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Decentralized Control For Guaranteed Individual
Costs in a Linear Multi-agent System: a Satisfaction

Equilibrium Approach
J. Veetaseveera, V.S. Varma, I.C. Morărescu and J. Daafouz

Abstract—This work focuses on the design of decentralized
feedback control gains that aims at optimizing individual costs
in a multi-agent synchronization problem. As reported in the
literature, the optimal control design for synchronization of
agents using local information is NP-hard. Consequently, we relax
the problem and use the notion of satisfaction equilibrium from
game theory to ensure that each individual cost is guaranteed
to be lower than a given threshold. Our main results provide
conditions in the form of linear matrix inequalities (LMIs)
to check if a given set of control gains are in satisfaction
equilibrium i.e. all individual costs are upper-bounded by the
imposed threshold. Moreover, we provide an algorithm in order
to synthesize gains that are in satisfaction equilibrium. Finally,
we illustrate this algorithm with numerical examples.

Index Terms—Control of networks, Decentralized control

I. INTRODUCTION

DECENTRALIZED coordination of multi-agent systems
has attracted a lot of attention during the past decade.

In the decentralized control design paradigm, each system is
able to design and implement its own control law without
the help of a central entity. The main goal of this paper
is to design a control strategy that can be implemented in
a decentralized manner and allows multi-agent systems to
achieve synchronization with local or individual performance
guarantees.

The multi-agent formalism enables treating problems that
arise in many application domains such as engineering [1],
sociology [2] or biology [3]. Consensus and synchronization
comes in different flavors: linear [4] or nonlinear [5] agent
dynamics, fixed [6] or time-varying [4] interaction topology,
continuous or discrete [7] time dynamics.

In most of the existing works, the control cost related to
synchronization is not studied and the objective is related to
the convergence of trajectories to a common one. In [8], the
authors proposed an energy-aware control design that takes
into account an overall cost and should reduce the communi-
cation and computation loads. In [9], the authors describe the
problem of optimal control with a global cost in the multi-
agent framework. The problem is defined when the dynamics
and the initial state for all agents are perfectly known and
is NP-hard due to the information structure imposed by the

This work was partially supported by the ANR under the grant HANDY
ANR-18-CE40-0010 and by INS2I CNRS under the 80’PRIME call.

The authors are with Université de Lorraine, CNRS, CRAN,
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graph. Consequently, the authors design a distributed sub-
optimal controller. More recently, in [10], the authors present
the design of a decentralized control strategy that allows
singularly perturbed multi-agent systems to achieve synchro-
nization with global performance guarantees. Additionally,
[10] assumes that all agents utilize the same gain, which
can be restrictive and even undesirable in some cases. In
contrast, our objective is to guarantee that the cost incurred
by each agent does not exceed a given bound during the
process of synchronization. This can be of practical relevance
in applications such as automatic cruise control on highways
where each vehicle wants to follow the vehicle in front of
it (common objective of synchronization), but also wants to
ensure that its fuel consumption is not too high (individual
cost). In such applications, considering a global cost might
not be fair to each individual vehicle.

Since each agent has its own individual cost, standard
optimization or optimal control approaches cannot be directly
applied. In this context, we are inspired by notions in game
theory, specifically that of satisfaction equilibrium and satis-
faction games, introduced in [11]. A set of actions are said
to be in satisfaction equilibrium when the individual cost
for each agent is upper-bounded by a given threshold. This
notion was applied to wireless networks in order to guarantee
a satisfactory quality of service [12]. Note that we use game
theory as an inspiration for some concepts and formalism, and
not for the mathematical tools.

The rest of the paper is organized as follows. In Section
II we describe the problem that we want to solve. In Section
III we introduce the notion of satisfaction games and provide
conditions to check if a set of gains are in satisfaction
equilibrium. In Section IV, we provide a method to synthesize
gains which are in satisfaction equilibrium for a general graph.
Finally, in Section V we use some numerical examples to
illustrate the results.

Notation: In the sequel, we use (.)> for the transpose
and ⊗ is the Kronecker product of two matrices. We denote
by N (A) and R(A) the kernel and the image of the matrix
A. The matrix In ∈ Rn×n denotes the identity matrix and
1n denotes the column vector of ones having dimension n.
We use diag(A1, . . . , Ap) to denote a block diagonal matrix
having the blocks A1, . . . , Ap on its diagonal. The element
ei ∈ Rn denotes the vector with a 1 in the ith coordinate
and 0 elsewhere. The norm of a matrix ||A|| is the largest
singular values of A. Finally, A⊥ denotes a matrix with
the following properties : N (A⊥) = R(A) and A⊥A⊥> > 0.



II. PROBLEM FORMULATION

A. System dynamics

We consider a network of n ∈ N agents, where the
interactions are described by a graph G = (V,E), with
V = {1, 2, ..., n} the set of vertices and E ⊂ V × V the
set of edges. We identify each agent with its index i ∈ V and
Ni = {j ∈ V | (i, j) ∈ E} specifies the neighborhood of
agent i. We assign to each agent i a state xi(t) ∈ Rnx with
dynamics described by{

ẋi = Axi +Bui
yi =

∑
k∈Ni

(xk − xi),
(1)

where xi, yi ∈ Rnx , ui ∈ Rnu , A ∈ Rnx×nx , B ∈ Rnx×nu

and i ∈ V . Here, ui is the control applied by agent i which
depends on the output yi. Let x(t) = (x>1 (t), ..., x>n (t))> ∈
Rn·nx and u(t) = (u>1 (t), ..., u>n (t))> ∈ Rn·nu be respec-
tively the global state of the network and the control at time
t ∈ R.
Remark 1. Our results do not require A,B to be identical i.e.
our results hold when Ai, Bi describe the dynamics for agent
i, but we use a common A,B for ease of exposition during
the change of variables in Section IV.

Throughout the paper we use graph Laplacian matrix L ∈
Rn×n whose components are defined as

Lij =

 −1 if i 6= j and j ∈ Ni

|Ni| if i = j
0 otherwise,

∀i, j ∈ V.

B. The cost

The control goal is to asymptotically synchronize the set
of agents i.e. to ensure that lim

t→+∞
‖xj(t) − xi(t)‖ = 0,

∀i, j ∈ V . To achieve this common goal, each agent has to
provide a certain control effort that has to be limited in many
real applications. Therefore, we consider a per-agent cost Ji
defined as follows

Ji: =

∫ ∞
0

∑
j∈Ni

‖xj(t)− xi(t)‖2 + u>i (t)R>i Riui(t) dt, (2)

where the matrix Ri ∈ Rnu×nu represents the weight given
to the control action ui.

Since we are looking for a decentralized control strategy,
each agent only has access to the information on the relative
state with respect to its neighborhood Ni, i.e. yi(t) and does
not have access to overall network state x(t). Optimization
of the cost Ji cannot be achieved, unless x(0) and uj are
known for all j 6= i (see [9] for details).

III. GAME THEORETIC PRELIMINARIES

In contrast with an optimal control approach that is adopted
in [9], our problem involves a cost Ji associated with each
agent. Since we have each agent desiring to reduce its indi-
vidual cost, we are in the framework of a game. The agents

only have information from their neighbors and not from the
whole network i.e. ui(t) must be designed independently of
x(0) and must depend only on yi(t). Besides the general
information structure, the agents also use information from
past actions and take this into account for their current and
future actions. This case corresponds to a differential game
with incomplete information [13]. However, the research on
differential games remains open for a general information
structure. Therefore, we are inspired by [11], which introduces
the notion of satisfaction games. In a satisfaction game, when
all players have

Ji ≤ γ‖x(0)− 1n ⊗ xi(0)‖2,

where γ > 0 is a given threshold, the players are said to
be in satisfaction equilibrium. In the following, we describe
how we can model our problem as a satisfaction game, and
in the subsequent section, we use results in LQ control with
static output feedback to provide conditions on achieving a
satisfaction equilibrium.

We are restricted to designing a controller ui based on the
output yi. In this setting, we search for controllers that are of
static-output feedback type.

Assumption 1. The controller for agent i is of the form ui =
Kiyi, where Ki ∈ Ki with Ki = Rnu×nx .

With Assumption 1, the control strategy for agent i is fully
defined by the choice of gain Ki. Next, it is important to note
that the cost Ji will always depend on the global initial state
x(0). However, this dependency can be removed by treating
the case in which all the other agents start in a ball of unit
radius around each agent. The resulting cost can then be scaled
up for other initial conditions.

Remark 2. To simplify the writing in the following we scale
the initial condition such that ‖x(0) − 1n ⊗ xi(0)‖2 ≤
1, ∀i ∈ V . As usual the individual costs scales with the
initial condition and under the normalization above we get
a satisfaction game when Ji ≤ γ,∀i ∈ V .

We define a gain profile as K = (K1, ...,Kn) ∈ K ,
where K = K1 × ... × Kn. We also use K−i :=
(K1, ...,Ki−1,Ki+1, ...,Kn) to denote the profile of gains for
all agents except i. To emphasize its i-component, we write the
vector K as (Ki,K−i) with a slight abuse of notation. Under
Assumption 1 we define the satisfaction game as follows.

The satisfaction game in standard form is defined by the
ordered triplet

G = (V, {Ki}i∈V , {fi}i∈V ),

where

• V = {1, ..., n} is the set of agents and we identify each
agent i as player i,

• Ki = Rm×nx is the set of actions or gains Ki applied by
player i, and the control applied by each player is given
according to Assumption 1,

• A player i is said to be satisfied when his action Ki ∈
fi(K−i) considering the actions of the other players K−i



are given. Here, fi(K−i) is called as the satisfaction
function, and is defined as follows

fi(K−i) := {Ki ∈ Ki|Ji(Ki,K−i) < γ}. (3)

The satisfaction function fi of the player i describes the set
of actions which guarantees that his cost is upper-bounded by
γ given the actions of all the other players. This allows us to
define the satisfaction equilibrium as follows.

Definition 1. Let G be a strategic game and f1,...,fn be n
set-valued satisfaction functions. The strategy profile K∗ =
(K∗1 , ...,K

∗
n) is a satisfaction equilibrium (SE) if and only if

∀i ∈ V,K∗i ∈ fi(K∗−i).

With these definitions, the purpose of each player is to
be satisfied, so an equilibrium is when Ji(K

∗) ≤ γ for all
i ∈ V . Once the players are at the SE, none of them have
a particular interest to change their current actions as each
player has achieved the desired bound on his cost. They are
assumed to be careless of the satisfaction of other players.

IV. MAIN RESULTS

A. Change of variables

In order to check if K∗ is an SE, we reduce the synchro-
nization problem to a stabilization problem by a change of
variables on (1). For analysis purpose, for each i ∈ V , we
introduce the transformed state vector:

χi = (x>1 − x>i , . . . , x>i−1 − x>i , x>i+1 − x>i , . . . , x>n − x>i )>

and χi ∈ R(n−1)×nx . Denote by L−i, the Laplacian matrix L
without the i-th row and column, and by Li, the i-th row of L.
Finally, we also use Li:red to denote the row matrix Li with
the i-th column removed. We can now write the dynamics for
χi as

χ̇i = Ai(K−i)χi + Biui, (4)

where

Ai := In−1 ⊗A− (In−1 ⊗B)diag(K−i)(L−i ⊗ Inx
),

Bi = −In−1 ⊗B.

The term diag(K−i) is not a control action but it represents
the behaviour of the network. For agent i, the control action
is simply ui = Kiyi as it can not control the other agents. Let
us define the auxiliary variables zi = Ciχi +Diui

yi = Fiχi

ui = Kiyi,
(5)

where

Ci =

(
diag(Li:red)⊗ Inx

0nu×(n−1)nx

)
,Di =

(
0(n−1)nx×nu

Ri

)
,

and Fi = −Li:red ⊗ Inx . Since the n-th block of Ci is 0
by definition, the n-th block of zi will contain the weighted

control Riui. The cost for any agent i can now be written in
terms of zi as

Ji =

∫ ∞
0

‖zi(t)‖2 dt. (6)

Under the new variables, the problem of asymptotic syn-
chronization of the system (1) now becomes stabilization of
the system (4). This allows us to establish the following result.

Proposition 1. Let a gain profile K∗ be given. The following
statements are equivalent when Assumptions 1 holds.

1) The gain profile K∗ is an SE of the satisfaction game
G that stabilizes (4)-(5) ∀i ∈ V .

2) For all i ∈ V , there exists a positive-definite matrix
Pi > 0 such that{

PiAi,cl(K
∗) +Ai,cl(K

∗)>Pi + C>i,clCi,cl < 0

Pi − γI(n−1)nx
< 0,

(7)

where Ai,cl(K
∗) = (Ai(K

∗
−i)+BiK∗i Fi), Ci,cl = (Ci+

DiK
∗
i Fi) are respectively the closed-loop matrices for

χi and zi.

Proof. Lemma 1 in [14] states that, when K∗i is given and
‖χi(0)‖ ≤ 1 is known, the following are equivalent:
• The gain K∗i stabilizes the system (4)-(5) and yields the

LQ cost Ji(K∗i ,K
∗
−i) < γ

• There exists Pi > 0 such that

PiAi,cl(K
∗) +Ai,cl(K

∗)>Pi + C>i,clCi,cl < 0

and ‖Pi‖ < γ.
Proof of 1) ⇒ 2). Let K∗ be an SE of G that stabilizes (4)-
(5) ∀i ∈ V . By Definition 1, one has K∗i ∈ fi(K∗−i), ∀i ∈ V
yielding J(K∗i ,K

∗
−i) < γ, ∀i ∈ V . We rewrite (4)-(5) in

closed-loop form as

χ̇i = Ai,cl(K
∗)χi

with the cost given by

Ji =

∫ ∞
0

‖Ci,clχi‖2 dt < γ,

for all i ∈ V . Since K∗ is given, the matrices Ai,cl(K
∗)

are fixed and known. From Remark 2, we have ‖χi(0)‖ ≤ 1
and applying Lemma 1 in [14] one obtains the existence of
matrices Pi satisfying (7).
Proof of 2) ⇒ 1). Suppose now that (7) holds ∀i ∈ V .
Again, from Lemma 1 in [14], one has that K∗i stabilizes
(4)-(5) and J(K∗i ,K

∗
−i) < γ for all i ∈ V . Therefore,

K∗i ∈ fi(K∗−i), ∀i ∈ V which means that K∗ is an SE of G
given a γ. �

To summarize, we have provided LMIs conditions to test if
a given K is an SE of the game G for the performance bound
γ. The given K is a satisfaction equilibrium of G if and only if
it satisfies 2) for all i. The inability to find matrices Pi however
does not imply that they do not exist, this may arise due to
numerical issues with the LMI solver. Finally, for a given γ,
K may not be unique and it is possible to have several gains
which are satisfaction equilibria. Therefore, we define the set
of satisfaction equilibria as

K∗ = {K∗ : ∀i ∈ V,K∗i ∈ fi(K∗−i)}. (8)



In the next subsection, we provide a method which allows us
to synthesize the gains for a given thereshold γ.

B. Synthesis of a K ∈ K∗

In this section, we first present conditions that allow us to
generate the satisfaction function fi(K−i) based on the results
in [14]. In the following proposition, for a given set of gains
K−i, we find a synchronizing gain Ki under certain conditions
as described below.

Proposition 2 (Based on Theorem 1 in [14]). Let the set of
gains K−i be given. Consider the sets

Xi(K−i) :=
{
X ∈ R(n−1).nx×(n−1).nx :[

Bi
Di

]⊥ [AiX +XA>i XC>i
CiX −I(n−1).nx

] [
Bi
Di

]⊥>
< 0

}
,

Yi(K−i) :=
{
Y ∈ R(n−1).nx×(n−1).nx :
F>⊥i (YAi +A>i Y + C>i Ci)F>⊥>i < 0,

Y − γI(n−1).nx
< 0
}
.

(9)
Under Assumption 1, if no P > 0 exist such that P−1 ∈

Xi(K−i) and P ∈ Yi(K−i), then fi(K−i) = ∅, which implies
that we can not find a suitable Ki such that (Ki,K−i) is a
satisfaction equilibrium. Otherwise, the satisfaction function
for the game G is given by

fi(K−i) =
{
−ρiB>i Φi(K−i)C>i (CiΦi(K−i)C>i )−1+

ρiSi(K−i)
1/2Mi(CiΦ(K−i)C>i )−1/2 : P > 0,

P−1 ∈X (K−i), P ∈ Y (K−i), ‖M‖ < 1
}
,
(10)

where

Bi :=

[
PBi
Di

]
, Ci :=

[
Fi 0

]
,

Qi(K−i) :=

[
PAi(K−i) +Ai(K−i)

>P C>i
Ci −I(n−1).nx

]
,

ρi(K−i) := ρmin(K−i) + p,
ρi,min(K−i) := max{0, λmax[B+

i (Qi(K−i)−
Qi(K−i)B⊥>i (B⊥i Qi(K−i)B⊥>i )−1B⊥i Qi(K−i))B

+>
i ]},

Φi(K−i) := (ρiBiB>i −Qi(K−i))
−1,

Si(K−i) = ρiInx −B>i [Φi − ΦiC>(CiΦiC>i )−1CiΦi]Bi,

with p ∈ R≥0 an arbitrary non-negative scalar.

Proof. By definition of the satisfaction function, we have
fi(K−i) = {Ki|Ji(Ki,K−i) < γ}. Therefore, for a given
K−i, fi is the set of gains which result in a cost bounded
by γ. Theorem 1 in [14] provides conditions on the existence
of a stabilizing static output feedback gain such that the LQ
cost is bounded by a given factor γ, when χi(0) = Ww0 with
||w0|| = 1. From Remark 2, we have that ‖χi(0)‖ ≤ 1. Once
we rewrite the synchronization problem as (4) and (5), for
a given K−i, finding Ki which results in Ji(Ki,K−i) < γ
is transformed into a problem of static output feedback with
a bounded LQ cost. Since we take ‖Ww0‖ ≤ 1, the con-
dition W>YW − γI < 0 as required in [14] is satisfied if
Y − γI(n−1)nx

< 0. Applying the theorem, we get that the
following are equivalent:
• There exists Ki stabilizing (4)-(5) such that
Ji(Ki,K−i) < γ,

• There exists P > 0 such that P−1 ∈ X (K−i)
and P ∈ Y (K−i) and Ki is given
by −ρB>Φ(K−i)C>(C Φ(K−i)C>)−1 +
ρS(K−i)

1/2M(C Φ(K−i)C>)−1/2.
Therefore, if no such P exists, the satisfaction function is the
empty-set. Otherwise, it can be written as in (10). �

Section 4 of [14] provides a scaled min-max algorithm
which generates a matrix P > 0 satisfying the conditions
in Proposition 2, when the problem has a solution. It is
noteworthy that our design remains centralized although its
implementation is distributed. Indeed, in order to find a K
which satisfies Proposition 1, we need to find the gains Ki for
all agents. To do that, we propose an algorithm which we call
the Sequential Satisfaction Response (SSR) in order to achieve
this task. This algorithm is inspired by the sequential best
response algorithm that is commonly found in the literature on
game theory [13]. In contrast with the classical best response
algorithm where the actions of players must converge over
iterations, our algorithm only needs to satisfy K ∈ K∗ to
have succeeded.

Data: Initialize K with synchronizing gains;
Data: i=1;j=0;
while K /∈ K∗ (verified using Proposition 1) do

if P > 0 exists satisfying Proposition 2 given K−i
then

Update Ki using (10) and a feasible P ;
j=0 ;

else
j=j+1;
if j ≥ n then

Result: Stop algorithm, failure to find SE.
end

end
i = (i mod n) + 1

end
Result: Found an equilibrium.

Algorithm 1: Sequential satisfaction response

Algorithm 1 applies the scaled min-max algorithm in [14]
repeatedly to find P > 0 satisfying the conditions in Propo-
sition 2 given K−i. This results in a gain for player i which
satisfies his cost requirement. The player index is then updated
to the next player and this procedure is repeated until K is a
satisfaction equilibrium. Even if the algorithm fails to find a
gain for a player i, it does not immediately stop and the player
index is updated. However, if all n players consecutively fail to
find a gain Ki, the algorithm is stopped. Indeed, it is possible
that the algorithm never stops as only a certain number of
players are satisfied with this set cycling or not changing.
We have no theoretical guarantee that this algorithm will find
a satisfaction equilibrium even if |K∗| > 0. In case of the
algorithm failing, a larger γ may be considered in order to
find a satisfaction equilibrium for the game with the larger
γ. This equilibrium may then be used as input for initializing
the algorithm with the smaller γ. Future works will explore
improving the algorithm by adapting γ, but theoretical results



are hard to obtain due to the conditions for finding the gains
for just one player being non-convex and requiring the min-
max algorithm. This difficulty is inherited from the problem
of static output feedback design for linear systems and is not
related to the multi-agent systems.

If all agents have the same structure of yi and the dynamics
are identical even if the indices are permuted the computation
load is reduced by a factor of n. This type of graphs is
called in the literature (see [15]) prime w.r.t. the modular
decomposition. This means that the agents react the same way,
so it allows us to look for a symmetric satisfaction equilibrium,
i.e. we look for K0 such that 1>n ⊗K0 ∈ K. For a given K0,
we can apply Proposition 1 to get that 1>n ⊗K0 ∈ K∗ if and
only if there exists P > 0 such that

PAi,cl(1
>
n ⊗K0) +Ai,cl(1

>
n ⊗K0)>P

+C>i,clCi,cl < 0, ‖P‖ < γ.
(11)

for any i ∈ V . Due to symmetry, we have Ai,cl = Aj,cl and
Ci,cl = Cj,cl for any i, j ∈ V . Therefore instead of having to
solve n LMIs, we just need to solve one. We can also simplify
the synthesis with the following result.

Corollary 1. Let the network be prime w.r.t. the modular
decomposition. Under Assumptions 1, an SE for dynamics (1)
with individual costs (2) is given by 1>n ⊗K0 if and only if
there exists P > 0, ||M || < 1 such that

P−1 ∈Xi(1
>
n−1 ⊗K0), P ∈ Yi(1

>
n−1 ⊗K0)

K0 = −ρiB>i Φi(1
>
n−1 ⊗K0)C>i (CiΦi(1

>
n−1 ⊗K0)C>i )−1

+ρiSi(1
>
n−1 ⊗K0)1/2M(CiΦi(1

>
n−1 ⊗K0)C>i )−1/2

(12)
with Xi,Yi,Ci,Φi, Si, ρ as defined in Proposition 2 ∀i ∈ V .

Proof. The above result is obtained by directly applying
Proposition 2 and by exploiting the fact that Ki = K0 and
K−i = 1>n−1 ⊗ K0. Additionally, the closed-loop dynamics
are identical for all i ∈ V . �

Corollary 1 implies that for K0 can be found as a solution
to a fixed point equation. Algorithm 1 can be used in a
simpler manner to find a suitable K0 by fixing all agents
outside an arbitrary agent i to have some gain K0 and then
finding Ki using Proposition 2. Then K0 is updated to the
Ki and the process is repeated until 1>n ⊗ K0 ∈ K∗. The
main motivation for considering this special case is that the
number of iterations does not scale with n as it does in the
general case. For large scale networks, obtaining the gains
via the general algorithm may be computationally infeasible
as both the system matrix dimensions and the iterations scale
with n.

V. NUMERICAL ILLUSTRATIONS

In this section, we provide some numerical examples to
illustrate the effectiveness of the algorithm proposed in this
manuscript. Without any loss of generality, we consider only
the following simple agent dynamics (1) with A = 1, B = 1
and Ri = 1 for all i. We use K∗i and J∗i for the control gains
and the corresponding costs obtained using the proposed

strategy. On the other hand, Ko
i and Jo

i are the control gains
and the corresponding costs obtained using the strategy in
[10]. For both graphs, we provide the a posteriori values
of cost functions obtained by implementing the controller
gains profile K. The costs are computed by using the initial
condition x0 and the state of the network. Through the
second graph, we show that the constraints are still satisfied
independently of the initial conditions.

A. Ring directed graph
Let us first consider a simple ring directed graph with 5

agents described by the following Laplacian matrix:

L =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1

 (13)

For the simulation, we use γ = 1.3 and the results of the
proposed algorithm are summarized in the table below.

1 2 3 4 5
xi(0) 0.67 0.67 0.31 0.01 0.02
K∗

i 3.54 3.54 3.52 3.51 3.60
J∗
i 0.46 0.64 0.33 0.51 0.95

We note that, due to the regularity of the graph the five
gains are quite similar and the costs are bounded by γ. The
synchronizing trajectories of the 5 agents are plotted in Fig. 1
and the corresponding control inputs are in Fig. 2.
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Fig. 1. Trajectories of the agents for the ring directed graph given by (13).

B. Undirected graph: comparison with [10]
In the following we consider an undirected graph with

8 agents in order to compare our design strategy with the
one proposed in [10]. It is noteworthy that [10] proposes a
decentralized control achieving synchronization with global
performance guarantees for singularly perturbed multi-agents
systems interacting over networks reprezented by undirected
fixed graphs. It is imposed that all agents applies the same
control gain and the synchronizing control design is reduced
to a stabilizing control design for an uncertain system with
bounded uncertainties. These uncertainties are related to the
bounds on the maximum and minimum (non-zero) eigenvalues
of the Laplacian. Solving a Riccati equation, one finds a
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Fig. 2. Controls ui for the ring directed graph given by (13).

common gain for all agents ensuring that the global cost is
upper-bounded. In order to highlight the improvements that we
can obtain by using the approach proposed, in this simulation,
we consider a graph in which the agent centralities are very
different. For the example above, the controller gains are
almost similar meaning that the strategy proposed in [10]
might provide good results. However if the undirected graph
G is associated to the following Laplacian

L =



7 −1 −1 −1 −1 −1 −1 −1
−1 2 0 0 0 0 0 −1
−1 0 2 0 0 0 0 −1
−1 0 0 2 0 0 0 −1
−1 0 0 0 2 0 0 −1
−1 0 0 0 0 2 0 −1
−1 0 0 0 0 0 2 −1
−1 −1 −1 −1 −1 −1 −1 7


, (14)

one has no reason to apply the same controller gain to
all the agents. For the simulation, we use γ = 0.6 and the
results of both strategies are summarized in the table below.
We test 3 different initial conditions by varying x0. We
use K∗ = (0.39, 1.30, 1.30, 1.30, 1.30, 1.30, 1.30, 0.39)
found using Algorithm 1, and Ko =
(3.09, 3.09, 3.09, 3.09, 3.09, 3.09, 3.09, 3.09) based on
the results in [10].

γ = 0.6 1 2 3 4 5 6 7 8
Case 1 xi(0) 0.50 0.1 0.4 0.1 0.4 0.4 0.1 0.04

J∗
i 0.41 0.13 0.10 0.13 0.10 0.10 0.13 0.35
Jo
i 1.17 0.14 0.11 0.14 0.11 0.11 0.14 0.88

Case 2 xi(0) 0.04 0.53 0.04 0.46 0.04 0.46 0.04 0.53
J∗
i 0.35 0.21 0.18 0.12 0.18 0.12 0.18 0.40
Jo
i 0.80 0.27 0.21 0.15 0.21 0.15 0.21 1.05

Case 3 xi(0) 0.44 0.47 0.03 0.07 0.02 0.54 0.06 0.54
J∗
i 0.16 0.05 0.33 0.26 0.35 0.10 0.28 0.29
Jo
i 0.45 0.15 0.34 0.26 0.36 0.26 0.28 1.10

TABLE I
UNDIRECTED GRAPH : INDIVIDUAL COST J∗

i FOR DIFFERENT INITIAL
CONDITIONS, γ = 0.6

In Table I, J∗i and Jo
i are respectively the costs incurred

by agent i using our strategy and the one in [10]. Since [10]
bounds a global cost, we can compare their global cost to a
total cost evaluated as nγ. The guaranteed overall bounds are
nγ = 4.8, for our strategy and 10.8 for the one in [10]. As
seen from the table, each of individual costs are bounded by
γ for several possible initial conditions.

VI. CONCLUSION

We study the problem of static-output feedback
synchronization in a multi-agent system, which guarantees
individual performance bounds. This problem is modeled as
a satisfaction game and we seek gains that are in satisfaction
equilibrium, i.e. the cost associated to each agent is upper-
bounded by a given γ. In this context, we provide conditions
in the form of LMIs which can verify if a given set of
gains are in satisfaction equilibrium. We provide a method
to generate the gain for a certain agent when the gains for
the other agents are known and this is used in an iterative
algorithm which can synthesize a satisfaction equilibrium.
Numerical examples illustrate our algorithm and compare our
results with a previous result found in the literature.
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[10] J. B. Rejeb, I.-C. Morărescu, and J. Daafouz, “Control design with
guaranteed cost for synchronization in networks of linear singularly
perturbed systems,” Automatica, vol. 91, pp. 89–97, 2018.

[11] S. Ross and B. Chaib-draa, “Satisfaction equilibrium: Achieving cooper-
ation in incomplete information games,” in Conference of the Canadian
Society for Computational Studies of Intelligence. Springer, 2006, pp.
61–72.

[12] S. M. Perlaza, H. Tembine, S. Lasaulce, and M. Debbah, “Quality-of-
service provisioning in decentralized networks: A satisfaction equilib-
rium approach,” IEEE Journal of Selected Topics in Signal Processing,
vol. 6, no. 2, pp. 104–116, 2012.

[13] S. Lasaulce and H. Tembine, Game theory and learning for wireless
networks: fundamentals and applications. Academic Press, 2011.

[14] T. Iwasaki, R. Skelton, and J. Geromel, “Linear quadratic suboptimal
control with static output feedback,” Systems & Control Letters, vol. 23,
no. 6, pp. 421–430, 1994.

[15] A. Brandstadt, V. B. Le, and J. Spinrad, Graph Classes: A Survey.
SIAM Monographs on Discrete Mathematics and Applications, 1999.


