
HAL Id: hal-02390679
https://hal.science/hal-02390679

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A Shapley-based Groves mechanism: when the
mechanism designer plays the wise man

Michela Chessa

To cite this version:
Michela Chessa. A Shapley-based Groves mechanism: when the mechanism designer plays the wise
man. Operations Research Letters, 2019, 47 (6), pp.560-564. �10.1016/j.orl.2019.09.010�. �hal-
02390679�

https://hal.science/hal-02390679
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A Shapley-based Groves mechanism: when the

mechanism designer plays the wise man

Michela Chessa1

Université Côte d’Azur, GREDEG, CNRS, France

Abstract

We define two mechanisms. The first one implements the Shapley value
to define some monetary transfers, but it is not incentive compatible. The
second one implements only in expectation the same solution and it is a
Groves mechanism. While inheriting all the properties of this family, it is
also budget-balanced (still in expectation). The trick is to ask the mechanism
designer to insert/remove some utility and to take/give it back at the end.

Keywords: Shapley value, Potential, Mechanism design, Budget-balanced

1. Introduction

Social decision processes in models with public goods represent one of
the most discussed debate in economics. In such models, the social planner
cannot observe certain characteristics of the players, but she has to rely on
their revelation. However, the players may manipulate the situation, trying
to improve their luck by not telling the truth and ending up in an equilibrium
outcome that will suffer of what is well-known as “free rider” problem.

In within this framework, in this paper we deal with a standard public
good economy in which the unobserved characteristic of a player is repre-
sented by her true valuation over a set of available alternatives, and with the
so called revelation mechanisms. We focus on the specialized context of [7]
and [8]. These assumptions have historically led to the definition of a subclass
of revelation mechanisms, the so called Groves revelation mechanisms, which
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are “optimal” in the sense that stating one’s true valuation is a dominant
strategy (incentive compatibility) and that a social welfare maximizing pub-
lic good (level) is selected (successful). In [6], the authors have then shown
that this class of mechanisms is in fact the only one which has these desir-
able properties. Additionally, under some assumptions Groves mechanisms
are ex post individually rational, meaning that they do not make the players
worse off in the end than if they were not taking part in the mechanism.
However, the well-known Hurwicz’ impossibility result [11] has proved that
no revelation mechanism can achieve an additional appealing property, the
budget-balanced, which ensures that the mechanism does not need to pay to
or to win money from the players, without sacrificing either the efficiency
or the individual rationality property. Groves mechanisms may be, instead,
simply weak budget-balanced, as it is the case for the well-known Vickrey-
Clarke-Groves (VCG) mechanism [14, 3, 7], meaning that the mechanism
does not need to pay, but it wins money from the players. In many situa-
tions, however, this impossibility result represents a serious limit toward the
applicability of the mechanism (see example in Section 5).

1.1. Our main contribution and results

To overcome this problem, in this paper we propose two mechanisms:
the Shapley revelation (SR) and the Approximated Shapley revelation (ASR)
mechanisms. The first one is presented as a preliminary version of the second
one: after building a natural cooperative extension of the original game, it
defines some monetary transfers that aim at implementing the most known
cooperative solution, the Shapley value [13]. The SR mechanism is naturally
budget-balanced (Theorem 1), but it is not a Groves mechanism, and it lacks,
for example, the incentive compatibility property. In the ASR mechanism,
on the other side, the monetary transfers implement only in expectation the
Shapley value: the mechanism designer is assumed to know the distribution
of the valuation functions of the players (this is a pretty common assumption
in the specific context of mechanism design) and, by consequence, is capable
of estimating the surplus of cooperation and of distributing it between the
players according to the cooperative solution proposed share. The resulting
mechanism is a Groves mechanism and, as such, still satisfies all the good
well-known properties of this family, but, in addition, it is budget-balanced
in expected value (Theorem 2). Given the impossibility result of Hurwicz, we
claim that this is the best we can achieve toward the “best” revelation mech-
anism. The implementation at the basis of the ASR mechanism is twofold.
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(i) Technically, our procedure relies on an alternative interpretation of the
Shapley value [9], which describes it as the discrete gradient of a potential
function. The idea is to associate to every cooperative game a single num-
ber, the potential, and to give each player the marginal contribution to the
grand coalition, computed according to these numbers. (ii) From the imple-
mentation point of view, the trick at the basis of our mechanism is to ask
an additional player, namely the mechanism designer, to participate in the
game and insert (or remove) some utility, before implementing the proce-
dure, and to take back (or to give back) the corresponding amount at the
end of the game. The intervention of the additional player does not affect
the total amount of resources in expectation, as she acts simply for fairness
in redistributing the total income. Here the small classical story [9] to illus-
trate the key concept: A Sheik died, leaving a will directing his three sons
to divide the property as follows: one-half goes to the oldest son, one-third
to the middle son, and one-ninth to the youngest. The property consisted of
seventeen camels. The problem was solved by the “wise man” who rode into
town by his camel. He added his own camel to the seventeen, and then the
three brothers took their shares out of eighteen camels: nine, six, and two,
respectively. One camel was left, on which the wise man rode out of town.

In the final part of the paper we show how the “trick” can be implemented
by the mechanism designer in an extremely efficient way, under some specific
assumptions and thanks to a generating function based method, making our
mechanism appealing in terms of possible applications.

The remainder of the paper is organized as follows. In Section 2, we
introduce the classical model of a revelation mechanism. Section 3 describes
our new mechanisms and provides the main results. Section 4 shows how
the incentives can be computed, in practice and efficiently. In Section 5 we
provide an illustrative example. Section 6 concludes. Section 7 presents few
related works.

2. The model

We are concerned with an economy with a set of players N = {1, . . . , n},
a unique private good, such as money, which allows transfers among the play-
ers, and a set X (compact in a topological space) of available alternatives.
Each player i ∈ N has a true valuation function vi : X → R+, which se-
lects for each alternative x ∈ X her personal valuation. The true valuation
function vi is player i’s private information. In addition, we consider the
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possibility to implement monetary transfers ti ∈ R with i = 1, . . . , n such
that the utility of player i is a separable function ui : X ×R→ R defined as

ui(x, ti) = vi(x) + ti.

A revelation mechanism is a couple RM = {V, f} where V =
n∏
i=1

Vi is the

state space and Vi is the set of allowable (upper semi-continuous) valuation
functions of player i and f : V → X × Rn defined as

f(w) = [x(w), t1(w), . . . , tn(w)],

is the function that, given a vector w of n valuation functions (one for each
player), selects an alternative x = x(w) ∈ X, and a program of monetary
transfers t1 = t1(w), . . . , tn = tn(w) ∈ R. In a revelation mechanism, each
player reveals a valuation function wi ∈ Vi, which may be different by the
true one, and then an outcome x(w) is produced according to some given
rules. Given a revelation mechanism RM and a vector of valuation functions
w, then the utility for player i may be written with an abuse of notation as

ui(w,RM) = ui(x(w), ti(w)). (1)

Given a revelation mechanism RM, then the players play a revelation game
〈N, V, (ui)i∈N〉, with set of players N , strategy space Vi for each i ∈ N and
utility function ui given by (1). We denote by w∗ a pure strategy Nash
equilibrium of the revelation game. Such an equilibrium may not be unique.

A revelation mechanism is said to be (i) successful, if when the players
play at equilibrium w∗, the alternative which is selected is a maximizer of the
utilitarian social choice function

∑
i∈N vi(x(w∗)) (defined as the sum of the

real valuation functions evaluated on the selected alternative); (ii) strongly
individual incentive compatible, if revealing the real vi is a dominant strategy
for each individual i ∈ N , i.e., ui(vi, w−i;RM) ≥ ui(wi, w−i;RM) for each
w ∈ V , and where w−i denotes a vector of valuation functions of all the
players but i, (iii) ex post individual rational, if when the players play at
equilibrium w∗, they get a positive utility by participating in the mechanism,
i.e., ui(x(w∗), RM) ≥ 0, for each i ∈ N ; (iv) weak budget-balanced, if when
the players play at equilibrium w∗, the mechanism does not lose money,
i.e.,
∑

i∈N ti(w
∗) ≤ 0, and (v) budget-balanced if when the players play at

equilibrium w∗, the mechanism does not win and does not lose money, i.e.,∑
i∈N ti(w

∗) = 0.
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In a particular class of revelation mechanisms, the Groves mechanisms [8],
given w ∈ V , the decision function selects an alternative which maximizes
the declared utilitarian social choice function, i.e., x(w) = x∗ such that

x∗ ∈ arg max
x∈X

n∑
i=1

wi(x) (2)

and
ti(w) =

∑
j∈N,j 6=i

wj(x
∗) + hi(w−i), (3)

for each i ∈ N , with hi an arbitrary function of the vector w−i of the declared
valuation functions of all the players but i. The assumption of having upper
semi-continuous valuation functions on a compact set is sufficient to ensure
that such an x∗ exists, i.e., that the set of maximizing projects is non-empty
(the same reasoning will hold when defining functions hi and zw later on).
A Groves mechanism is strongly individual incentive compatible, and then
it is successful (by construction). The incentive compatibility relies on the
fact that the function hi does not depend on the declaration of player i, and
then it does not affect her incentives to tell the truth or lie.

The Vickey-Clarke-Groves (VCG) mechanism, the most known Groves
mechanism, has functions hi defined as

hi(w−i) = −max
x∈X

∑
j∈N,j 6=i

wj(x),

for each i ∈ N . Intuitively, in a VCG mechanism each player pays her social
cost, i.e., how much she “hurts” the others by being part of the mechanism.
Under our assumptions, the VCG mechanism is ex post individual rational
and it is weak budget-balanced, but it is not budget-balanced.

As we have already observed in the Introduction, and as we will see in
more details in Section 5, the non budget-balanced, i.e., the necessity of
making pay the players, is a serious limit toward the applicability of the
proposed model. The following section illustrates our proposal to overrule
this limit.

3. The Shapley-based revelation mechanisms

Our proposed mechanisms are based on a cooperative interpretation of
the public good economy, that we will present in three steps. First, given a
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vector w ∈ V of valuation functions, we define the function zw : 2N → R as

zw(S) = max
x∈X

∑
i∈S

wi(x),

for each S ⊆ N \ ∅, and zw(∅) = 0. This can be naturally interpreted as the
characteristic function of a cooperative game (N, zw), which may be shown
to be monotonic whenever wi is positive for each i ∈ N . Intuitively, function
zw defines the best each group of players can obtain collectively by reaching
an agreement.

Second, we recall a result which has been shown in [9]: given a cooperative
game (N, zw), it is possible to extend it in a unique way to a game (N0, z

w
0 )

with N0 = N ∪{0}, in such a way that zw0 (S) = zw(S) for all S ⊆ N and the
marginal contributions to the grand coalition and to all the subcoalitions are
efficient, i.e., zw0 (S) =

∑
i∈S[zw0 (S)− zw0 (S \ {i})] for each S ⊆ N0. For each

S ⊆ N , the value zw0 (S∪{0}) coincides with the potential of the game (N, zw)
restricted to S. Given the set of all games Γ, we call potential the function
P : Γ→ R with P (∅, v) = 0 and

∑
i∈N (P (N, v)− P (N \ {i}, v)) = v(N) for

each (N, v) ∈ Γ, where (S, v) with S ⊂ N is the restriction of (N, v) to S.
We have that zw0 (S ∪ {0}) = P (S, v) for each S ⊆ N .

Moreover, the marginal contribution to the grand coalition for each player
i ∈ N to N0 in game (N0, z

w
0 ) coincides with her Shapley value φi [13] in the

game (N, zw)

zw0 (N0)−zw0 (N0\{i}) = φi(N, z
w) =

∑
S⊆N,i∈S

(n− s)!(s− 1)!

n!
[zw(S)−zw(S\{i})],

where s = |S| for each S ⊆ N , and it is equal to zw0 (N0)−zw(N) for player 0.
The Shapley value represents the most classical way to share the utility be-
tween the players in a cooperative setting. Its potential interpretation allows
us to translate this allocation into some marginal contributions according to
a different function, in this case zw0 . The “zero player” of this extended game
is a hidden player who explains the residual profit (or loss) resulting from the
cooperation and that, in our case, will be played by the mechanism designer.
In order to compute zw0 (N0) (and, similarly, the value of the potential on all
the subcoalitions), it is possible to implement the following formula

zw0 (N0) =
∑
S⊆N

(s− 1)!(n− s)!
n!

zw(S). (4)
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Third, we define a subclass of revelation mechanisms such that, given a
revelation vector w ∈ V , the decision function selects an alternative which
maximizes the declared utilitarian social choice function, as in (2) for a
Groves mechanism, but with monetary transfers defined as

t̄i(w) =
∑

j∈N,j 6=i

wj(x
∗) + h̄i(w),

for each i ∈ N , and function h̄i defined as

h̄i(w) = −max
x∈X

∑
j∈N,j 6=i

wj(x) + A(w)− b [zw0 (N0 \ {i})− zw(N \ {i})] , (5)

where A : V → R and b ∈ R are such that the mechanism respects the ex
post individual rationality property. In particular, A(w) ≡ 0 (null function)
and b = 0 define the VCG mechanism. We observe that, differently from the
definition of functions hi in (3), that had as argument the valuation functions
of all the players but i, functions h̄i may be a function of wi too and then
these mechanisms are not in general Groves mechanisms.

We present now our first mechanism, defined for b = 1 and A(w) =
Ā(w) := zw0 (N0)− zw(N). This mechanism, that we call the Shapley Revela-
tion (SR) mechanism, does not produce and does not destroy money. More-
over, it implements the Shapley value share, whenever the players reveal the
real valuation vector.

Theorem 1. The SR mechanism is budget-balanced. Moreover, when the
players reveal the real valuation vector v ∈ V , ui(v, SR) = φi(N, z

v) for each
i ∈ N .

Proof. We suppose that the players reveal w ∈ V . Then, the selected out-
come x∗ is such that

∑
i∈N wi(x

∗) = zw(N). When b = 1 and A(w) =
zw0 (N0)− zw(N), each player gets a utility vi(x

∗) and an additional payment
equal to

t̄i(w) =
∑

j∈N,j 6=iwj(x
∗)− zw(N \ {i})

+zw0 (N0)− zw(N)− zw0 (N0 \ {i}) + zw(N \ {i})
= zw0 (N0)− zw0 (N0 \ {i})− wi(x∗)
= φi(N, z

w)− wi(x∗).

Because of the efficiency property of the Shapley value, it follows that for
each declared valuation vector w ∈ V
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∑
i∈N t̄i(w) =

∑
i∈N [φi(N, z

w)− wi(x∗)]
= zw(N)− zw(N) = 0

and then the SR mechanism is budget-balanced.
Moreover, whenever the players declare the real valuations v ∈ V , it

follows that each player will get as utility share her Shapley value in the
game (N, zv).

As interpretation of this solution, we assume that the mechanism de-
signer, acting as “zero player”, adds to the total utility of each player the
residual of cooperation, equal to the quantity Ā(w) = zw0 (N0) − zw(N),
shares the total income according to the marginal contribution for each player
i ∈ N to N0 in game (N0, z

w
0 ), and finally she takes back the same initial

amount n · (zw0 (N0) − zw(N)). However, as stated just before the theorem,
the proposed mechanism is not a Groves mechanism: computing the quan-
tity zw0 (N0) − zw(N) necessarily requires knowing the declared valuation of
player i, and this has the natural drawback of affecting the strongly individ-
ual incentive compatibility property of our mechanism and, consequently, the
possibility of getting an implementation of the Shapley value solution share.

To overcome this problem, we define our second mechanism, supposing
that the mechanism designer is capable of making an estimation a priori
(i.e., before the revelation of the players) of the quantity zv0(N0)− zv(N), i.e,
of the residual of cooperation on the real valuations v. This can be done,
for example, each time the distribution of the players (i.e., of their valuation
functions) is known a priori by the mechanism designer. Formally, given
the state space V , let ∆(V ) be the collection of all probability measures on
V . We suppose that the mechanism designer can observe σ ∈ ∆(V ), which
corresponds to the distribution of a random variable that we call R. We
now extend the definition of function Ā, to the random variable Ā(R) =
Ā(r), with r a realization of R. In this probabilistic framework, the declared
valuation vector w corresponds to a specific realization of the random variable
R, and Ā(w) to the corresponding realization of the random variable Ā(R).
Then, from σ, the mechanism designer can compute the expected value E[Ā],
which is an unbiased estimation of the quantity Ā(v), i.e., of the value of
function Ā on the real valuations v. The Approximated Shapley revelation
(ASR) mechanism is then defined with payments as in (5) and with choice
of the parameters b = 1 and A(w) ≡ E[Ā]. We may observe that E[Ā] is
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not a function of the specific realization w, and in particular of wi anymore,
as it is now the mean over all the possible realizations, and then the ASR
mechanism is a Groves mechanism. It holds the following theorem:

Theorem 2. In a ASR mechanism, at equilibrium each player i ∈ N declares
her true valuation vi. Moreover, E[ui(v,ASR)] = φi(N, z

v) for each i ∈ N .

Proof. The ASR mechanism is a Groves mechanism, then, at equilibrium,
each player i declares her true valuation function vi. It follows that, at
equilibrium

E[ui(v,ASR)] = zv(N)− zv(N \ {i})
+zv0(N0)− zv(N)− zv(N0 \ {i}) + zv(N \ {i})

= zv0(N0)− zv(N0 \ {i})
= φi(N, z

v)

Similarly to before and as interpretation of this mechanism, we assume
that the mechanism designer, acting as “zero player”, adds to the total utility
of each player the expected quantity E[Ā], shares the total income according
to the marginal contribution for each player i ∈ N toN0 in the extended game
in which the valuation functions have been estimated through the observation
σ ∈ ∆(V ), and finally takes back the same initial amount. As, differently
from before, the players have now incentives to declare their real valuation
function vi, each player is left in expectation with her Shapley value in game
(N, zv).

4. Implementation of the incentives

In this section, we tackle a crucial point, i.e., we illustrate how the mecha-
nism designer can make the “trick” of estimating the value E[Ā] in the ASR
mechanism. We suppose that she observes (δv1 , . . . , δvn) ∈ ∆(V ), i.e., the
value distributions are Dirac masses at the real valuation functions vi for
each i ∈ N . In particular, we consider the case of a public good project,
such as buying a common item, and where the item will be pursued only if
a minimum amount of money is collected (the cost c of the item). In this
case, the set of alternatives is simply given by X = {buy, not buy}. More-
over, we suppose that each player assigns value zero to the alternative “not
buy”, but they have different valuations for the alternative “buy”. From now
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on, we will assume these valuations to be strictly positive natural numbers
ν1, . . . , νn ∈ N+. We may observe that this hypothesis is, in practice, not
restrictive, as soon as we assume our commodity for transfers, such as money,
to have a fixed number of decimal digits. The valuation function of player
i ∈ N is then given by vi : {buy, not buy} → N, such that vi(not buy) = 0
and vi(buy) = νi. With an abuse of notation, given ν the vector of valuations
in Nn

+, we denote with zν and zν0 the corresponding characteristic functions.
In this simplified setting, for the mechanism designer everything reduces to
observing a vector (δν1 , . . . , δνn) of Delta functions centered in ν1, . . . , νn re-
spectively. We consider these Delta functions as defined on the continuous
real line, even if centered on natural numbers.

In this context, when implementing the ASR mechanism, the value of
function zν on S ⊆ N is then described by the following distributions{

δ∑
i∈S νi−c if

∑
i∈S νi > c

δ0 otherwise,
(6)

where δ0 is the Delta function centered in 0, where 0 represents the common
valuation for not pursuing the item. Now, in order to obtain the estimation
of the surplus of cooperation zw0 (N0)− zw(N) efficiently, we propose a com-
binatorial method based on generating functions. By (4) and (6) we observe
that, when the valuations of the players are distributed as Dirac delta func-
tions, also the surplus of cooperation is distributed as a Dirac delta function
centered on

t =
n∑
j=1

(j − 1)!(n− j)!
n!

(
W∑

k=c+1

A(k, j)(k − c)

)
− (W − c) (7)

where A(k, j) is the number of coalitions S of j players and
∑

i∈S νi = k, and∑n
i=1 νi = W . Then, it holds the following theorem:

Theorem 3. (Cantor) Let (N, zν) be a cooperative game with characteristic
function defined as in (6). Then, the generating function of the numbers
A(k, j) is given by f(x, y) =

∏
i∈N(1 + yxνi) =

∑
k≥0
∑

j≥0A(k, j)xkyj.

This result has been originally stated for the efficient computation of
the Shapley-Shubik index, where the νi’s are representing the weights of the
players in a weighted majority game [2], but it still applies to our case in
which the νi’s represent the players’ valuations. By (7) and Theorem 3, and
assuming the logarithmic cost model of [2], we can show that the computation
of the incentives can be done efficiently by the mechanism designer:
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Theorem 4. Let (N, zν) be a cooperative game with characteristic function
defined as in (6). If C is the number of non-zero coefficients of function
f(x, y), then the time complexity of the generating algorithm for computing
the expected surplus of cooperation is O(nC).

Proof. There are two independent for loops:
gg(y)← 0
for k ∈ {c+ 1, . . . ,W} do

gg(y)← gg(y) + A(k, j) · (k − c)yj
endfor
Thus, we obtain the polynomial gg(y) =

∑n
j=1 bjz

j, whose coefficients
appear in the next sum

m← 0
for j ∈ {1, . . . , n} do

m← m+ bj(j − 1)!(n− j)!
endfor
m/n!-W+c
Thus, we can calculate the index in time O(nC).

In the following example, we illustrate how the mechanism designer, act-
ing as wise man, can implement the ASR mechanism and how this leads to
a more applicable outcome, compared to the one of a classical VCG mecha-
nism.

5. Example

Consider three roommates who would like to buy a TV that costs e100.
They have respectively true valuation for the option “having a TV” equal
to ν1 = 30, ν2 = 50 and ν3 = 70 (all the valuations are equal to zero for
the complementary option). According to the VCG mechanism, they should
declare their true valuation and be assigned the following monetary transfers:

t1 = 50 + 70− 100− (50 + 70− 100) = 0
t2 = 30 + 70− 100− (30 + 70− 100) = 0
t3 = 30 + 50− 100 = −20.

In our example, roommates 1 and 2 pay nothing, while roommate 3 pays 20,
and this is obviously not enough to cover the cost of the TV.
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Implementing the ASR mechanism, we suppose that the distribution of
the true valuations of the players is known a priori (before any declaration
by them). The corresponding cooperative game defined as in Section 3 is
z({2, 3}) = 20, z({1, 2, 3}) = 50 and z(S) = 0 otherwise. The Shapley value
of such a game is equal to φ(z) = (10, 20, 20). We suppose the mechanism
designer to be capable of making an unbiased estimation of the quantity
zν0 (N0) − zν(N) = −30, while the quantities zν0 (N0 \ {i}) − zν(N \ {i}) are
computed a posteriori after the declaration of the valuation functions, and at
equilibrium they are equal to 0, when i = 2, 3, and zv0(N0\{1})−zv(N\{1}) =
10. According to the ASR mechanism, the roommates should declare their
true valuation, buy the TV, and be assigned the following expected monetary
transfers:

E(t1) = 50 + 70− 100− (50 + 70− 100)− 30 + 10 = −20
E(t2) = 30 + 70− 100− (30 + 70− 100)− 30 = −30
E(t3) = 30 + 50− 100− 30 = −50.

Now, in expectation roommate 1 pays 20, roommate 2 pays 30 and room-
mate 3 pays 50, and this new share covers the cost of the TV.

The formal way to implement such a mechanism is the following one: hav-
ing estimated the quantity zν0 (N0) − zν(N) = −30, the mechanism designer
asks each roommate to anticipate an amount equal to e30, for a total of e90.
Then, the roommates declare their true valuation, and a Groves mechanism
is implemented, where each player i ∈ N receives a payment equal to the
classical VCG payment plus an additional amount zν0 (N0 \{i})−zν(N \{i}).
As a result of this Groves mechanism, roommate 3 has to pay e20 to the
mechanism, while roommate 1 gets e10, for a total payment of e10. In the
end, the mechanism designer gives them back the e90 she has taken at the
beginning, and the three roommates will be left with a total of e100, that
they will use to pay the TV.

6. Conclusions

The scope of this paper is to propose a new Groves mechanism that, ad-
ditionally to satisfying all the good properties of this family of mechanisms,
is also budget-balanced in expected value. We claim that, given the Hurwicz’
impossibility result, this is the best we can achieve toward the “best” reve-
lation mechanism. We have shown as such a mechanism, really intuitive in
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the formulation, can also be easily implementable in a specific case of a pub-
lic good project, in which the mechanism designer can observe some Delta
masses distributions of the valuations of the players. The natural future work
in this direction is to provide a more exhaustive analysis of the possibility of
implementing our mechanism in a more general case.

7. Related work

In the literature, sparse examples of cooperative game theoretical analysis
used withing the classical mechanism design problems are already present.
In [1], the authors investigate how in a VCG auction it can be beneficial
for the agents to coordinate and misreport their valuations. To investigate
such a manipulation, they define a cooperative game, the so called collusion
game. In [5], in a cost-sharing mechanism design problem , the authors
define the Shapley value mechanism, a Shapley-like solution which has our
same scope of proving a budget-balanced share of the resources. However, the
proposed mechanism is not successful. In another work [4] and in the context
of prediction markets, the author proposes the Shapley value information
mechanism, exploiting the fact that this solution concept can be interpreted
as the average of the marginal contribution to all the different orderings of the
players. However, their proposed mechanism is simply ex interim incentive
compatible.

Additionally to its original scope, this work broadens the Nash pro-
gram related analysis, an agenda, initiated by Nash himself in 1953 [12], to
bridge the gap between the non-cooperative and the cooperative approaches
in game theory. Many authors have contributed, focusing on obtaining a
non-cooperative implementation of the main cooperative solution concepts,
such as the Nash bargaining solution, the core or the Shapley value [15, 10].
Differently from all this literature, that proposes some complex and often
counter-intuitive procedures, our mechanism is extremely simple and “user-
friendly”.
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