcing data used to run

the LSM might have a greater weight on the compari-

son scores than the parametrisation of the model itself.
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• Satellite retrievals depend heavily on surface and sub-

surface properties such as soil texture, humidity and

vegetation. These properties lead to spatially inhomo-

geneous datasets.

• The sampling of satellite observations is not contin-

uous. In addition, the ESA CCI SM product has a

multi-instruments constitution where each indepen-

dent dataset has been rescaled in order to be merged

together. Combining different instruments from differ-

ent periods adds temporal inhomogeneity to the final

dataset and thus complications for model evaluations.

Some studies have already developed methodologies to

compare satellite products and model outputs in order to as-

sess their potential for assimilation ([11], [12], [13]). Few

studies have taken the next step and assimilated satellite prod-

ucts into the model. One such study is the pioneering work of

Scholze et al. (2015 [14]) where satellite soil moisture data is

assimilated together with atmospheric CO2 data. They show

in their study the high potential of using soil moisture data to

constrain the carbon cycle.

In this study, we compare the ESA CCI SM product with

the process-based global LSM ORCHIDEE (ORganising Car-

bon and Hydrology In Dynamic EcosystEm, [15]) highlight-

ing the weaknesses and strengths of both of them, and as-

sessing whether the ESA CCI SM product can be used for

data assimilation. ORCHIDEE has been recently endowed

with a new 11 layers hydrological model which allows to re-

fine the representation of soil water transfers. This discretiza-

tion scheme offers a unique opportunity to match as closely

as possible the representative depth of the satellite and assess

its effect. It also allows us to calculate the correlation of the

different layers of the model with the ESA CCI SM product

in order to understand the effects of the satellite signal repre-

sentative depth on the comparison scores.

2. METHODOLOGY & RESULTS

The ORCHIDEE land surface model ([16], [17], [15]) simu-

lates the different processes governing water, carbon and en-

ergy fluxes coming from the biosphere. It has a high spatial

resolution flexibility and a temporal resolution of 30 minutes.

ORCHIDEE is ideally suited for being confronted to remotely

sensed soil moisture products due to its high vertical resolu-

tion in the representation of soil moisture ([18], [19], [20]).

It’s recently improved hydrological scheme is resolved by the

Richards equation over the first 2 meters of soil with an 11

layers discretization. The Richards equation gives a diffusion

of the water front corresponding to the soil properties chosen

and thus a relation between SM at different levels correspond-

ing to these properties.

This new hydrological model of 11 soil layers consists

in improving the interaction of the root profile with the soil

(a) Temporal correlations (using the first 4 layers of

ORCHIDEE)

(b) Standard deviation between correlation coefficients

taken at different depths in ORCHIDEE

(c) Layer in ORCHIDEE offering the best agreement

Fig. 1. Results from a correlation analysis performed between

ORCHIDEE and the ESA CCI product for each grid point for

the period 2007-2010.
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moisture distribution at different depths and refining the rep-

resentation of infiltration processes. In each grid box, three

soil moisture profiles are simulated. They share the same soil

texture and structure, taken from the Zobler map (Post and

Zobler, http://www.daac.ornl.gov), but differ in their vegeta-

tion distribution. The 13 plant functional types represented

by ORCHIDEE are distributed over the 3 columns: bare soil,

low vegetation and high vegetation. As each is characterized

by different root profiles, the soil moisture in each column

will develop its own profile. In the analysis presented here

only the grid box average soil moisture profile representative

of the whole grid scale will be considered.

From the eleven soil moisture layers simulated by OR-

CHIDEE, the first 4 layers spanning the top 2.151cm of soil

are most closely related to the instruments theoretical global

mean sensing depth of 2cm ([21]). Therefore, it should be

the closest in terms of relative dynamics of the ESA CCI SM

product and is defined as the simulated SSM. The first 6 lay-

ers on the other hand span the top 9.189cm of the soil which

is closer the GLDAS-1-Noah model depth simulation (the

GLDAS-1-Noah model is used to merge the different prod-

ucts used to form ESA CCI SM data). This raises the question

of how to link observations to model variables, in other words

how to define the observation operator which will be used in

the assimilation process.

Focusing on period of relative homogeneity, as a prelim-

inary experiment, we pursued a comparison analysis by as-

sessing effects of depth in the model estimates. The period

tested, 2007-2010, was selected due to a couple of factors.

Firstly, the ESA-CCI SM product has been shown to perform

best in later years when more satellites have been integrated

improving spatial and temporal coverage [7]). Secondly, this

period provided an overlap with the meteorological data used

to drive the model.

The top plot in Figure 1 shows the correlation between the

ESA CCI SM product and ORCHIDEE simulated water con-

tent integrated over the first 4 layers i.e, the soil moisture in

top first 2cms which, as mentioned previously, should be the

closest theoretically. Temporal correlations tend to be high

over areas where remote sensing methods are known to be ef-

ficient. Poorer results are found over desert, mountainous and

frozen areas. This may to be due to the fact that it is difficult

to measure SSM by remote-sensing over these regions. Over

these regions, we may be seeing the effect of mixing differ-

ent sensors with different sensing depths to make up the ESA

CCI product.

Areas with low correlations between the model and obser-

vations may also be due to issues with the model itself. It is

possible that uncertainties due to forcing data or model struc-

ture affect the correlation scores. In this way, observations

can sometimes be used to highlight structural issues in the

model without even needing to go through data assimilation.

To estimate the influence of the depth chosen in OR-

CHIDEE on the correlation scores, Figure1b) considers the

standard deviation of the correlation scores computed over all

the layers of ORCHIDEE. We can see a very low variation

in the correlation scores over the areas that have a strong

correlation. SM is less homogeneous in the Saharan region

and in central Asia. These regions correspond to the areas of

low or negative correlation seeing in Figure 1a).

Finally, Figure 1c) shows the depth offering the best

agreement between the ESA CCI SM data and the OR-

CHIDEE model. We can see for example in northern Russia,

the ESA CCI SM product agrees better when large depth is

used. This is an area with negative temporal correlation and

a high standard deviation between the different depths. In

Europe, where the temporal correlation are quite strong, a

shallower depth is required. However, we must be careful

making conclusions about the representative depth in areas

with a low standard deviation between layers - in these cases

it is likely that any depth would work.

These experiments have used the full data. Results were

found to be nearly identical when using the anomalies (re-

moving the effects of seasonality from the data). This shows

that seasonality does not have an effect on representative

depth of the satellite. The low variation of correlations found

at the different depths of the model suggests that, at a daily

scale, the dynamics between the satellite data and the model

output are similar at the all levels.

Further experiments are needed to understand better the

representative depth of the observations in order to determine

the optimal way to assimilate the ESA CCI SM product. A

next step could be to try a different metric to see whether this

is more affected by the different depths.
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