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Allocating marketing resources over social networks: A long-term analysis

Vineeth S. Varma, Samson Lasaulce, Julien Mounthanyvong and Irinel-Constantin Morărescu

Abstract— In this paper, we consider a network of consumers
who are under the combined influence of their neighbors and
external influencing entities (the marketers). The consumers’
opinion follows a hybrid dynamics whose opinion jumps are
due to the marketing campaigns. By using the relevant static
game model proposed recently in [1], we prove that although
the marketers are in competition and therefore create tension in
the network, the network reaches a consensus. Exploiting this
key result, we propose a coopetition marketing strategy which
combines the one-shot Nash equilibrium actions and a policy
of no advertising. Under reasonable sufficient conditions, it is
proved that the proposed coopetition strategy profile Pareto-
dominates the one-shot Nash equilibrium strategy. This is a
very encouraging result to tackle the much more challenging
problem of designing Pareto-optimal and equilibrium strategies
for the considered dynamical marketing game.

Index Terms— Social networks, resource allocation

I. INTRODUCTION

In many domains such as in economics and politics, people
(e.g., consumers or voters) are both influenced by their
acquaintances, friends, or relatives and by external entities
(e.g., marketers or candidates); these influencers are called
in a generic manner marketers. These external entities are
currently better realizing the potential of acquiring and ex-
ploiting some knowledge about the corresponding dynamics
of a digital social network to design good strategies. Targeted
and viral marketing constitute good examples illustrating this
tendency [2]. To provide a specific example, quite recently,
some firms have been starting to remunerate popular bloggers
or YouTubers to promote some goods in their videos. The
main purpose of the present paper is precisely to study
the evolution of people opinion when they are under the
combined influence of their ”neighbors” (who may have
different degrees of influence) and marketers (who typically
have diverging interests). Whereas opinion dynamics (OD)
has been attracting a lot of attention from researchers, in
the control community, in particular, the problem of con-
trolling opinion dynamics has been left almost unexplored.
Additionally, if one considers the problem in presence of
multiple controllers instead of one, then only a couple of
formal works seem to be available.

Among relevant works on controlled OD, we find [3],
[4] in which the authors look at the role of controlling
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(from a single controller) a small number of agents of the
network to enforce consensus. We also find recent attempts
to control the discrete-time dynamics of opinions such that
as many agents as possible reach a certain set after a finite
number of influence instances [5]. The classical literature
on non-cooperative games between marketers assumes a
homogeneous population of consumers [6], [7], [8]. For the
scenario which directly concerns the present work, namely
the scenario that involves multiple controllers or marketers
influencing consumers over social media, the closest works
are given by [9] and [1]. In [9], the authors consider
multiple influential entities competing to control the opinion
of consumers under a game-theoretical setting. This work
assumes an undirected graph and a (specific) voter model for
OD resulting in strategies that are independent of the node
centrality (i.e., the agent influence power). On the other hand,
in [1], the authors use the node centrality to define the agent
influence power and show how the marketers can exploit
this quantity to allocate their marketing budget over the
agents, and therefore ”optimize” their return of investment
in terms of market share. The authors then use a static or
one-shot game model and conduct the corresponding Nash
equilibrium (NE) analysis. The obtained results clearly show
the benefit of designing target marketing strategies by using
the available knowledge about the graph of the network of
agents. However, this interesting analysis is incomplete as it
is assumed that each marketer makes decisions independently
from campaign to campaign. Moreover, when the marketers
implement the derived one-shot NE strategies, one does not
know about the long-term behavior of the marketers. Re-
markably, a long-term analysis, as conducted in the present
letter, reveals that the marketers may have an interest in
stopping to invest and therefore influence the consumers and
accept to operate at a network equilibrium point in terms of
market shares.

Notation. Let R≥0 := [0,∞) denote the set of non-
negative real numbers. If f(t) is a lower semi-continuous
function at t0, we use the notation f(t+0 ) to imply f(t+0 ) :=
limt→t0,t>t0 f(t). Since we are concerned with a duopoly
in this work, for ease of exposition, we will denote by −i
when i ∈ {1, 2} is a player index, to refer to the index of
the other player, i.e. −i := 1 + i mod 2.

II. PROPOSED PROBLEM FORMULATION

We assume the presence of two marketers who want to
capture agents (who will also be called consumers) over
a common market. The set of consumers is denoted by
N = {1, 2, . . . , N}; these consumers are connected through
a social network. The opinion of Consumer n ∈ N at



time t ≥ 0 is represented by the scalar xn(t) ∈ (0, 1),
with x(t) ∈ X0 and X0 := (0, 1)N . The vector x(t) =
(x1(t), x2(t), . . . , xN (t))> is called the state of the network
at time t. In the absence of the marketers, the opinions
evolve based on a consensus model with Laplacian matrix
L over a graph (N , E). At given time instances which are
referred to as marketing campaigns, consumers undergo the
influence of the marketers. The set of marketing campaign
instances is denoted by T = {t1, t2, . . . , tK}, K being
the number of campaigns; the set of campaign indices is
denoted by K := {1, 2, . . . ,K}. The campaign duration for
Stage k ∈ {1, . . . ,K − 1} is given by Tk ∈ (0, tk+1 − tk]
and TK > 0 for Stage K. At each time instant tk ∈
T , Marketer i ∈ {1, 2} invests according to the (action)
vector ai(k) = (ai,1(k), . . . , ai,N (k))> ∈ Ai where the
corresponding action space for Marketer i is defined as:Ai ={
ai ∈ RN : ai,n ≥ 0,

∑N
n=1 ai,n ≤ Bi

}
, Bi > 0 being the

available budget for Marketer i. As a result of the marketing
campaigns, the OD for the consumers is assumed to obey
the following hybrid model{

ẋ(t) = −Lx(t) ∀t ∈ R \ T
x(t+k ) = Φ(x(tk), a1(k), a2(k)) ∀tk ∈ T , k ∈ K,

(1)
where Φ(x(tk), a1(k), a2(k)) =
(φ(x1(tk), a1,1(k), a2,1(k)), .., φ(xN (tk), a1,N (k), a2,N (k)))

>

and

φ(xn(tk), a1,n(k), a2,n(k)) =
xn(tk) + a1,n(k)

1 + a1,n(k) + a2,n(k)
. (2)

The assumed jump model has been proposed in [1] and
it is justified therein by an axiomatic approach. In fact,
it can also be justified by other good arguments e.g., by
probabilistic arguments [10] or from an economic resource
allocation point of view [11]. The actions of the marketers
are assumed to be driven by their utility function. The stage
revenue or utility for Marketer i (that is, resulting from the
current campaign) for Campaign k ∈ K is assumed to be
given by the one-shot game model developed in [12] that is:

u1(x(t+k ), a1(k), a2(k)) = ρ(k)>x(t+k )− λ11>Na1(k)
u2(x(t+k ), a1(k), a2(k)) = ρ(k)>(1N − x(t+k ))− λ21>Na2(k)

(3)
where 1N is the column vector of N ones and λi ≥ 0

is a parameter that represents the cost of advertising for
Marketer i. Notice that the assumed utilities can be seen
as the result from an averaging effect over the opinion.
Indeed, in [12, Prop. 1], it is shown that one can write
that

∫ tk+Tk
tk

1>Nx(t)dt = ρ(k)>x(t+k ), where ρ(k) depends
on Tk and L. Now, if the utilities have to be related to the
final opinion only, observe that 1>Nx(tk + Tk) = ρ(k)x(t+k )
where ρ(k)> = 1>N exp(−L>Tk). These are two different
situation justifying the form of utilities in (3) in which only
the expression of ρ changes. We will refer to the latter key
quantity as the agent influence power for Consumer n over
Campaign k.

In [1], the authors suggest that a possible strategy is
that a marketer chooses, at each stage (or campaign), its

(unique) NE action associated with the static game defined
by
(
{1, 2},A1 ×A1, {ui}i∈{1,2}

)
. Here, to conduct a long-

term analysis of the problem, we consider a setting which
encompasses that model. Indeed, we consider long-term
utilities which result from averaging stage utilities over the
K stages. To define these utilities, we first define marketing
strategies. The marketing strategy for Marketer i is the
sequence of functions denoted by σi and defined by:

σi,k : Hk → Ai
h(k) 7→ ai(k)

(4)

where Hk = (X0 × A1 × A2)k−1 is the set of possible
histories of the long-term game at stage k and h(k) =
(x(t1), a1(1), a2(1), . . . , x(tk−1), a1(k − 1), a2(k − 1)) is
the history realization at stage k. The long-term utility or
total net revenue for Marketer i is then given by:

Ui(σ1, σ2) =
1

K

K∑
k=1

ui(x(tk), a1(k), a2(k)). (5)

One of the goals of this paper is to design good marketing
strategies whose performance are measured in terms of long-
term utility. Notice that the problem under consideration is a
hybrid dynamic game with causal closed-loop feedback and
perfect monitoring. Both the characterization of equilibrium
utilities and the determination of good strategies for such
game models is known to be non-trivial. One big difference
between the present letter and [1] is as follows. For the
one-shot game, expressing the best-responses is shown to be
possible in the latter and thus, by intersection, the one-shot
Nash equilibrium actions are obtained. This is not possible
to do so when it comes to strategies, which are (possibly
infinite) sequences of functions. In this paper, we make the
first step into solving this problem by analyzing the long-term
performance of the repeated NE strategy and by exhibiting a
feasible strategy which outperforms the one-shot NE strategy.

III. PERFORMANCE ANALYSIS OF THE
ONE-SHOT GAME MARKETING STRATEGY

From (1), it is seen that the continuous-time component
of the considered hybrid dynamical system corresponds to a
consensus model. On the other hand, the jumps associated
with the discrete-time part are a result of the choices made by
the decision-makers (namely, the two marketers) who have
non-aligned utilities. In fact, if the costs of advertising are
zero, each stage game is strictly zero-sum.Therefore, in the
presence of external influencers who have diverging interests
and impact the dynamics with an infinite number of jumps,
it is not clear whether the jumps will vanish and a consensus
will emerge. Remarkably, it is possible to show that when
the marketers choose the action corresponding to the NE
of each stage game, the network state stabilizes to a value
and this in the presence of marketers in interaction) whose
expression is very simple and elegant. For this, we first make
the following observations. Even if the number of marketing
campaign would be arbitrarily large, the marketers would
not use all of it. This is because, by construction of the



utility, strong influencing actions also involve a cost, which
naturally regularizes the behavior of the marketer. In fact,
it is possible to exhibit a budget threshold above which the
marketers have an interest in using the extra budget. It turns
out that assuming the available budget is above this threshold,
it becomes possible to re-express the repeated one-shot NE
strategy to prove the convergence of the network state as
stated in the theorem provided further.

Lemma 1. Let

Xn :=

{
y ∈ R : y > 1− λ1

ρn
, y <

λ2
ρn

}
(6)

and

X†n :=

{
y ∈ R : y > 1− (1− η)ρn

λ1 + λ2
, y <

ηρn
λ1 + λ2

}
, (7)

where

η :=
λ2

λ1 + λ2
. (8)

Assume that the budget for each agent satisfies the following
relation

Bi ≥
∑
n∈N

max

{
0,

√
ρn
λi
− 1,

ρn
λ1 + λ2

− 1

}
. (9)

Then, for each n ∈ V , the stage game NE expresses as
follows.

1) When ρn
λ1+λ2

≤ 1:

(a?1,n, a
?
2,n) =

(0, 0) if xn(tk) ∈ Xn

(0,
√

ρn
λ2
xn(tk)− 1) if xn(tk) ≥ maxXn

(
√

ρn
λ1

(1− xn(tk))− 1, 0) if xn(tk) ≤ minXn.

(10)
2) When ρn

λ1+λ2
> 1:

a?1,n =
ρnη
λ2+λ1

− xn(tk) if xn(tk) ∈ X†n
0 if xn(tk) ≥ supX†n√

ρn
λ1

(1− xn(tk))− 1 if xn(tk) ≤ inf X†n
(11)

and

a?2,n =

=


ρn(1−η)
λ2+λ1

− (1− xn(tk)) if xn(tk) ∈ X†n
0 if xn(tk) ≤ inf X†n√

ρn
λ2
xn(tk)− 1) if xn(tk) ≥ supX†n.

(12)

Proof: From [1], we know that the best response for
player i to action a−i by the other player is given by

BRi = max

{
0,

√
ρn(a0,n;−i + a−i,n)

µi + λi
− 1− a−i,n

}
(13)

where µi is a common constant for all n ∈ V , and is a

Lagrange multiplier which ensures that the budget con-
straint

∑N
n=1 ai,n ≤ Bi is satisfied. Proposition 2 in [1]

shows that for each n ∈ V , the NE (a?1,n, a
?
2,n) is given by

• (y, 0) (or (0, y)) if ∃y ∈ [0,∞] such that (13) is satisfied
by one of these pairs,

• or (a?1,n, a
?
2,n) ∈ (0,∞)× (0,∞) and is given by

a?i,n =

(
ki

ki + k−i

)2

k−iρn − a0,n;i, (14)

where ki = 1
λi+µi

and µi is a common constant for all
n ∈ V such that

∑N
n=1 ai,n ≤ Bi.

In the absence of budget constraints, we are able to set
µi = 0 for (13) and for Case 2 of Lemma 1. We then show
that the resulting actions respect the budget constraint when
Bi satisfies (9).

∑N
n=1 ai,n ≤ Bi. Therefore (14) yields

a?i,n =

(
1

λi + λ−i

)2

λ−iρn − a0,n;i. (15)

Note that ρn
λ1+λ2

≤ 1 ⇒ X̄n 6= ∅ and X†n = ∅ which
corresponds to Case 1 of Lemma 1; while ρn

λ1+λ2
> 1 ⇒

X̄n = ∅ and X†n 6= ∅ corresponding to Case 2 of Lemma 1.
In case 1, we find that (14) will never have positive actions
for both players simultaneously for any xn(tk) ∈ [0, 1] (note
that a0,n;1 = xn(tk) and a0,n;2 = 1 − xn(tk)). Therefore
the only possible solutions are as given in Case 1 of Lemma
1 by looking at (13) with one action set to 0. On the other
hand, Case 2 of Lemma 1 is possible when xn(tk) belongs
to the open interval X†n. Outside this interval, we take Case 1
of Lemma 1 again to get the final results. The largest action
that can be taken under case 2 is bounded by

sup

{
ρnη

λ1 + λ2
− xn : xn ∈ X†n

}
which is less than ρn

λ1+λ2
− 1 since η < 1 and inf X†n =

1− (1−η)ρn
λ1+λ2

. Under Case 1, the maximum is simply
√

ρnη
λi
−1.

Applying the same logic for all agents we get that the total
budget is always less than Bi if Bi respects (9).

We will refer to the strategy associated with playing the
one-shot NE at every stage as σ?i . Exploiting the above result,
the following theorem can be proven.

Theorem 1. Let ρmax := mink∈Kmaxn∈N ρn(k). Assume
Marketer i, i ∈ {1, 2}, implements the marketing strategy σ?i .
Assume the graph associated with the matrix L to be strongly
connected. Then the dynamical system (1) has at least one
(network) equilibrium x∗ which verifies the following:
• If ρmax

λ1+λ2
> 1, then x∗ = η1N is the unique network

equilibrium.
• If ρmax

λ1+λ2
≤ 1, then any x∗ = γ1N is a network

equilibrium, with γ ∈ Xmax, where Xmax is defined
by replacing ρn with ρmax in (6).

Proof: Our proof is structured as follows. First, we
show that if ρmax

λ1+λ2
≤ 1 any x∗ ∈ X̄max is a network

equilibrium. Next, we show that if ρmax

λ1+λ2
> 1, ||x(tk+1) −

η1N ||∞ < ||x(tk)− η1N ||∞ for all x(tk) 6= η1N implying



convergence to η1N which is the unique equilibrium.
Since the flow dynamics of (1) are basically consensus type
dynamics, we know that γ1N is a network equilibrium for
any γ ∈ R for the part ẋ = −Lx. If γ1N = Φ(γ1N , a

?
1, a

?
2),

then we know that γ1N is a network equilibrium.
Case 1: When ρmax

λ1+λ2
> 1: This implies that for any stage

k, we have at least one m such that ρm
λ1+λ2

> 1. From Lemma
1, we know that this implies X†n 6= ∅. Therefore, the actions
ai,m(k) are never simultaneously 0. If xm(tk) ∈ X†m, we
have

xm(t+k ) =
xm(tk)+

ρmη
λ2+λ1

−xn(tk)

1+ ρmη
λ2+λ1

−xn(tk)+ ρm(1−η)
λ2+λ1

−(1−xm(tk))

= ρmη
ρmη+ρm(1−η) = η

(16)

using (11) and (12). If xm(tk) /∈ X†m, we have exactly one
of the players’ actions non-zero which means that it is not a
network equilibrium.

For any n such that ρn
λ1+λ2

≤ 1, we know that a1,n =

a2,n = 0 when xn(tk) ∈ Xn from (10). However, we can
easily show that η ∈ Xn. First, we see

maxXn =
λ2
ρn

=
η(λ1 + λ2)

ρn
> η.

Similar arguments can be used to show that η ≥ minXn.
This implies that xn(t+k ) = η if xn(tk) = η for any n
and k. Therefore, the only value of γ such that γ1N =
Φ(γ1N , a

?
1, a

?
2) is when γ = η.

Convergence of the hybrid dynamics: Rewriting the flow
dynamics, we have

||x(tk+1)− η1N ||∞ = || exp(−LTk)[x(t+k )− η1N ]||∞.
(17)

When xm(tk) ≤ inf X†m < η, a?2,m = 0 and we use (12)
and (11) to get

xm(t+k ) < 1−
√

(1− η)
λ1

λ1 + λ2
< η (18)

Thus, |xm(t+k )− η| < |xm(tk)− η| when xm(tk) /∈ X†n.
On the other hand, for n such that ρn

λ1+λ2
≤ 1 we have

the following. If xn(tk) ≤ minXn, a?2,n = 0 and we can
use (11) to solve for

xn(t+k ) =
xn(tk)+

√
ρnxn(tk)

λ1
−1

1+
√
ρnxn(tk)

λ1
−1

= 1−
√

λ1(1−xn(tk))
ρn

≤ 1−
√

(1−η)λ1

ρn

(19)

However, λ1

ρn
≥ 1−η and therefore xn(t+k ) ≤ η. By similar

calculations we can show that xn(t+k ) ≤ η when xn(tk) ≥
maxXn. This implies that |xn(t+k )−η| < |xn(tk)−η| when
xn(tk) /∈ X†n.

Coupled with (16), we have shown that |xm(t+k ) − η| <
|xm(tk)−η| unless xm(tm) = η. Therefore, unless xn(tk) =
η for all n, we have

|| exp(−LTk)[x(t+k )− η1N ]||∞ ≤ ||x(t+k )− η1N |2||∞
< ||x(tk)− η1N ||∞

(20)

On the other hand, if xm(tm) = η, either x(tk) = η1N or
we have at least one n such that xn(tk) 6= η. In the first
case, the network is already at equilibrium and in the other
case, we have

|| exp(−LTk)[x(t+k )− η1N ]||∞ < ||x(t+k )− η1N |2||∞
(21)

as exp(−LTk) will reduce the norm for all vectors unless it
is of the form γ1N . This concludes the proof of convergence.

Case 2: When ρmax

λ1+λ2
≤ 1, this implies that X†n = ∅ for

all n for some k by definition of ρmax. Additionally, we have
X̄max ⊂ X̄n for all n ∈ N . Therefore if xn(tk) ∈ X̄max,
we have a?2,n(k) = a?1,n(k) = 0, ∀n. This means that any
γ1N , γ ∈ Xmax is an equilibrium for the dynamics (1).

This theorem implies that if ρmax > λ1 + λ2, repeatedly
applying the strategy σ? will result in the dynamics (1)
having a unique asymptotically stable equilibrium. The next
section provides a coopetition strategy which exploits this
behavior to improve the long-term utilities of both marketers
simultaneously.

IV. PROPOSED COOPETITION STRATEGY

Here, we use the notion of coopetition to indicate that
although the marketers compete for the market of consumers,
they may have an interest in cooperating to a certain degree.
And the effect is that they both may have a better long-
term utility. We will refer to the underlying feature for
a coopetition strategy profile candidate as sustainability.
Sustainability is defined with respect to the performance
obtained when Marketer i, i ∈ {1, 2}, uses the strategy σ?i . A
coopetition strategy (CS) profile is thus said to be sustainable
if it Pareto-dominates the strategy profile associated with the
one-shot game Nash equilibrium actions. The main purpose
of this section is to propose a possible coopetition plan
and prove that it is sustainable under reasonable sufficient
conditions (which are met in the typical numerical setting of
Sec. V).

Definition 1 (Sustainability). The coopetition strategy profile
(σCS

1 , σCS
2 ) is said to be sustainable if

∀i ∈ {1, 2}, Ui(σCS
1 , σCS

2 ) ≥ Ui(σ?1 , σ?2). (22)

Mathematically, the notion of sustainability corresponds
to the notion of Pareto-dominance applied to two points
of interest. Here, we use the more precise term sustainable
to indicate that the players would accept to implement a
given coopetition plan if they obtain a better utility than by
using a purely competitive strategy. The proposed coopetition
plan comprises two phases, the first phase is composed of
all the stages k ∈ {1, 2, . . . ,K1} and the second phase
lasts for the remaining duration, i.e. k ∈ {K1 + 1, . . . ,K}.
During the first phase, both marketers repeatedly play the
one-shot NE. Then, the players switch to a non-aggressive
operating point such that no marketing is performed. This
is held for the duration of the second phase. The rationale
behind the proposed plan is that, since we have proved that
the market shares stabilize according to the ratio η, the



return of investment of advertising becomes negligible. The
proposed coopetition plan implies that for all i ∈ {1, 2},
ai(k) = a?i (k) for all k ∈ {1, 2, . . . ,K1} and ai(k) = 0 for
all k ∈ {K1 +1, . . . ,K}. Here a?i (k) is the action at the NE
of the one-shot game as given by Lemma 1. The proposed
coopetition plan is sustainable if both players improve their
utility with respect to repeatedly playing the NE of the one-
shot game.

Here x(tk) evolves according to (1) with ai(k) = a?i (k)
for all k, and x̃(tk) evolves with ai(k) = a?i (k) for all
k ≤ K1 and ai(k) = 0 for all k > K1. If we have that
xn(tk) converges to some point by K1 stages, such that
x(t+k ) = x(tk) for all k > K1, this implies that the utilities
for both players unilaterally improve by playing action 0.
However, this condition is very conservative as it requires all
the agents to converge to some opinion within a finite time.
The following proposition gives a more relaxed condition for
checking the feasibility of the proposed CS. When ρmax ≤
λ1 + λ2, the actions of the marketers if xn(tk) ∈ X̄max

for all n are going to be 0 and multiple equilibria may be
reached. This implies that even the strategy σ? results in a
non-aggressive behavior. The following proposition provides
a condition under which the proposed CS is sustainable for
the other case.

Proposition 1. When ρmax > λ1 + λ2, the sustainability
condition (22) of the proposed CS is satisfied if ∃δ ∈ [0, 1)
such that:
• xn(tK1+1) ∈ [η − δ, η + δ] for all n ∈ V ,
• δ < min{η, 1− η}

(
ρmax

λ1+λ2
− 1
)

,
•

δ ≤ λi
ρmaxλi

2ρ(k)T1N (λ1 + λ2)2

(
1 +

λi
2ρ(k)T1N

)−1
,

(23)
for all k ∈ {K1 + 1, . . . ,K}.

Proof: We can rewrite the condition (22) in the follow-
ing manner. If ∃K1 ∈ {0, 1, . . . ,K − 1} such that

∑K1

k=1 ui(x̃(tk), a?1(k), a?2(k)) +
∑K
k=K1+1 ui(x̃(tk),0,0)

≥
∑K
k=1 ui(x(tk), a?1(k), a?2(k))

(24)
for all i ∈ {1, 2}, then the CS is sustainable.
Since both policies play the NE for the first K1 stages,

the utility difference only arises from the remaining stages
and can be calculated as

∑K
k=K1+1 u1(x̃(tk),0,0)− ui(x(tk), a?1(k), a?2(k))

=
∑K
k=K1+1 ρ(k)(x̃(tk)− x(tk)) + λ1a

?
1(k)T1N .

(25)
Note that until tK1+1 both use the same actions and so

we have x̃(tK1+1) = x(tK1+1). Following which, we have
x̃(tk) = exp(−L(tk − tK1+1). Due the structure of L, we
have

||x̃(tk+1)− x∗1N ||∞ < ||x̃(tk)− x∗1N ||∞

for all k ∈ {K1+1, . . . ,K−1}. Since x(tk) ∈ [x∗−δ, x∗+δ],
each component of x̃(tk) is lower bounded by x∗ − δ.

For the dynamics of x(tk), we have the condition that
maxn∈V{|xn(tk+1)−x∗|} ≤ maxn∈V{|xn(tk)−x∗|} for all
k ∈ {K1 +1, . . . ,K−1}. This implies that each component
of x(tk) is upper bounded by x∗ + δ. Therefore we can
lower bound the term

∑K
k=K1+1 ρ(x̃(tk) − x(tk)) in (25)

with 2δ
∑K
k=K1+1 ρ(k)T1N and we have

∑K
k=K1+1 u1(x̃(tk),0,0)− ui(x(tk), a?1(k), a?2(k))

≥ −2δ
∑K
k=K1+1 ρ(k)T1N + λ1a

?
1(k)T1N .

(26)
If this value is greater than 0, the cooperation plan is

feasible by definition. While the actions associated to the
other agents may be 0, we always have ρmax > λ1 +
λ2. The action at any stage k > K1 is non-zero for at
least one agent m with ρm(k) ≥ ρmax and is given by
a?i,m(k) ≥ ρmλ−iρmax

(λ1+λ2)2
− xm(tk). From Theorem 1, we

know that ‖xn(t) − η‖∞ is strictly decreasing. Therefore
if xn(TK1

)− η ≤ δ for all n, then xn(TK1
)− η ≤ δ for all

n, k > K1. Similar arguments can be used for U2. Therefore,
we have the condition of sustainability to be satisfied if

δ ≤ λi
ρmaxλi

(λ1+λ2)2
− δ

2ρ(k)T1N
, (27)

since we have at least one agent m with a?i,m lower
bounded by ρmaxλi

(λ1+λ2)2
− δ. Then xm(tk) ∈ X†m and ρm(k) ≥

ρmax.
Next, we provide a numerical example which illustrates

the sustainability of the proposed CS and allow us to assess
the benefits of coopetition in the long-term.

V. NUMERICAL PERFORMANCE ANALYSIS

To conduct a good comparison analysis, we choose values
for the key parameters that are typical and quite similar to
[1]. For the costs of advertising, we assume that: λ1 = 1
and λ2 = 0.5. We consider a cascading graph structure
where the a sub-graph structure of 5 agents is repeated.
The set of edges defining the sub-graph are given by
E = {(1, 5), (2, 1), (2, 3), (3, 1), (3, 5), (4, 1), (5, 1), (5, 2)}
with the connection weight fixed at 1 when the edge exists.
Moreover, we connect the repeating blocks of 5 agents in
the following manner: agent n is connected to n+ 5 (when
n < N − 5) with Ln,n+5 = −1 and Ln+5,n = −4,
i.e., the preceding blocks are more influential. The initial
opinions are taken to be xn(0) = 0.4 + n

2N and we calculate
ρ = 1>N exp(−L) where L is the Laplacian of the resulting
graph. We also consider Tk = 1, K = 5 and tk = k.

Fig. 1 represents the evolution of the opinions when the
number of agents N = 50 and both marketers implement the
one-shot NE for all campaign stages. We plot the opinions
of agents n = 1, n = 15 and n = 50 to show the types of
behavior observable. The agent n = 1 has a high influential
power and is therefore controlled by both marketers while the
agent n = 50 is uncontrolled and slowly converges to η by
following his neighbors. The agent n = 15 is controlled only



when its opinion is far from η. This figure clearly shows one
important result which is missing in the analysis conducted
in [1]. Despite the presence of the zero-sum component in the
stage game that creates tension in the network, the state of the
network stabilizes to a given value which can be predicted
from the theoretical analysis. Here, this value corresponds to
η and equals 1

3 . We observe that ‖x(tk) − η‖∞ < 0.01 by
k ≥ 5.
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Fig. 1. Although the marketing game has a zero-sum component which
creates tension in the network, the network reaches a consensus after
sufficient stages.

Fig. 2, represents the long-term utilities for the two
marketers (with the parameters as before) as a function
of K1 (namely, the number of stages of the first phase
of the proposed coopetition plan). It is seen that for any
1 ≤ K1 < 5, both marketers obtain a better long-term utility
by stopping their marketing after K1 campaigns. One of
the virtues of this observation (that illustrates Theorem 1)
is to show the potential of designing long-term marketing
strategies and thus using a dynamic game formulation instead
of exploiting a static game model as in [1]. In Table 1, we
compare the stage utilities by playing the proposed strategy
in comparison to the one-shot NE after convergence to η.

N 50 100 200
Proposed marketing strategy (i = 1) 17 33 67
Proposed marketing strategy (i = 2) 34 66 132

Strategy of [1] (i = 1) 13 28 58
Strategy of [1] (i = 2) 30 61 124

Stages required for convergence to η 5 6 6

TABLE I
STAGE UTILITIES WITH PROPOSED MARKETING STRATEGY COMPARED

TO STRATEGY IN [1] AFTER PRACTICAL CONVERGENCE.

VI. CONCLUSION

In this paper, we study a game model which characterizes
the repeated competition between firms trying to capture a
market share by advertising over social media. The con-
sumers that interact over the social network are therefore
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Fig. 2. The proposed coopetition strategy profile is seen to be sustainable
for K1 ≥ 1 that is, it Pareto-dominates the strategy profile of [1].

not only under the influence of the other consumers of the
network but also of the external marketers who influence
them through campaigns. This leads to a hybrid dynamics
of consumers’ opinions. Exploiting the key results in [1],
we propose a coopetition marketing strategy which combines
the one-shot Nash equilibrium actions and no advertising.
Under reasonable sufficient conditions, it is proved that the
proposed coopetition strategy profile Pareto-dominates the
solution of [1]. Numerical examples illustrate the theoretical
results.
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