
HAL Id: hal-02390655
https://hal.science/hal-02390655

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Occam’s Razor applied to the Petri net coverability
problem

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre

To cite this version:
Thomas Geffroy, Jérôme Leroux, Grégoire Sutre. Occam’s Razor applied to the Petri net cover-
ability problem. Theoretical Computer Science, 2018, 750, pp.38-52. �10.1016/j.tcs.2018.04.014�.
�hal-02390655�

https://hal.science/hal-02390655
https://hal.archives-ouvertes.fr

Occam’s Razor Applied to the Petri Net Coverability
Problem

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre
Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract

The verification of safety properties for concurrent systems often reduces to the
coverability problem for Petri nets. This problem was shown to be ExpSpace-
complete forty years ago. Driven by the concurrency revolution, it has regained
a lot of interest over the last decade. In this paper, we propose a generic and
simple approach to solve this problem. Our method is inspired from the recent
approach of Blondin, Finkel, Haase and Haddad presented at TACAS in 2016.
Basically, we combine forward invariant generation techniques for Petri nets with
backward reachability for well-structured transition systems. An experimental
evaluation demonstrates the efficiency of our approach.

Keywords: Petri net, coverability problem, model-checking, invariant,
pre-processing

1. Introduction

Context. The analysis of concurrent systems with unboundedly many processes
classically uses the so-called counter abstraction [1]. The main idea is to forget
about the identity of each process, so as to make processes indistinguishable.
Assuming that each process is modeled by a finite-state automaton, it is then
enough to count, for each state q, how many processes are in state q. The
resulting model is a Petri net, with no a priori bound on the number of tokens.
The verification of a safety property on the original concurrent system (e.g.,
mutual exclusion) translates into a coverability question on the Petri net: Is it
possible to reach a marking that is component-wise larger than a given marking?

Related work. Karp and Miller [2] proved in 1969 that coverability is decidable
(but their algorithm is not primitive recursive), Lipton showed that it requires at
least exponential space [3], and Rackoff showed that it only requires exponential
space [4]. Despite these somewhat negative results, and driven by the concurrency
revolution, the coverability problem has regained a lot of interest over the last
decade. Recent efficient approaches include target set widening [5] and structural
analysis mixed with SMT solving [6, 7]. We believe that the time is ripe to

Preprint submitted to Elsevier March 9, 2018

experiment with new ideas and prototypes for coverability, and to apply them
to real-world concurrent systems.

Our work builds notably on [7], which proposes a new approach to the
coverability problem and its implementation. The approach of [7] is conceptually
simple and exploits recent advances in the theory of Petri nets as well as the
power of modern SMT-solvers. In a nutshell, they leverage recent results on
coverability in continuous Petri nets [8] to over-approximate coverability under
the standard semantics: any marking that is not coverable in a continuous Petri
net is also not coverable under the standard semantics. This observation is then
exploited inside a backward-coverability framework [9].

Our contribution. We present a generic backward coverability algorithm that
relies on an over-approximation of the set of coverable markings — this will be
in practice a downward-closed invariant — to prune the exploration of the state
space. Our algorithm is in fact a family of algorithms parametrized by over-
approximations. It generalizes the QCover algorithm presented in [7]. Whereas
QCover is based on invariants obtained from recent results on continuous Petri
nets [8], we present two classical methods for computing over-approximations
that can be used in our pruning exploration: the state equation for Petri nets [10],
and data-flow sign analysis [11]. We also show how to leverage sign analysis to
simplify Petri net coverability queries.

We have implemented our algorithm as a variant of QCover [12] that we call
ICover [13]. On the 143 Petri net coverability questions that QCover solved, the
tool QCover took 9729 seconds, while ICover used only 5213 seconds.

Additionally, we have implemented a pre-processing algorithm that reduces
the number of places and transitions of a Petri net without modifying coverability
questions. It follows that it can be used safely with any coverability tool. This
pre-processing is based on the computation of so-called omega places. These
are places that can receive arbitrarily larger number of tokens. With this
improvement, ICover and QCover terminate on additional problems. Thanks to
all our modifications, the total time to solve the instances is divided by a factor
of five.

Outline. Sections 2 and 3 recall the Petri net coverability problem and the
classical backward reachability approach to solve it. Section 4 presents our
backward coverability algorithm with pruning based on over-approximations
of the coverability set. In Sections 5 and 6, we recall two classical methods
for computing such over-approximations, namely the state (in-)equation and
sign analysis. Section 7 is dedicated to the experimental evaluation of the tool
ICover. In Section 8, we provide mathematical foundations for explaining our
empirical good results based on the notion of limit-reachability in continuous
Petri nets [14]. Pre-processing based on omega places is presented in Section 9.

2

p1

t1

p2

t2

t3

p3

2

2

Figure 1: Simple Petri net example

2. The Coverability Problem for Petri nets

A Petri net is a tuple N = (P, T, F, Init) comprising a finite set P of
places, a finite set T of transitions disjoint from P , a flow function F from
(P ×T)∪ (T ×P) to N, and a set Init ⊆ NP of initial markings. It is understood
that NP denotes the set of total maps from P to N. Elements of NP are called
markings. Intuitively, a marking specifies how many tokens are in each place of
the net. Tokens are consumed and produced through the firing of transitions. A
transition t ∈ T may fire only if it is enabled, meaning that each place p contains
at least F (p, t) tokens. Firing an enabled transition t modifies the contents of
each place p by first removing F (p, t) tokens and then adding F (t, p) tokens. To
clarify this intuitive description of the Petri net semantics, we introduce, for
each transition t ∈ T , the t-step binary relation t−→ over NP , defined by

m
t−→ m′ ⇔ ∀p ∈ P : m(p) ≥ F (p, t) ∧m′(p) = m(p)− F (p, t) + F (t, p)

The one-step binary relation → is the union of these t-step relations. Formally,
m → m′ ⇔ ∃t ∈ T : m t−→ m′. The many-step binary relation ∗−→ is the
reflexive-transitive closure of →.

Example 2.1. Figure 1 depicts a simple Petri net N = (P, T, F, Init) with
places P = {p1, p2, p3}, transitions T = {t1, t2, t3} and flow function F such
that F (p1, t1) = 1, F (p2, t2) = 1, F (p3, t3) = 1, F (t1, p2) = 1, F (t2, p3) = 2,
F (t3, p2) = 2, and F (p, t) = F (t, p) = 0 for all other cases. The set of initial
markings is Init = {(1, 0, 0)}. The sequence of transitions t1t2t3 may fire from
the initial marking. Indeed, (1, 0, 0) t1−→ (0, 1, 0) t2−→ (0, 0, 2) t3−→ (0, 2, 1).

One of the most fundamental verification questions on Petri nets is coverability.
In its simplest form, the coverability problem asks whether it is possible, by
firing a sequence of transitions, to put a token in a given place. In essence, the
coverability problem for Petri nets corresponds to the control-state reachability
problem for other models of computation, such as counter machines, which are
equipped with control states. The formal definition of coverability relies on a
partial order over markings, defined hereafter.

Let ≤ denote the usual total order on N. We extend ≤ over NP component-
wise, by m ≤ m′ ⇔ ∀p ∈ P : m(p) ≤ m′(p). This extension is a partial order
over NP . Given two markings m and m′ in NP , we say that m covers m′ when

3

m ≥ m′. The coverability problem asks, given a Petri net N = (P, T, F, Init)
and a target marking mfinal ∈ NP , whether there exist a marking m ∈ NP and
an initial marking minit ∈ Init such that minit

∗−→ m and m ≥ mfinal. The
main goal of this paper is to provide a simple, yet efficient procedure for solving
this problem. Our method is inspired from the recent approach of [7]. Basically,
we combine forward invariant generation techniques for Petri nets with backward
reachability for well-structured transition systems [9, 15]. Before delving into
the details, we need some additional notations.

For a transition t ∈ T and a set S ⊆ NP of markings, we let pretN (S) denote
the predecessors of S via the transition t. Similarly, preN (S) and pre∗N (S)
denote the one-step and many-step predecessors of S, respectively. Formally, the
functions pretN , preN and pre∗N from 2NP to 2NP are defined by

pretN (S) = {m ∈ NP | ∃m′ ∈ S : m t−→ m′}
preN (S) = {m ∈ NP | ∃m′ ∈ S : m→ m′}
pre∗N (S) = {m ∈ NP | ∃m′ ∈ S : m ∗−→ m′}

Given a subset S ⊆ NP of markings, we let ↑S and ↓S denote its upward
closure and downward closure, respectively. These are defined by

↑S = {u ∈ NP | ∃m ∈ S : u ≥ m}
↓S = {d ∈ NP | ∃m ∈ S : d ≤ m}

A subset S ⊆ NP is called upward-closed when S = ↑S, and it is called downward-
closed when S = ↓S.

Notation 2.2. For the remainder of the paper, to avoid clutter, we will simply
write ↑m in place of ↑{m} for singletons, when this causes no confusion.

Recall that the coverability problem asks whether there exists minit ∈ Init
and a marking m ∈ NP such that minit

∗−→ m and m ≥ mfinal. This problem
is equivalently phrased as the question whether Init intersects pre∗N (↑mfinal).
This formulation can be seen as a backward analysis question. We may also
phrase the coverability problem in terms of a forward analysis question, using
the notion of coverability set.

Given a Petri net N = (P, T, F, Init), the coverability set of N is the set
CovN = ↓{m ∈ NP | ∃minit ∈ Init,minit

∗−→ m}. It is readily seen that the
coverability problem is equivalent to the question whether mfinal belongs to
CovN . We are now equipped with the necessary notions to present our mixed
forward/backward approach for the coverability problem.

3. Classical Backward Coverability Analysis

The classical backward reachability approach for the coverability problem [9,
15] consists in computing a growing sequence U0 ⊆ U1 ⊆ · · · of upward-closed
subsets of NP , that converges to pre∗N (↑mfinal). The sequence (Uk) is defined

4

by Uk = pre≤kN (↑mfinal), where the notation pre≤kN stands for the predecessors
in at most k steps. Formally, given a set S ⊆ NP of markings, the function
pre≤kN is defined by

pre≤kN (S) = S ∪ preN (S) ∪ · · · ∪ prekN (S)

Each set Uk is upward-closed because preN preserves upward closure. The
convergence of the sequence (Uk) is guaranteed by the following lemma.

Lemma 3.1. Every growing sequence of upward-closed subsets of NP is ulti-
mately stationary.

Proof. By contradiction, assume that there exists an infinite strictly growing
sequence U0 ⊂ U1 ⊂ · · · of upward-closed subsets of NP . For each k, there exists
mk ∈ Uk+1 \Uk. As the partial order ≤ on NP is a well-quasi-order by Dickson’s
Lemma, there exists h < k such that mh ≤ mk. It follows that mk ∈ Uh+1 since
Uh is upward-closed, which contradicts mk 6∈ Uk.

Of course, we cannot directly compute the sets Uk since they may be infinite
(in fact, they are either empty or infinite). Instead, we can compute finite sets
Ak ⊆ NP such that Uk = ↑Ak. The existence of such finite sets is guaranteed
by the following lemma. A basis of an upward-closed subset U ⊆ NP is any set
A ⊆ NP such that U = ↑A. Recall that a minimal element of a subset S ⊆ NP
is any m ∈ S such that u ≤ m⇒ u = m for every u ∈ S.

Lemma 3.2. For every subset S ⊆ NP , the set MinS of its minimal elements
is finite and satisfies ↑S = ↑MinS.

Proof. The partial order ≤ on NP is a well-quasi-order by Dickson’s Lemma.
Therefore, the set MinS of minimal elements of S is necessarily finite. Moreover,
S ⊆ ↑MinS since ≤ is well-founded. It follows that ↑S = ↑MinS.

Corollary 3.3. Every upward-closed subset U ⊆ NP admits a finite basis.

Recall that we want to compute finite bases Ak of the upward-closed sets Uk.
To see how Ak+1 can be computed from Ak, we introduce, for each transition
t ∈ T , the covering predecessor function cpretN : NP → NP defined by

cpretN (m)(p) = F (p, t) + max(0,m(p)− F (t, p))

Informally, cpretN (m) is the least marking that can cover m in one step by firing
the transition t. This property will be formally stated in Lemma 3.4. The function
cpretN is extended to sets of markings by cpretN (S) = {cpretN (m) | m ∈ S}, and
is further extended to all transitions by cpreN (S) = {cpretN (m) | t ∈ T,m ∈ S}.

Lemma 3.4. It holds that pretN (↑m) = ↑cpretN (m) for every marking m ∈ NP .

Proof. Let u ∈ pretN (↑m). There exists v ≥ m such that u t−→ v. Consider a
place p ∈ P . It holds that u(p) ≥ F (p, t) and v(p) = u(p) − F (p, t) + F (t, p)
since u t−→ v. We consider two cases.

5

• If m(p) ≤ F (p, t) then cpretN (m)(p) = F (p, t) ≤ u(p).

• If m(p) ≥ F (p, t) then cpretN (m)(p) = F (p, t) + m(p) − F (t, p). Since
v ≥ m, we get that cpretN (m)(p) ≤ F (p, t) + v(p)− F (t, p) = u(p).

In both cases, we obtain that cpretN (m)(p) ≤ u(p). We have thus shown that
u ∈ ↑cpretN (m).

Conversely, let u ∈ ↑cpretN (m). This means that u(p) ≥ cpretN (m)(p) for
every place p ∈ P . Therefore, u(p) ≥ F (p, t) and u(p) ≥ F (p, t) +m(p)−F (t, p).
It follows that u t−→ v for the marking v ≥ m defined by v(p) = u(p)− F (p, t) +
F (t, p). We have thus shown that u ∈ pretN (↑m).

Corollary 3.5. It holds that preN (↑S) = ↑cpreN (S) for every subset S ⊆ NP .

We now have the necessary ingredients to define a computable sequence (Ak)
of finite subsets of NP such that Uk = ↑Ak for all k. The sequence (Ak) is
defined as follows:

A0 = {mfinal}
Ak+1 = Min (cpreN (Ak) ∪Ak)

The classical backward coverability algorithm [9, 15] consists in computing
A0, A1, . . . until a fixpoint is reached, i.e., Ak+1 = Ak. The resulting set Ak is
a basis of pre∗N (↑mfinal), and so the coverability question reduces to the check
whether Init intersects ↑Ak.

4. Backward Coverability Analysis with Pruning

This section presents our method to solve the coverability problem for Petri
nets. Our approach can be seen as a refinement of the classical backward
coverability analysis presented in Section 3. We start with the mathematical
foundations of our approach, with no regard for implementability. We will discuss
implementation issues at the end of this section.

The sequence (Ak) of the classical backward coverability analysis is purely
backward. It does not exploit any information that one may already have on
the Petri net under analysis. Here, we modify the sequence (Ak) in order to
leverage an a priori known over-approximation of the coverability set. In practice,
this means that we narrow the backward reachability search by pruning some
markings that are known to be not coverable.

Assume that we are given a set I ⊆ NP of “potentially useful” markings. We
modify the sequence (Ak) into the sequence (BIk) defined by:

BI0 = {mfinal} ∩ I
BIk+1 = Min ((cpreN (BIk) ∩ I) ∪ BIk)

On the contrary to the classical sequence (Ak), BIk+1 does not consider all
one-step predecessors of BIk , but discards those that are not in I. Note that by
taking I = NP , we obtain the same sequence as before, i.e., BNP

k = Ak for all k.

6

Obviously, the usefulness (BIk) crucially depends on the choice of I. For
instance, if I does not contain mfinal then BIk = ∅ regardless of whether mfinal

belongs to CovN or not. Intuitively, for the sequence (BIk) to be useful, we need
it to preserve coverability in the following sense: if mfinal belongs to CovN
then Init intersects ↑BIk for some k. A natural requirement for I would be
that it contains the reachability set of N , that is the set {m ∈ NP | ∃minit ∈
Init : minit

∗−→ m}. But, as shown in Example 4.1 below, this requirement does
not ensure that (BIk) preserves coverability. Instead of the reachability set, we
require in Lemma 4.2 that I contains the coverability set.

Example 4.1. Consider the very simple Petri net with only one place p, one
transition t such that F (p, t) = 1 and F (t, p) = 3, and one initial marking
minit = p. Since p t−→ 3p t−→ 5p, we get that mfinal = 4p belongs to CovN . Now
consider the set I = {p, 3p, 5p, . . .}. It is readily seen that I is the reachability
set of N . But since mfinal 6∈ I, we get that BIk = ∅ for all k. So (BIk) does not
preserve coverability.

Lemma 4.2. If CovN ⊆ I then it holds that

pre≤kN (↑mfinal) ∩ CovN ⊆ ↑BIk ⊆ pre≤kN (↑mfinal)

for all k ∈ N.

Proof. Both inclusions are proved by induction on k. We first prove the second
inclusion. The basis holds because ↑BI0 ⊆ ↑mfinal = pre≤0

N (↑mfinal). For the
induction step, assume that ↑BIk ⊆ pre

≤k
N (↑mfinal). We get that

↑BIk+1 = ↑(cpreN (BIk) ∩ I) ∪ ↑BIk [Lemma 3.2]
⊆ ↑cpreN (BIk) ∪ ↑BIk
= preN (↑BIk) ∪ ↑BIk [Corollary 3.5]
⊆ pre≤k+1

N (↑mfinal) [↑BIk ⊆ pre≤kN (↑mfinal)]

We now prove the first inclusion. We consider two cases for the basis. If
mfinal ∈ I then (pre≤0

N (↑mfinal)∩CovN) ⊆ ↑mfinal = ↑BI0 . If mfinal 6∈ I then
mfinal 6∈ CovN . Moreover, since CovN is downward-closed, ↑mfinal ∩ CovN is
empty. Therefore, pre≤0

N (↑mfinal) ∩ CovN is empty, and so it is contained in
↑BI0 . For the induction step, assume that (pre≤kN (↑mfinal)∩CovN) ⊆ ↑BIk . The
definition of (BIk) entails, with Lemma 3.2, that ↑BIk ⊆ ↑BIk+1. So we only need
to prove that (prek+1

N (↑mfinal) ∩ CovN) ⊆ ↑BIk+1. Let us first observe that

preN (S) ∩ CovN ⊆ preN (S ∩ CovN)

for every subset S ⊆ NP . This observation follows from the fact that m ∈ CovN
and m→ m′ entails that m′ ∈ CovN . It follows that

preN (↑BIk) ⊇ prek+1
N (↑mfinal) ∩ CovN (1)

7

We get that

↑BIk+1 = ↑(cpreN (BIk) ∩ I) ∪ ↑BIk [Lemma 3.2]
⊇ ↑(cpreN (BIk) ∩ CovN) [CovN ⊆ I]
⊇ (↑cpreN (BIk)) ∩ CovN [CovN = ↓CovN]
= preN (↑BIk) ∩ CovN [Corollary 3.5]
⊇ prek+1

N (↑mfinal) ∩ CovN [Equation (1)]

This concludes the proof of the lemma.

Lemma 4.3. The sequence (BIk) is ultimately stationary.

Proof. The definition of (BIk) entails, with Lemma 3.2, that the sequence of
upward-closed sets (↑BIk) is growing. It follows from Lemma 3.1 that (↑BIk)
is ultimately stationary. The observation that BIk = Min(↑BIk) for every k
concludes the proof of the lemma. This observation is an easy consequence of
the fact that

Min ↑S = MinS = Min(MinS)

for every subset S ⊆ NP . The proof of this fact is left to the reader.

Lemma 4.4. Assume that CovN ⊆ I. It holds that mfinal ∈ CovN if, and only
if, there exists k ∈ N such that ↓Init intersects BIk.

Proof. Observe that pre∗N (↑mfinal) =
⋃
k pre

≤k
N (↑mfinal). We derive from

Lemma 4.2 that

pre∗N (↑mfinal) ∩ CovN ⊆
⋃
k

↑BIk ⊆ pre∗N (↑mfinal)

Recall that mfinal ∈ CovN if, and only if, Init ∩ pre∗N (↑mfinal) is non-empty.
Since Init ⊆ CovN , we get that mfinal ∈ CovN if, and only if, Init∩

⋃
k ↑BIk is

non-empty. This last condition is equivalent to ↓Init ∩
⋃
k B

I
k is non-empty.

We show the correctness of the algorithm by first providing a description of
BIk+1 with respect to BIk that matches the way it is computed in our algorithm.
In fact, by observing that Min(X ∪ Y) = Min((X\ ↑ Y) ∪ Y) for any set X,Y
of configurations, we derive the following equalities for every k ∈ N where N I

k

and P Ik are some finite sets:

N I
k = cpreN (BIk) \ ↑BIk

P Ik = N I
k ∩ I

BIk+1 = Min(BIk ∪ P Ik)

We observe that the sets N,B, P computed by the algorithm during the kth
execution of the main loop are the sets N I

k , B
I
k , P

I
k .

The termination and the correctness of the algorithm are proved thanks to
the following lemma:

8

ICover(N ,mfinal, I)
Input: A Petri Net N = (P, T, F, Init), a target marking mfinal ∈ NP

and a set I such that CovN ⊆ I
Output: Whether there exist two markings minit ∈ Init and m ∈ NP

such that minit
∗−→ m and m ≥ mfinal.

1 begin
2 if mfinal ∈ I then
3 B ← {mfinal}
4 else
5 B ← ∅
6 while ↓Init ∩B = ∅ do
7 N ← cpreN (B) \ ↑B /* new predecessors */
8 P ← N ∩ I /* prune uncoverable markings */
9 if P = ∅ then

10 return False

11 B ← Min(B ∪ P)
12 return True

Lemma 4.5. BIk = BIk+1 if, and only if, P Ik = ∅.

Proof. Assume first that BIk = BIk+1. Since BIk+1 = Min(BIk∪P Ik), it follows that
P Ik ⊆ ↑BIk+1. From BIk = BIk+1, we get P Ik ⊆ ↑BIk. Moreover, from P Ik ⊆ N I

k

and N I
k ∩ ↑BIk = ∅, we get P Ik ∩ ↑BIk = ∅. It follows that P Ik = ∅. Conversely,

if P Ik = ∅ we get BIk+1 = min(BIk) = BIk since any B set is defined as a set of
minimal elements.

Theorem 4.6. The procedure ICover terminates on every input and is correct.

Proof. For the termination, Lemma 4.3 shows that the sequence (BIk)k∈N is
ultimately stationary. It follows that there exists k ∈ N such that BIk+1 = BIk.
Lemma 4.5 shows that P Ik = ∅. Therefore the algorithm cannot execute the main
loop more than k times. Hence, the termination is guaranteed. The correctness
directly follows from Lemmas 4.4 and 4.5.

Remark 4.7. The algorithm ICover can be implemented just by assuming that
the membership problem for I and ↓Init are decidable. In fact, line 7 can be
implemented by removing from cpreN (B) the markings m such that m ≥ b for
some b ∈ B.

Remark 4.8. In the sequel, we assume for effectivity reasons that sets of
initial markings are denoted by conjunctions of linear inequalities of the form
minit(p) ≤ n where p ∈ P and n ∈ N. In practice, in the file format spec used
for the benchmarks of Section 7, the set of initial markings is given by a sequence
of constraints, for each place p, of the type p op n, where op ∈ {=,≤,≥} and

9

n ≥ 0. For the coverability problem, considering ↓Init instead of Init does not
change the result. This is what we did for the experiments. To extract Init
from the format spec, we proceed as follows: if for a place p the constraint is
of the form p ≤ n or p = n, then we have the inequalities minit(p) ≤ n and if
the constraint is of the form p ≥ n, then we do not have any constraint on it.
Observe that lines 2, 6 and 8 are know decidable.

Remark 4.9. Petri nets obtained by translation from high-level concurrent
programs often contain transitions that cannot be fired from any reachable
marking. An over-approximation of CovN can be used in a pre-processing
algorithm to filter out some of them. Basically, if a transition t is not enabled in
any marking of the set I, then it can be safely removed without modifying the
coverability set. Algorithmically, when I is downward-closed, detecting such a
property just reduces to a membership problem in I. In fact, a transition t is
enabled in a downward-closed set of markings D if, and only if, D contains the
marking mt defined by mt(p) = F (p, t) for every place p.

The algorithm ICover is parametrized by a set of markings I that over-
approximates the coverability set. This set must be carefully selected. On the
one hand, it must be precise enough to discard markings (at line 8) and accelerate
the main loop. On the other hand, the membership problem in I must be very
efficient to avoid slowing down the main loop. The next two sections show how to
generate such sets with a good tradeoff. Since the over-approximations that we
will define are downward-closed, it will be possible to easily apply Remark 4.9.

We focus, in the remainder of the paper, on so-called downward-closed
invariants. Formally, an invariant for a Petri net N = (P, T, F, Init) is any
subset I ⊆ NP that contains every reachable marking, i.e., every marking m such
that minit

∗−→ m for some minit ∈ Init. Notice that downward-closed invariants
are exactly the downward-closed over-approximations of the coverability set.

Remark 4.10. We can combine different over-approximations I1, I2, . . . of the
coverability set by taking their intersection.

5. State Inequation for Downward-Closed Invariants

The state equation [10] provides a simple over-approximation of Petri net
reachability relations that was successfully used in two recent algorithms for
deciding the coverability problems [6, 7]. This equation is obtained by introducing
the total function ∆(t) in ZP called the displacement of a transition t and defined
for every place p by ∆(t)(p) = F (t, p)− F (p, t). Let us assume that a marking
mfinal is in the coverability set of a Petri net N . It follows that there exist an
initial marking minit, a word t1 . . . tk of transitions, and a marking m ≥ mfinal

such that minit
t1−→ · · · tk−→ m. We derive the following relation:

minit + ∆(t1) + · · ·+ ∆(tk) = m ≥ mfinal

10

By reordering the sum ∆(t1) + · · ·+ ∆(tk), we can group together the displace-
ments ∆(t) corresponding to the same transition t. Denoting by λ(t) the number
of occurrences of t in the word t1 . . . tk, we get:

minit +
∑
t∈T

λ(t)∆(t) ≥ mfinal (2)

The relation (2) is called the state inequation for the coverability problem. Notice
that a similar equation can be derived for the reachability problem by replacing
the inequality by an equality. We do not consider this equality in the sequel
since we restrict our attention to the coverability problem. We introduce the
following set IS where Q≥0 is the set of non-negative rational numbers.

IS = {m ∈ NP | ∃minit ∈ Init ∃λ ∈ QT≥0 : minit +
∑
t∈T

λ(t)∆(t) ≥ m} (3)

Proposition 5.1. The set IS is a downward-closed invariant with a polynomial-
time membership problem.

The downward-closed invariant IS contains CovN so we may use it as pa-
rameter to the ICover algorithm of Section 4. A more precise downward-closed
invariant can be obtained by requiring that λ ∈ NT . In particular, the pruned
backward algorithm presented in Section 4 should produce smaller sets of mark-
ings with this more precise invariant. In practice, we do not observe any
significant improvement on a large set of benchmarks. Moreover, whereas the
membership problem of a marking m is decidable in polynomial time when λ
ranges over QT≥0, the problem becomes NP-complete when λ is restricted to NT .

6. Sign Analysis for Downward-Closed Invariants

The invariant presented in the previous section over-approximates the behav-
ior of Petri nets by allowing places to hold negative amounts of tokens. In this
section, we explore another direction by ignoring the precise numbers of tokens
in each place and only accounting for their sign (namely, zero or positive).

We call a place p ∈ P a zero place when m(p) = 0 for every marking
m ∈ CovN . Given a set Z of zero places, we let

IZ = {m ∈ NP |
∧
p∈Z

m(p) = 0} (4)

The set IZ is obviously a downward-closed invariant, hence, it contains CovN .
Moreover, IZ has a linear-time membership problem. So we may use IZ as
parameter to the ICover algorithm of Section 4. The question remains how to
compute a suitable set Z of zero places.

Ideally, we get the most precise over-approximation IZ by taking Z to be the
set of all zero places. However, the question whether a given place is not a zero
place is equivalent to (i.e., logspace interreducible with) the coverability problem,

11

which is the problem that we want to solve in the first place. So we settle for
the computation of a subset of zero places, using data-flow sign analysis [11].

Rephrased in the context of Petri nets, an invariant I is said to be inductive
if m t−→ m′ and m ∈ I implies m′ ∈ I. Sign analysis can be formulated as the
computation of the maximal (for inclusion) subset Z ⊆ P such that the set
IZ defined in Equation (4) is an inductive invariant. The unicity of that set
is immediate since the class of sets Z such that IZ is an inductive invariant is
clearly closed under union. In the sequel, Z denotes the maximal set satisfying
this property, and this maximal set is shown to be computable in polynomial time
thanks to a fixpoint propagation. We introduce the operator propt : 2P → 2P
associated to a transition t and defined for any set Q of places as follows:

propt(Q) =
{
out(t) if in(t) ⊆ Q
∅ otherwise

It is understood that for a transition t ∈ T , in(t) = {p ∈ P | F (p, t) > 0}
and out(t) = {p ∈ P | F (t, p) > 0}. Intuitively, if t is a transition such that
in(t) ⊆ Q then from a marking with large number of tokens in each place of
Q, it is possible to fire t. In particular places q in out(t) cannot be in Z. This
property is formally stated by the following lemma.

Lemma 6.1. We have propt(Q) ⊆ P\Z for every set Q ⊆ P\Z.

Proof. We can assume without loss of generality that in(t) ⊆ Q since otherwise
the set propt(Q) is empty. For the same reason, we can assume that there exists
q ∈ out(t). Let us prove that such a place q cannot be in Z. We introduce the
markings mt and m′t defined by mt(p) = F (p, t) and m′t(p) = F (t, p) for every
p ∈ P . Those markings are the minimal ones satisfying mt

t−→ m′t. Observe
that for every p ∈ Z, we have p ∈ P\Q since Q ∩ Z is empty. It follows that
F (p, t) = 0 for every p ∈ Z. Hence mt is in the inductive invariant IZ . Since
mt

t−→ m′t, we deduce that m′t ∈ IZ . As F (t, q) > 0, we get m′t(q) > 0. Hence
q 6∈ Z.

The set Z can be computed as a fixpoint by introducing the non-decreasing
sequence Q0, Q1, . . . of places defined as follows:

Q0 = {q ∈ P | ∃minit ∈ Init minit(q) > 0}

Qk+1 = Qk ∪
⋃
t∈T

propt(Qk)

Let us notice that the set Q =
⋃
k≥0Qk is computable in polynomial time. The

following lemma shows that Q provides the set Z as a complement.

Lemma 6.2. We have Z = P\Q.

Proof. Since Q0 ⊆ P\Z, Lemma 6.1 shows by induction that Qk ⊆ P\Z for
every k. It follows that Q ⊆ P\Z. We derive Z ⊆ P\Q. The converse inclusion

12

is obtained by proving that the set M = {m ∈ NP |
∧
p∈P\Qm(p) = 0} is an

inductive invariant. First of all, since Q0 ⊆ Q, we deduce that there exists
minit ∈ Init ∩M . Now let us consider m ∈ M and a transition t such that
m

t−→ m′ for some marking m′. Observe that m(p) ≥ F (p, t) for every p ∈ P .
In particular, for p ∈ P\Q, the equality m(p) = 0 implies F (p, t) = 0. Assume
by contradiction that m′ 6∈ M . In that case, there exists q ∈ P\Q such that
m′(q) > 0. Since m′(q) = m(q) + F (t, q) + F (q, t) and m(q) = 0 = F (q, t), we
deduce that F (t, q) > 0. Thus q ∈ propt(Q). By definition of Q, we get q ∈ Q
and we obtain a contradiction. Thus M is an inductive invariant. By maximality
of Z, we get the inclusion P\Q ⊆ Z. Thus Z = P\Q.

Corollary 6.3. The set Z is computable in polynomial time.

As mentioned above, we may use IZ as parameter to the ICover algorithm
of Section 4. In practice, though, we use it as a pre-processing step to simplify
the Petri net under analysis. This was already hinted at in Remark 4.9. The
remainder of this section presents this pre-processing in detail.

Consider a Petri net N = (P, T, F, Init) and two subsets Q ⊆ P and U ⊆ T .
Given a marking m ∈ NP , we let m|Q denote the restriction of m to Q, i.e., the
marking in NQ defined by m|Q(p) = m(p) for every p ∈ Q. The restriction of
the flow function F to Q and U is the function F |Q,U : (Q× U) ∪ (U ×Q)→ N
defined by F |Q,U (p, t) = F (p, t) and F |Q,U (t, p) = F (t, p) for every p ∈ Q and
every t ∈ U . Finally, the restriction of the Petri net N to Q and U is the Petri
net N|Q,U = (Q,U, F |Q,U , Init|Q) where Init|Q = {minit|Q | minit ∈ Init}.

Theorem 6.4. Let Q be a set of places of a Petri net N such that all places
that are not in Q are zero places. Let U denote the set of transitions t of N such
that in(t) ⊆ Q. A marking m is coverable in N if, and only if, m|Q is coverable
in N|Q,U and m(p) = 0 for every place p 6∈ Q.

Proof. Assume that m is coverable in N . There exists m0
t1−→ m1 · · ·

tk−→ mk

in N such that m0 ∈ Init and mk ≥ m. Observe that each mi ∈ CovN ,
hence, mi(p) = 0 for every place p 6∈ Q. It follows that each ti satisfies
in(ti) ⊆ Q, hence, ti ∈ U . The above definition of restriction immediately
entails that m0|Q

t1−→ m1|Q · · ·
tk−→ mk|Q in N|Q,U . Moreover, m0|Q ∈ Init|Q

and mk|Q ≥ m|Q. We have thus shown that m|Q is coverable in N|Q,U . Since
mk ≥ m and mk(p) = 0 for every place p 6∈ Q, we also get that m(p) = 0 for
every place p 6∈ Q.

Conversely, assume that m|Q is coverable in N|Q,U and m(p) = 0 for every
place p 6∈ Q. There exists x0

t1−→ x1 · · ·
tk−→ xk in N|Q,U such that x0 ∈ Init|Q

and xk ≥ m|Q. To show that m is coverable in N , we lift this sequence of steps
into a sequence of steps in N . Let us define the markings m0, . . . ,mk of N by

mi(p) =
{
xi(p) if p ∈ Q
F (t1, p) + · · ·+ F (ti, p) otherwise

13

It is understood that F denotes the flow function of N . Since each ti is a
transition in U , it holds that F (p, ti) = 0 for every place p 6∈ Q. It follows
that m0

t1−→ m1 · · ·
tk−→ mk in N . Since xk ≥ m|Q and m(p) = 0 for every

place p 6∈ Q, we get that mk ≥ m. It remains to show that m0 ∈ Init. Recall
that x0 ∈ Init|Q. This means that x0 = minit|Q for some minit ∈ Init. Since
minit ∈ CovN , minit(p) = 0 for every place p 6∈ Q. It follows that minit = m0,
which concludes the proof.

Remark 6.5. The above theorem allows us to simplify the input to the cover-
ability problem as follows. Given a Petri net N = (P, T, F, Init) and a target
marking mfinal ∈ NP , we compute the maximal subset Z ⊆ P such that IZ is an
inductive invariant. This set is computable in polynomial time by Corollary 6.3.
If mfinal(p) 6= 0 for some place p ∈ Z then we answer that mfinal is not cover-
able in N . Otherwise, we compute the restrictions N|Q,U and mfinal|Q, where
Q = P \ Z and U = {t ∈ T | in(t) ⊆ Q}, and we solve coverability for N|Q,U
and mfinal|Q. Theorem 6.4 guarantees the correctness of this approach.

7. Experimental Evaluation

We implemented our approach using the QCover [7] tool as a starting point.
This tool, which implements a backward coverability algorithm for Petri nets,
is written in Python and relies on the SMT-solver z3 [16]. QCover also uses
some other heuristics that we kept unchanged. QCover was competitive with
others tools especially for uncoverable Petri net. Only the BFC tool performs
significantly better on coverable Petri net. We have made two modifications
to QCover. First, we have added a pre-processing step based on sign analysis
(see Remark 6.5). Second, we have replaced their pruning technique, which is
based on coverability in continuous Petri nets, by the state inequation presented
in Section 5. ICover is available on GitHub as a fork [13] of QCover [12].

To test our implementation, we used the same benchmark as Petrinizer [6]
and QCover [7]. It comprises models from various sources: Mist [17], BFC [5],
Erlang programs abstracted into Petri nets [18], as well as so-called medical and
bug_tracking examples [6]. We let each tool work for 2000 seconds in a machine
on Ubuntu Linux 14.04 with Intel(R) Core(TM) i7-4770 CPU at 3.40GHz with
16GB of memory for each benchmark. The computation times are the sum of
the system and user times. Overall QCover solved 106 uncoverable instances
on 115 Petri net and 37 coverable problems on 61 Petri nets. ICover was able
to find one more coverable instance. In fact calling QCover on the Petri net
computed by the pre-processing, that we will call QCover/Pp, can even solve
one more uncoverable instance than ICover. On the 143 instances that QCover
solved, the tool took 9729 seconds, QCover/Pp used 6827 seconds, and ICover
used only 5213 seconds.

Figure 2(a) shows the comparison between ICover and QCover in time. The
straight line represents when the two tools took the same time. Each dot
represents a coverability question. When the dot is under the line, it means

14

http://github.com/

100 101 102 103

100

101

102

103

time for QCover (s)

tim
e
fo
r

IC
ov

er
(s
)

(a) ICover vs QCover

100 101 102 103

100

101

102

103

time for QCover/Pp (s)

tim
e
fo
r

IC
ov

er
(s
)

(b) ICover vs QCover/Pp

100 101 102 103

100

101

102

103

time for QCover (s)

tim
e
fo
r

QC
ov

er
/P

p
(s
)

(c) QCover/Pp vs QCover

100 102 104

20

40

60

80

100

markings pruned in QCover

%
al
so

pr
un

ed
in

IC
ov

er

(d) Pruning efficiency

100 102 104
0

50

100

places in the original Petri net

%
of

pl
ac
es

le
ft

(e) Pre-processing and # of places

100 102 104
0

50

100

transitions in the original Petri net

%
of

tr
an

sit
io
ns

le
ft

(f) Pre-processing and # of transitions

Figure 2: Experimental results for ICover, QCover and QCover/Pp

that ICover was faster than QCover and conversely. There are three instances
where QCover performs very well, under a second, and where ICover took a few
tens of seconds to answer. For the three cases, the formula used by QCover for

15

coverability in Q was enough to discard the target as uncoverable and it did not
have to enter in the while loop. But ICover was not able to discard the target
and had to enter the while loop in the three cases. We also see two dots above
the line at the middle of the figure. The pre-processing took respectively 12 and
45 seconds while the initial Petri net was solved by QCover in respectively 16
and 33 seconds.

Figure 2(b) and (c) show the intermediate comparisons: ICover versus
QCover/Pp and QCover/Pp versus QCover. We can observe that the pre-processing
has a major impact on the good performance of ICover compared to QCover.

Figure 2(e) and Figure 2(f) aims to show the effect of the pre-processing
on the size of Petri nets. The former show the percentage of places left after
pre-processing. Some Petri nets kept all their places but others were left with
only 2.5% of their initial places. And most of Petri nets lost a significant number
of places. The latter shows the percentages of transitions left after the pre-
processing. Overall less transitions were cut than places. Half of the Petri
nets kept all their transitions, but some were left with only 4% of their initial
transitions.

Figure 2(d) compares the efficiency of pruning between ICover and QCover.
Again, each dot represents a coverability question. As discussed in Section 8,
QCover always prunes at least as many markings as ICover (but at the expense
of more complex pruning tests). A value of 100% means that ICover was able
to prune the same markings as QCover. It turns out that on most instances, this
perfect value of 100% is obtained. This is rather surprising at first sight, and
warrants an investigation, which is the focus of the next section.

8. Comparison with Continuous Petri Net

Continuous Petri nets are defined like Petri nets except that transitions can
be fired a non-negative rational number of times. The firing of such a transition
produces markings with non-negative rational numbers of tokens. Under such a
semantics, called the continuous semantics, the reachability problem was recently
proved to be decidable in polynomial time [8]. Based on this observation, the
tool QCover implements the pruning backward coverability algorithm presented
in Section 4 with a downward-closed invariant derived from the continuous
semantics. Whereas this invariant is more precise than the downward-closed
invariant obtained from the state inequation introduced in Section 5, we have
seen in Section 7 that such an improvement is overall not useful in practice
for pruning in the backward coverability algorithm. In this section, we provide
a simple structural condition on Petri nets in such a way the two kinds of
downward-closed invariants derived respectively from the continuous semantics
and the state inequation are “almost” equal. This structural condition is shown
to be natural since it is fulfilled by the Petri nets obtained after the pre-processing
introduced in Remark 6.5.

A continuous marking is a mapping m ∈ QP≥0 where Q≥0 denotes the set of
non-negative rational numbers, and P the set of places. Given r ∈ Q≥0 and a

16

transition t, the continuous rt-step binary relation rt
� over the continuous

markings is defined by

m
rt

� m′ ⇔ ∀p ∈ P : m(p) ≥ r.F (p, t) ∧m′(p) = m(p)− r.F (p, t) + r.F (t, p)

The one-step continuous binary relation � is the union of these rt-step
relations. Formally, m � m′ if there exists r ∈ Q≥0 and t ∈ T such that
m

rt
� m′. The many-step continuous binary relation ∗

� is the reflexive-
transitive closure of � . We also introduce the binary relation ∞

� defined
over the continuous markings by m ∞

� m′ if there exists a sequence (mk)k≥0
of continuous markings that converges towards m′ with the classical topology
on QP≥0 and such that m ∗

� mk for every k.

Example 8.1. Let us look back at the simple Petri net N depicted in Figure 1.
For every positive natural number k, we have:

(1, 0, 0)
1
k t1 � (1− 1

k
,

1
k
, 0)

1
k t2

1
k t3 � (1− 1

k
,

2
k
,

1
k

) · · ·
1
k t2

1
k t3 � (1− 1

k
, 1 + 1

k
, 1)

It follows that (1, 0, 0) ∞ � (1, 1, 1). Notice that the relation (1, 0, 0) ∗
� (1, 1, 1)

does not hold.

The downward-closed invariant used in the tool QCover for implementing the
pruning backward algorithm is defined as follows:

IC = {m ∈ NP | ∃minit ∈ Init ∃m′ ∈ QP≥0 : minit
∗
� m′ ≥ m} (5)

Recall that in Section 5 we introduced the set IS for denoting the downward-
closed invariant derived from the state inequation. The following result provides
a characterization of that invariant when the Petri net satisfies a structural
condition.

Theorem 8.2 ([14, Theorem 7]). Assume that Init is a set of markings of the
following form where Q ⊆ P and x ∈ NQ:

Init = {minit ∈ NP |
∧
q∈Q

minit(q) ≤ x(q)}

And assume that every transition is fireable from the downward-closed invariant
IZ introduced in Section 6. We have:

IS = {m ∈ NP | ∃minit ∈ Init ∃m′ ∈ QP≥0 : minit
∞

� m′ ≥ m} (6)

Proof. The statement of Theorem 7 in [14] is wrong since it is based on a
too strong definition of limit-reachability. Rephrased with our notations, that
theorem claims that IS is the set of markings m such that there exists a sequence
(mk)k≥0 of continuous markings that converges towards a marking m′ ≥ m and
such that m0 ∈ Init and mk

∗
� mk+1 for every k. Example 8.1 shows that

this claim is wrong. However, the proof becomes correct with our definitions

17

and notations. The proof is obtained as follows. First of all, if m is a marking
such that there exists minit

∞
� m′ ≥ m for some minit ∈ Init and m′ ∈ QP≥0,

we derive that there exists a sequence (mk)k≥0 of continuous markings that
converges towards m′ such that minit

∗
� mk for every k. It follows that mk

satisfies the system of linear equations of IS for every k. As a limit, it follows
that m′ satisfies the same system. In particular m ∈ IS .

Conversely, let us assume that m is a marking in IS , and assume that
every transition is fireable from the downward-closed invariant IZ introduced
in Section 6. Given a word σ = (r1t1) . . . (rktk) with (rj , tj) ∈ Q≥0 × T , we
denote by σ

� the binary relation over the continuous markings defined as the
concatenation r1t1 � · · · rktk � . Moreover, we say that σ is fireable from a
continuous marking m if there exists a continuous marking y such that x σ

� y.
Given r ∈ Q≥0, we define rσ as the word (rr1t1) . . . (rrktk). Observe that if
x

σ
� y then x εσ

� x+ ε(y − x) for every ε satisfying 0 ≤ ε ≤ 1. Moreover, if
x

σ
� y then rx rσ

� ry for every r ≥ 0.
Let (Qk)k∈N be the sequence introduced in Section 6 and let us show by

induction on k that there exists a sequence of continuous markings (xk)k∈N such
that x0 ∈ Init, xk

∗
� xk+1, and xk(q) > 0 for every q ∈ Qk. The rank k is

immediate thanks to the special form of Init. Assume the sequence x0, . . . , xk
built. Notice that there exists a sequence t1, . . . , tn of transitions in T such
that F (p, tj) = 0 for every p ∈ P\Qk and for every 1 ≤ j ≤ n, and such that
Qk+1\Qk ⊆ {q | F (t, q) > 0}. Observe that for a rational number ε > 0 small
enough, we have xk

εt1 . . . εtn � xk+1 where xk+1 satisfies xk+1(q) > 0 for every
q ∈ Qk+1.

It follows that there exists x0 ∈ Init, a continuous marking x, an a word
w such that x0

w
� x with x(q) > 0 for every q ∈ Q where Q =

⋃
kQk. Now,

let us consider a marking m ∈ IS . There exist minit ∈ Init and a word t1 . . . tk
of transitions such that minit + ∆(t1) + · · · + ∆(tk) = y ≥ m. Thanks to the
form of Init, we can assume without loss of generality that minit ≥ x0. Let
σ = (1t1) . . . (1tk) and let ε such that 0 < ε < 1. From x0

w
� x and minit ≥ x0,

we derive minit
εw

� (1− ε)[minit + zε] where zε = ε
1−ε (x+minit − x0). Since

zε(q) > 0 for every q ∈ Q, and every transition is fireable from IZ , we deduce
that there exists n ≥ 1 large enough such that the word 1

nσ is fireable from zε.
Since 1

nσ is fireable from zε, it is in particular fireable from k
nminit + n−k

n y + zε
for every 0 ≤ k < n. From minit + ∆(t1) + · · ·+ ∆(tk) = y, we get the following
relation:

n− k
n

minit + k

n
y + zε

1
nσ �

n− (k + 1)
n

minit + k + 1
n

y + zε

By concatenating the previous relations, we deduce that minit + zε
∗
� y + zε.

With minit
∗
� (1 − ε)[minit + zε], we deduce the relation minit

∗
� (1 −

ε)[y + zε] = (1 − ε)y + ε(x + minit − x0). It follows, when ε tends to 0, that
minit

∞
� y.

The two equalities Equation (5) and Equation (6) show that IS and IC
are very similar for Petri nets satisfying the structural condition stated in

18

p1

t1

p2

t2

t3

p3

2

2

Figure 3: A Petri net with omega places

Theorem 8.2. This condition is fulfilled by the Petri nets produced by the
pre-processing algorithm introduced in Remark 6.5. Notice that even if the
membership problem in IS and IC are both decidable in polynomial time, the
extra computational cost for deciding the membership problem for the invariant
IC , even for efficient SMT solvers like Z3, is not negligible. Naturally, if a
marking is in IC then it is also in IS , and the converse property is false in general
as shown by Example 8.1. However, in practice, we observed that markings that
are in IS are very often also in IC (see Figure 2(d)), as already mentioned in
Section 7.

9. Forward Analysis of Omega Places

We have presented in Sections 5 and 6 two downward-closed invariants, which
are over-approximations of CovN , to be used as parameter to the algorithm
ICover. In practice, the invariant derived from sign analysis is used as a pre-
processing as seen in Remark 6.5. The idea is to eliminate places that we know
remain forever empty starting from Init. In this section, we exhibit some places
that can receive an arbitrary high number of tokens. We show that those places
can be safely eliminated for solving coverability problems.

We introduce the unit vector ep in NP defined as zero everywhere except
for the index p where it is one. A place p ∈ P is called an omega place if the
marking m + nep is coverable for arbitrarily large natural numbers n and for
every coverable marking m. A simple induction on n shows that p is an omega
place if, and only if, CovN + ep ⊆ CovN . Here, the sum CovN + ep stands for
the set {m+ ep | m ∈ CovN }.

Example 9.1. Figure 3 depicts a Petri net such that every marking is coverable.
It follows that p1, p2, p3 are omega places.

The following theorem shows that omega places can be safely eliminated with-
out changing results of coverability problems. This reduction is implemented as a
pre-processing in our tool ICover (see Section 9.1 for experimental evaluations).

Theorem 9.2. Let Q be a set of places of a Petri net N such that places that
are not in Q are omega places. A marking m is coverable in N if, and only if,
m|Q is coverable in the restriction N|Q of N to the set of places Q.

19

Proof. In order to simplify notations, the step relation t−→ of N|Q is denoted by
t−→Q. Observe that if x t−→ y for some markings x, y then x|Q

t−→Q y|Q. It follows
that if a marking m is coverable in N then m|Q is coverable in N|Q. Let us
prove the converse property.

We first prove by induction over k that for every x0
t1−→Q x1 · · ·

tk−→Q xk with
x0 ∈ Init|Q, there exists a marking mk ∈ CovN such that xk ≤ mk|Q. The base
case k = 0 is immediate. Assume the property proved for some k, and assume
that xk

tk+1−−−→Q xk+1. By induction, there exists a marking mk ∈ CovN such
that xk ≤ mk|Q. Notice that places of mk indexed by P\Q can be replaced
by arbitrarily large numbers since P\Q is a set of omega places. So, we can
assume without loss of generality that mk(p) ≥ F (p, tk+1) for every p ∈ P\Q. It
follows that there exists mk+1 such that mk

tk+1−−−→ mk+1. Since the coverability
set is an inductive invariant, it follows that mk+1 ∈ CovN . Moreover, notice
that for every p ∈ Q we have mk+1(p) = mk(p) − F (p, tk+1) + F (tk+1, p) ≥
xk(p)− F (p, tk+1) + F (tk+1, p) = xk+1(p). It follows that xk+1 ≤ mk+1|Q. We
have proved the induction.

Now, assume that m is a marking of N such that m|Q is coverable in N|Q.
There exists x0

t1−→Q x1 · · ·
tk−→Q xk with x0 ∈ Init|Q such that m|Q ≤ xk. From

the previous paragraph, there exists mk ∈ CovN such that xk ≤ mk|Q. Notice
that places of mk indexed by P\Q can be replaced by arbitrarily large numbers
since P\Q is a set of omega places. So, we can assume without loss of generality
that mk(p) ≥ m(p) for every p ∈ P\Q. It follows that m ≤ mk. Thus m is
coverable in N .

To apply the pre-processing induced by Theorem 9.2, we need to compute
omega places. It would be too costly in time to compute them all. In fact, as
shown in Lemma 9.3, the detection of omega places is at least as hard as the
coverability problem itself. More formally, we introduce the omega place problem
that asks, given a Petri net N = (P, T, F, Init) and a place p ∈ P , whether p is
an omega place.

Lemma 9.3. The coverability problem is logspace reducible to the omega place
problem.

Proof. Let N = (P, T, F, Init) a Petri net and mfinal a marking. We define
NΩ = (PΩ, TΩ, FΩ, InitΩ) such that PΩ = P ∪ {pΩ} with pΩ /∈ P a new place,
TΩ = T ∪ {tfinal, tadd} is a set of new transitions, InitΩ has all the same
constraints of Init and a new constraint: minit(pΩ) ≤ 0. And the flow function
FΩ : (PΩ × TΩ) ∪ (TΩ × PΩ)→ N is such that

• for all t ∈ T the transition has the same effect as in N ,

• tadd is a transition that takes a token in pΩ, puts a token in every place in
PΩ\{pΩ} and puts two tokens in pΩ, i.e., FΩ(pΩ, tadd) = 1, FΩ(p, tadd) = 0
for every place p 6= pΩ, FΩ(tadd, p) = 1 if p ∈ PΩ\{pΩ}, FΩ(tadd, pΩ) = 2,
and FΩ(tadd, p) = 0 for every place p 6∈ PΩ, and

20

• tfinal is the transition such that FΩ(q, tfinal) = mfinal(q) for all q ∈ P
and that put a token in pΩ.

We will prove that mfinal is coverable in N if, and only if, pΩ is an omega
place in NΩ.

First, if mfinal is coverable in N . Let us prove that all markings in NPΩ are
coverable. Because mfinal is coverable in N , it is coverable in NΩ by definition
of FΩ. It would be then possible to fire tfinal to cover mfinal + epΩ . But from
epΩ we can put tokens in every places we want with tadd. Hence, all markings
are coverable in NΩ. We have then that pΩ is an omega place in NΩ.

For the converse, if pΩ is an omega place in NΩ it means in particular that
epΩ is coverable. Therefore there exist some markings m0,m1, . . . ,mk and some
transitions t1, t2, . . . tn in TΩ such that m0 ∈ InitΩ (hence m0(pΩ) = 0), for all
0 ≤ k < n, mk(pΩ) = 0 and m0

t1−→ m1 . . .
∗−→ mn−1

tn−→ mn ≥ epΩ . Only the
transition tfinal can put a token in pΩ when there is no token in it yet. Therefore
tn = tadd and for all 1 ≤ k < n, tk ∈ T . Furthermore that transition can be fire,
by definition, only if there are at least mfinal(q) tokens for each place q ∈ NP .
We have then mn−1 ≥ mfinal and m0

t1−→ m1 . . .
∗−→ mn−1 is a path in N . This

prove that mfinal is coverable in N .

Rather than trying computing the whole set of omega places of a Petri net
N = (P, T, F, Init), we will only use a simple forward fixpoint computation to
find some of them. We define a sequence of sets of omega places such that:

Ω0 = {p ∈ P | ∀minit ∈ ↓Init,minit + ep ∈ ↓Init}

Ωk+1 = Ωk ∪
⋃
t∈T

in(t)⊆Ωk

out(t)

The set Ω0 is exactly the set of places for which there is no constraint in
Init. The sequence Ω0,Ω1, . . . is non-decreasing (for ⊆) and furthermore this
sequence is ultimately stationary because Ωk ⊆ P for all k > 0 and P is finite.
We note Ω =

⋃
k Ωk. We will show that Ω is a set of omega places.

We first need to show that we can put a token in any place in Ω from an
initial marking that has tokens only in places in Ω0. But first, we need the
following technical lemma.

Lemma 9.4. We have x+ y
∗−→ x′ + y′ for every x ∗−→ x′ and y ∗−→ y′.

Proof. First we prove that if x ∗−→ x′ then for every z ∈ NP we have x+z ∗−→ x′+z.
Let z ∈ NP and suppose that x ∗−→ x′. There exist x0, x1, . . . , xn and t1, t2, . . . , tn
such that x = x0

t1−→ x1 . . .
tn−→ xn = x′. It is readily seen that for every

0 ≤ k < n, xk + z
tk−→ xk+1 + z. We have then x+ z

∗−→ x′ + z.
To conclude, we have x + y

∗−→ x′ + y
∗−→ x′ + y′ for every x

∗−→ x′ and
y
∗−→ y′.

21

Lemma 9.5. For all k > 0 and for all p ∈ Ωk, there exists an initial marking
minit ∈

∑
p∈Ω0

N · ep such that minit
∗−→ m ≥ ep for some marking m.

Proof. We will prove it by induction on k > 0. For the basis k = 1, let p ∈ Ω1,
we have trivially minit = ep ≥ ep. Hence the basis k = 1 holds.

For the induction step, let k > 0. Let q ∈ Ωk+1\Ωk. By construction of
Ωk+1, there exists t ∈ T such that q ∈ out(t) and in(t) ⊆ Ωk. By induction
hypothesis, for all places p ∈ in(t) ⊆ Ωk, there exists minit,p ∈

∑
p0∈Ω0

N · ep0

and mp such that minit,p
∗−→ mp ≥ ep. According to Lemma 9.4 we have

minit =
∑
p∈in(t) F (p, t) ·minit,p

∗−→
∑
p∈in(t) F (p, t) ·mp ≥

∑
p∈in(t) F (p, t) · ep.

Let m =
∑
p∈in(t) F (p, t) ·mp. We can then fire t from m. We have m t−→ m′

with m′(q) = F (t, q) − F (q, t). We have F (q, t) = 0 because q /∈ Ωk and
in(t) ⊆ Ωk hence q /∈ in(t), and F (t, q) > 0 because q ∈ out(t). We have then
m′(q) > 0 and therefore minit

∗−→ m′ ≥ ep. Furthermore, it is readily seen that
minit ∈

∑
p∈Ω0

N · ep.

We now show that all places in Ω are indeed omega places.

Lemma 9.6. For all places p ∈ Ω, CovN + ep ⊆ CovN .

Proof. Let p ∈ Ω. Let m ∈ CovN a coverable marking. There exists
minit ∈ Init such that minit

∗−→ m′ ≥ m. According to Lemma 9.5, there exists
m′init ∈

∑
p∈Ω0

N · ep such that m′init
∗−→ m′′ ≥ ep. By definition of Ω0 and

direct induction, we have minit + m′init ∈ ↓Init, and therefore there exists
δ ∈ NP such that minit + m′init + δ ∈ Init. According to Lemma 9.4 we have
minit+m′init+δ

∗−→ m′+m′′+δ ≥ m+ep. Hence m+ep is coverable. Therefore
CovN + ep ⊆ CovN .

We can now eliminate all the places in Ω that are identified as omega places
thanks to Theorem 9.2.

Example 9.7. Figure 3 depicts a Petri net such that every marking is coverable.
It follows that p1, p2, p3 are omega places. Observe that Ω0 = ∅ and Ωk = {p1}
for every k ≥ 1. It follows that our forward fixpoint computation detects that p1
is an omega place but fails to detect that p2 and p3 are omega places as well.

9.1. Experimental evaluation
We now continue the experiments seen in Section 7. The computation of

the omega places as described before is embedded with the sign analysis. It is
an option of ICover. We denote by ICover + Ω the procedure that start with
the pre-processing that eliminates some omega places and then proceeds the
same way as described in Section 7. ICover + Ω was able to solve as much
uncoverable instance as ICover but six more coverable instance. For the total
of 144 instances where both algorithm concluded, ICover took 6362 seconds
and ICover + Ω took 3134 seconds. Furthermore, ICover + Ω used only 1964
seconds for the same instances where QCover took 9729 seconds.

22

Remark 9.8. In a restricted Petri net, a transition t can be such that out(t) =
∅. We can safely remove this transition without changing the result of the
computation.

Now we analyze how many places where cut with the method described in
this section. Over the 176 instances, 112 have omega places found. And 102 of
these instances have only one omega place. Those last Petri nets were mostly
extracted from tts systems where one place represents the number of threads at
the initial state. And that number has no constraints. Those places are omega
places. One instance, kanban from the tool Mist [17], our pre-processing had
computed Ω which is the set of all places. The instance was therefore trivially
solved, despite the fact that QCover and ICover both did not terminate.

As in Section 7, we presents comparison between ICover + Ω and ICover
in Figure 4(a). We observe a good impact. In Figure 4(b) we compare ICover+Ω
and QCover which summarize the effect of our modifications: state inequation,
sign analysis and omega places. We can see a substantial improvement.

100 101 102 103

100

101

102

103

time for ICover (s)

tim
e
fo
r

IC
ov

er
+

Ω
(s
)

(a) ICover + Ω vs ICover

100 101 102 103

100

101

102

103

time for QCover (s)

tim
e
fo
r

IC
ov

er
+

Ω
(s
)

(b) ICover + Ω vs QCover

Figure 4: Experimental results for the effect of omega places

Even with only one place cut in a Petri net with a few tens of places, the
effect can be important: the procedure can be accelerate by a factor of three in
some cases. The Example 9.9 shows why we can have this effect.

Example 9.9. Consider the simple Petri net N in Figure 5 with the set of
initial markings Init = {minit ∈ NP | minit(p2) ≤ 1}.

We want to know whether the target marking mfinal = 100ep2 is coverable.
Without the pre-processing, the sequence of (BIk) will be for 0 < i < 100,
BIi = {(jep1 + (100 − j)ep2) ∈ NP | j ≤ i}. And finally ↓Init ∩ BI99 6= ∅ will
prove that mfinal is coverable. The size of the last basis BI99 is 99 despite a
Petri net of a very limited size.

But our pre-processing will compute Ω = Ω0 = {p1}, and then the restricted
Petri net will only contain one place p2, and a simple transition that take one
token in p2 and put two tokens in that same place. The initial set will be

23

p1

t

p2

2

Figure 5: Simple Petri net that can be solved easily with the omega pre-processing

Init|Q = ↓ep2 . And now the sequence will be for all 0 ≤ i < 100, BIi |Q =
{(iep1 + (100− i)ep2)}. All the bases will be of size one.

This simple computation leads to a great effect despite being a simple forward
analysis.

10. Conclusion

Petri nets have recently been used as low-level models for model-checking
concurrent systems written in high-level programming languages [19, 18]. The
original verification question on the concurrent program reduces to a coverability
question on the resulting Petri net. We have proposed in this paper a family
of simple coverability algorithms parametrized by downward-closed invariants.
Additionally, we have presented two simple pre-processings that reduce the size
of Petri nets while preserving the desired coverability information. As future
work, we intend to look for classes of downward-closed invariants with a good
tradeoff between precision and efficient membership.

References

[1] S. M. German, A. P. Sistla, Reasoning about systems with many processes,
Journal of the Association for Computing Machinery 39 (3) (1992) 675–735.

[2] R. M. Karp, R. E. Miller, Parallel program schemata, Journal of Computer
and System Sciences 3 (2) (1969) 147–195.

[3] R. J. Lipton, The reachability problem requires exponential space, Tech.
Rep. 62, Yale University (1976).

[4] C. Rackoff, The covering and boundedness problems for vector addition
systems, Theoretical Computer Science 6 (2) (1978) 223–231.

[5] A. Kaiser, D. Kroening, T. Wahl, A widening approach to multithreaded
program verification, ACM Trans. Program. Lang. Syst. 36 (4) (2014)
14:1–14:29.

[6] J. Esparza, R. Ledesma-Garza, R. Majumdar, P. J. Meyer, F. Niksic, An
SMT-based approach to coverability analysis, in: CAV, Springer, 2014, pp.
603–619.

[7] M. Blondin, A. Finkel, C. Haase, S. Haddad, Approaching the coverability
problem continuously, in: TACAS, Springer, 2016, pp. 480–496.

24

[8] E. Fraca, S. Haddad, Complexity analysis of continuous Petri nets, Funda-
menta Informaticae 137 (1) (2015) 1–28.

[9] P. A. Abdulla, K. Cerans, B. Jonsson, Y. Tsay, Algorithmic analysis of
programs with well quasi-ordered domains, Information and Computation
160 (1-2) (2000) 109–127.

[10] T. Murata, State equation, controllability, and maximal matchings of Petri
nets, IEEE Transactions on Automatic Control 22 (3) (1977) 412–416.

[11] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,
in: POPL, ACM, 1977, pp. 238–252.

[12] M. Blondin, A. Finkel, C. Haase, S. Haddad, QCover: an efficient cover-
ability verifier for discrete and continuous Petri nets, http://github.com/
blondimi/qcover.

[13] T. Geffroy, J. Leroux, G. Sutre, ICover: Petri net coverability checker with
invariant-based pruning, http://github.com/gsutre/icover.

[14] L. Recalde, E. Teruel, M. Silva, Autonomous continuous P/T systems, in:
ICATPN, Springer, 1999, pp. 107–126.

[15] A. Finkel, P. Schnoebelen, Well-structured transition systems everywhere!,
Theoretical Computer Science 256 (1-2) (2001) 63–92.

[16] L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: TACAS,
Springer, 2008, pp. 337–340.

[17] P. Ganty, Mist – A safety checker for petri nets and extensions, http:
//github.com/pierreganty/mist.

[18] E. D’Osualdo, J. Kochems, C. L. Ong, Automatic verification of Erlang-style
concurrency, in: SAS, Springer, 2013, pp. 454–476.

[19] A. Donaldson, A. Kaiser, D. Kroening, T. Wahl, Symmetry-aware predicate
abstraction for shared-variable concurrent programs, in: CAV, Springer,
2011, pp. 356–371.

25

http://github.com/blondimi/qcover
http://github.com/blondimi/qcover
http://github.com/gsutre/icover
http://github.com/pierreganty/mist
http://github.com/pierreganty/mist

	Introduction
	The Coverability Problem for Petri nets
	Classical Backward Coverability Analysis
	Backward Coverability Analysis with Pruning
	State Inequation for Downward-Closed Invariants
	Sign Analysis for Downward-Closed Invariants
	Experimental Evaluation
	Comparison with Continuous Petri Net
	Forward Analysis of Omega Places
	Experimental evaluation

	Conclusion

