Thomas Geffroy

Jérôme Leroux

Grégoire Sutre

Occam's Razor Applied to the Petri Net Coverability Problem

Keywords: Petri net, coverability problem, model-checking, invariant, pre-processing

The verification of safety properties for concurrent systems often reduces to the coverability problem for Petri nets. This problem was shown to be ExpSpacecomplete forty years ago. Driven by the concurrency revolution, it has regained a lot of interest over the last decade. In this paper, we propose a generic and simple approach to solve this problem. Our method is inspired from the recent approach of Blondin, Finkel, Haase and Haddad presented at TACAS in 2016. Basically, we combine forward invariant generation techniques for Petri nets with backward reachability for well-structured transition systems. An experimental evaluation demonstrates the efficiency of our approach.

Introduction

Context. The analysis of concurrent systems with unboundedly many processes classically uses the so-called counter abstraction [START_REF] German | Reasoning about systems with many processes[END_REF]. The main idea is to forget about the identity of each process, so as to make processes indistinguishable. Assuming that each process is modeled by a finite-state automaton, it is then enough to count, for each state q, how many processes are in state q. The resulting model is a Petri net, with no a priori bound on the number of tokens. The verification of a safety property on the original concurrent system (e.g., mutual exclusion) translates into a coverability question on the Petri net: Is it possible to reach a marking that is component-wise larger than a given marking? Related work. Karp and Miller [2] proved in 1969 that coverability is decidable (but their algorithm is not primitive recursive), Lipton showed that it requires at least exponential space [START_REF] Lipton | The reachability problem requires exponential space[END_REF], and Rackoff showed that it only requires exponential space [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF]. Despite these somewhat negative results, and driven by the concurrency revolution, the coverability problem has regained a lot of interest over the last decade. Recent efficient approaches include target set widening [START_REF] Kaiser | A widening approach to multithreaded program verification[END_REF] and structural analysis mixed with SMT solving [START_REF] Esparza | An SMT-based approach to coverability analysis[END_REF][START_REF] Blondin | Approaching the coverability problem continuously[END_REF]. We believe that the time is ripe to experiment with new ideas and prototypes for coverability, and to apply them to real-world concurrent systems.

Our work builds notably on [START_REF] Blondin | Approaching the coverability problem continuously[END_REF], which proposes a new approach to the coverability problem and its implementation. The approach of [START_REF] Blondin | Approaching the coverability problem continuously[END_REF] is conceptually simple and exploits recent advances in the theory of Petri nets as well as the power of modern SMT-solvers. In a nutshell, they leverage recent results on coverability in continuous Petri nets [START_REF] Fraca | Complexity analysis of continuous Petri nets[END_REF] to over-approximate coverability under the standard semantics: any marking that is not coverable in a continuous Petri net is also not coverable under the standard semantics. This observation is then exploited inside a backward-coverability framework [START_REF] Abdulla | Algorithmic analysis of programs with well quasi-ordered domains[END_REF].

Our contribution. We present a generic backward coverability algorithm that relies on an over-approximation of the set of coverable markings -this will be in practice a downward-closed invariant -to prune the exploration of the state space. Our algorithm is in fact a family of algorithms parametrized by overapproximations. It generalizes the QCover algorithm presented in [START_REF] Blondin | Approaching the coverability problem continuously[END_REF]. Whereas QCover is based on invariants obtained from recent results on continuous Petri nets [START_REF] Fraca | Complexity analysis of continuous Petri nets[END_REF], we present two classical methods for computing over-approximations that can be used in our pruning exploration: the state equation for Petri nets [START_REF] Murata | State equation, controllability, and maximal matchings of Petri nets[END_REF], and data-flow sign analysis [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. We also show how to leverage sign analysis to simplify Petri net coverability queries.

We have implemented our algorithm as a variant of QCover [START_REF] Blondin | QCover: an efficient coverability verifier for discrete and continuous Petri nets[END_REF] that we call ICover [START_REF] Geffroy | ICover: Petri net coverability checker with invariant-based pruning[END_REF]. On the 143 Petri net coverability questions that QCover solved, the tool QCover took 9729 seconds, while ICover used only 5213 seconds.

Additionally, we have implemented a pre-processing algorithm that reduces the number of places and transitions of a Petri net without modifying coverability questions. It follows that it can be used safely with any coverability tool. This pre-processing is based on the computation of so-called omega places. These are places that can receive arbitrarily larger number of tokens. With this improvement, ICover and QCover terminate on additional problems. Thanks to all our modifications, the total time to solve the instances is divided by a factor of five.

Outline. Sections 2 and 3 recall the Petri net coverability problem and the classical backward reachability approach to solve it. Section 4 presents our backward coverability algorithm with pruning based on over-approximations of the coverability set. In Sections 5 and 6, we recall two classical methods for computing such over-approximations, namely the state (in-)equation and sign analysis. Section 7 is dedicated to the experimental evaluation of the tool ICover. In Section 8, we provide mathematical foundations for explaining our empirical good results based on the notion of limit-reachability in continuous Petri nets [START_REF] Recalde | Autonomous continuous P/T systems[END_REF]. Pre-processing based on omega places is presented in Section 9.

The Coverability Problem for Petri nets

A Petri net is a tuple N = (P, T, F, Init) comprising a finite set P of places, a finite set T of transitions disjoint from P , a flow function F from (P × T) ∪ (T × P) to N, and a set Init ⊆ N P of initial markings. It is understood that N P denotes the set of total maps from P to N. Elements of N P are called markings. Intuitively, a marking specifies how many tokens are in each place of the net. Tokens are consumed and produced through the firing of transitions. A transition t ∈ T may fire only if it is enabled, meaning that each place p contains at least F (p, t) tokens. Firing an enabled transition t modifies the contents of each place p by first removing F (p, t) tokens and then adding F (t, p) tokens. To clarify this intuitive description of the Petri net semantics, we introduce, for each transition t ∈ T , the t-step binary relation

P = {p 1 , p 2 , p 3 }, transitions T = {t 1 , t 2 , t 3 } and flow function F such that F (p 1 , t 1) = 1, F (p 2 , t 2) = 1, F (p 3 , t 3) = 1, F (t 1 , p 2) = 1, F (t 2 , p 3) = 2, F (t 3 , p 2) = 2,
and F (p, t) = F (t, p) = 0 for all other cases. The set of initial markings is Init = {(1, 0, 0)}. The sequence of transitions t 1 t 2 t 3 may fire from the initial marking. Indeed, (1, 0, 0)

t1 -→ (0, 1, 0) t2 -→ (0, 0, 2) t3 -→ (0, 2, 1).
One of the most fundamental verification questions on Petri nets is coverability. In its simplest form, the coverability problem asks whether it is possible, by firing a sequence of transitions, to put a token in a given place. In essence, the coverability problem for Petri nets corresponds to the control-state reachability problem for other models of computation, such as counter machines, which are equipped with control states. The formal definition of coverability relies on a partial order over markings, defined hereafter.

Let ≤ denote the usual total order on N. We extend ≤ over N P componentwise, by m ≤ m ⇔ ∀p ∈ P : m(p) ≤ m (p). This extension is a partial order over N P . Given two markings m and m in N P , we say that m covers m when m ≥ m . The coverability problem asks, given a Petri net N = (P, T, F, Init) and a target marking m f inal ∈ N P , whether there exist a marking m ∈ N P and an initial marking m init ∈ Init such that m init * -→ m and m ≥ m f inal . The main goal of this paper is to provide a simple, yet efficient procedure for solving this problem. Our method is inspired from the recent approach of [START_REF] Blondin | Approaching the coverability problem continuously[END_REF]. Basically, we combine forward invariant generation techniques for Petri nets with backward reachability for well-structured transition systems [START_REF] Abdulla | Algorithmic analysis of programs with well quasi-ordered domains[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF]. Before delving into the details, we need some additional notations.

For a transition t ∈ T and a set S ⊆ N P of markings, we let pre t N (S) denote the predecessors of S via the transition t. Similarly, pre N (S) and pre * N (S) denote the one-step and many-step predecessors of S, respectively. Formally, the functions pre t N , pre N and pre * N from 2 N P to 2 N P are defined by

pre t N (S) = {m ∈ N P | ∃m ∈ S : m t - → m } pre N (S) = {m ∈ N P | ∃m ∈ S : m → m } pre * N (S) = {m ∈ N P | ∃m ∈ S : m * -→ m }
Given a subset S ⊆ N P of markings, we let ↑S and ↓S denote its upward closure and downward closure, respectively. These are defined by

↑S = {u ∈ N P | ∃m ∈ S : u ≥ m} ↓S = {d ∈ N P | ∃m ∈ S : d ≤ m}
A subset S ⊆ N P is called upward-closed when S = ↑S, and it is called downwardclosed when S = ↓S. Notation 2.2. For the remainder of the paper, to avoid clutter, we will simply write ↑m in place of ↑{m} for singletons, when this causes no confusion.

Recall that the coverability problem asks whether there exists m init ∈ Init and a marking m ∈ N P such that m init * -→ m and m ≥ m f inal . This problem is equivalently phrased as the question whether Init intersects pre * N (↑m f inal). This formulation can be seen as a backward analysis question. We may also phrase the coverability problem in terms of a forward analysis question, using the notion of coverability set.

Given a Petri net N = (P, T, F, Init), the coverability set of N is the set

Cov N = ↓{m ∈ N P | ∃m init ∈ Init, m init * -→ m}.
It is readily seen that the coverability problem is equivalent to the question whether m f inal belongs to Cov N . We are now equipped with the necessary notions to present our mixed forward/backward approach for the coverability problem.

Classical Backward Coverability Analysis

The classical backward reachability approach for the coverability problem [START_REF] Abdulla | Algorithmic analysis of programs with well quasi-ordered domains[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF] consists in computing a growing sequence

U 0 ⊆ U 1 ⊆ • • • of upward-closed subsets of N P , that converges to pre * N (↑m f inal). The sequence (U k) is defined by U k = pre ≤k N (↑m f inal)
, where the notation pre ≤k N stands for the predecessors in at most k steps. Formally, given a set S ⊆ N P of markings, the function pre ≤k N is defined by

pre ≤k N (S) = S ∪ pre N (S) ∪ • • • ∪ pre k N (S)
Each set U k is upward-closed because pre N preserves upward closure. The convergence of the sequence (U k) is guaranteed by the following lemma.

Lemma 3.1. Every growing sequence of upward-closed subsets of N P is ultimately stationary.

Proof. By contradiction, assume that there exists an infinite strictly growing sequence

U 0 ⊂ U 1 ⊂ • • • of upward-closed subsets of N P . For each k, there exists m k ∈ U k+1 \ U k .
As the partial order ≤ on N P is a well-quasi-order by Dickson's Lemma, there exists

h < k such that m h ≤ m k . It follows that m k ∈ U h+1 since U h is upward-closed, which contradicts m k ∈ U k .
Of course, we cannot directly compute the sets U k since they may be infinite (in fact, they are either empty or infinite). Instead, we can compute finite sets A k ⊆ N P such that U k = ↑A k . The existence of such finite sets is guaranteed by the following lemma. A basis of an upward-closed subset U ⊆ N P is any set A ⊆ N P such that U = ↑A. Recall that a minimal element of a subset S ⊆ N P is any m ∈ S such that u ≤ m ⇒ u = m for every u ∈ S. Lemma 3.2. For every subset S ⊆ N P , the set Min S of its minimal elements is finite and satisfies ↑S = ↑Min S.

Proof. The partial order ≤ on N P is a well-quasi-order by Dickson's Lemma. Therefore, the set Min S of minimal elements of S is necessarily finite. Moreover, S ⊆ ↑Min S since ≤ is well-founded. It follows that ↑S = ↑Min S. Corollary 3.3. Every upward-closed subset U ⊆ N P admits a finite basis.

Recall that we want to compute finite bases A k of the upward-closed sets U k . To see how A k+1 can be computed from A k , we introduce, for each transition t ∈ T , the covering predecessor function cpre t N : N P → N P defined by

cpre t N (m)(p) = F (p, t) + max(0, m(p) -F (t, p))
Informally, cpre t N (m) is the least marking that can cover m in one step by firing the transition t. This property will be formally stated in Lemma 3.4 We now have the necessary ingredients to define a computable sequence (A k) of finite subsets of N P such that U k = ↑A k for all k. The sequence (A k) is defined as follows:

A 0 = {m f inal } A k+1 = Min (cpre N (A k) ∪ A k)
The classical backward coverability algorithm [START_REF] Abdulla | Algorithmic analysis of programs with well quasi-ordered domains[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF] consists in computing A 0 , A 1 , . . . until a fixpoint is reached, i.e., A k+1 = A k . The resulting set A k is a basis of pre * N (↑m f inal), and so the coverability question reduces to the check whether Init intersects ↑A k .

Backward Coverability Analysis with Pruning

This section presents our method to solve the coverability problem for Petri nets. Our approach can be seen as a refinement of the classical backward coverability analysis presented in Section 3. We start with the mathematical foundations of our approach, with no regard for implementability. We will discuss implementation issues at the end of this section.

The sequence (A k) of the classical backward coverability analysis is purely backward. It does not exploit any information that one may already have on the Petri net under analysis. Here, we modify the sequence (A k) in order to leverage an a priori known over-approximation of the coverability set. In practice, this means that we narrow the backward reachability search by pruning some markings that are known to be not coverable.

Assume that we are given a set I ⊆ N P of "potentially useful" markings. We modify the sequence (A k) into the sequence (B I k) defined by:

B I 0 = {m f inal } ∩ I B I k+1 = Min ((cpre N (B I k) ∩ I) ∪ B I k)
On the contrary to the classical sequence (A k), B I k+1 does not consider all one-step predecessors of B I k , but discards those that are not in I. Note that by taking I = N P , we obtain the same sequence as before, i.e., B N P k = A k for all k.

Obviously, the usefulness (B I k) crucially depends on the choice of I. For instance, if I does not contain m f inal then B I k = ∅ regardless of whether m f inal belongs to Cov N or not. Intuitively, for the sequence (B I k) to be useful, we need it to preserve coverability in the following sense: if m f inal belongs to Cov N then Init intersects ↑B I k for some k. A natural requirement for I would be that it contains the reachability set of N , that is the set {m ∈

N P | ∃m init ∈ Init : m init * -→ m}. But,
pre ≤k N (↑m f inal) ∩ Cov N ⊆ ↑B I k ⊆ pre ≤k N (↑m f inal) for all k ∈ N.
Proof. Both inclusions are proved by induction on k. We first prove the second inclusion. The basis holds because ↑B I 0 ⊆ ↑m f inal = pre ≤0 N (↑m f inal). For the induction step, assume that ↑B I k ⊆ pre ≤k N (↑m f inal). We get that

↑B I k+1 = ↑(cpre N (B I k) ∩ I) ∪ ↑B I k [Lemma 3.2] ⊆ ↑cpre N (B I k) ∪ ↑B I k = pre N (↑B I k) ∪ ↑B I k [Corollary 3.5] ⊆ pre ≤k+1 N (↑m f inal) [↑B I k ⊆ pre ≤k N (↑m f inal)]
We now prove the first inclusion. We consider two cases for the basis. If

m f inal ∈ I then (pre ≤0 N (↑m f inal) ∩ Cov N) ⊆ ↑m f inal = ↑B I 0 . If m f inal ∈ I then m f inal ∈ Cov N . Moreover, since Cov N is downward-closed, ↑m f inal ∩ Cov N is empty. Therefore, pre ≤0 N (↑m f inal) ∩ Cov N is empty, and so it is contained in ↑B I 0 . For the induction step, assume that (pre ≤k N (↑m f inal) ∩ Cov N) ⊆ ↑B I k . The definition of (B I k) entails, with Lemma 3.2, that ↑B I k ⊆ ↑B I k+1 . So we only need to prove that (pre k+1 N (↑m f inal) ∩ Cov N) ⊆ ↑B I k+1 . Let us first observe that pre N (S) ∩ Cov N ⊆ pre N (S ∩ Cov N)
for every subset S ⊆ N P . This observation follows from the fact that m ∈ Cov N and m → m entails that m ∈ Cov N . It follows that

pre N (↑B I k) ⊇ pre k+1 N (↑m f inal) ∩ Cov N (1)
We get that

↑B I k+1 = ↑(cpre N (B I k) ∩ I) ∪ ↑B I k [Lemma 3.2] ⊇ ↑(cpre N (B I k) ∩ Cov N) [Cov N ⊆ I] ⊇ (↑cpre N (B I k)) ∩ Cov N [Cov N = ↓Cov N] = pre N (↑B I k) ∩ Cov N [Corollary 3.5] ⊇ pre k+1 N (↑m f inal) ∩ Cov N [Equation (1)]
This concludes the proof of the lemma. for every subset S ⊆ N P . The proof of this fact is left to the reader.

Lemma 4.4. Assume that Cov

N ⊆ I. It holds that m f inal ∈ Cov N if, and only if, there exists k ∈ N such that ↓Init intersects B I k . Proof. Observe that pre * N (↑m f inal) = k pre ≤k N (↑m f inal). We derive from Lemma 4.2 that pre * N (↑m f inal) ∩ Cov N ⊆ k ↑B I k ⊆ pre * N (↑m f inal) Recall that m f inal ∈ Cov N if, and only if, Init ∩ pre * N (↑m f inal) is non-empty. Since Init ⊆ Cov N , we get that m f inal ∈ Cov N if, and only if, Init ∩ k ↑B I k is non-empty. This last condition is equivalent to ↓Init ∩ k B I k is non-empty.
We show the correctness of the algorithm by first providing a description of B I k+1 with respect to B I k that matches the way it is computed in our algorithm. In fact, by observing that Min(X ∪ Y) = Min((X\ ↑ Y) ∪ Y) for any set X, Y of configurations, we derive the following equalities for every k ∈ N where N I k and P I k are some finite sets:

N I k = cpre N (B I k) \ ↑B I k P I k = N I k ∩ I B I k+1 = Min(B I k ∪ P I k)
We observe that the sets N, B, P computed by the algorithm during the kth execution of the main loop are the sets N I k , B I k , P I k . The termination and the correctness of the algorithm are proved thanks to the following lemma: Remark 4.8. In the sequel, we assume for effectivity reasons that sets of initial markings are denoted by conjunctions of linear inequalities of the form m init (p) ≤ n where p ∈ P and n ∈ N. In practice, in the file format spec used for the benchmarks of Section 7, the set of initial markings is given by a sequence of constraints, for each place p, of the type p op n, where op ∈ {=, ≤, ≥} and n ≥ 0. For the coverability problem, considering ↓Init instead of Init does not change the result. This is what we did for the experiments. To extract Init from the format spec, we proceed as follows: if for a place p the constraint is of the form p ≤ n or p = n, then we have the inequalities m init (p) ≤ n and if the constraint is of the form p ≥ n, then we do not have any constraint on it. Observe that lines 2, 6 and 8 are know decidable. Remark 4.9. Petri nets obtained by translation from high-level concurrent programs often contain transitions that cannot be fired from any reachable marking. An over-approximation of Cov N can be used in a pre-processing algorithm to filter out some of them. Basically, if a transition t is not enabled in any marking of the set I, then it can be safely removed without modifying the coverability set. Algorithmically, when I is downward-closed, detecting such a property just reduces to a membership problem in I. In fact, a transition t is enabled in a downward-closed set of markings D if, and only if, D contains the marking m t defined by m t (p) = F (p, t) for every place p.

ICover(N , m f inal , I) Input: A Petri Net N = (P, T, F,
The algorithm ICover is parametrized by a set of markings I that overapproximates the coverability set. This set must be carefully selected. On the one hand, it must be precise enough to discard markings (at line 8) and accelerate the main loop. On the other hand, the membership problem in I must be very efficient to avoid slowing down the main loop. The next two sections show how to generate such sets with a good tradeoff. Since the over-approximations that we will define are downward-closed, it will be possible to easily apply Remark 4.9.

We focus, in the remainder of the paper, on so-called downward-closed invariants. Formally, an invariant for a Petri net N = (P, T, F, Init) is any subset I ⊆ N P that contains every reachable marking, i.e., every marking m such that m init * -→ m for some m init ∈ Init. Notice that downward-closed invariants are exactly the downward-closed over-approximations of the coverability set. Remark 4.10. We can combine different over-approximations I 1 , I 2 , . . . of the coverability set by taking their intersection.

State Inequation for Downward-Closed Invariants

The state equation [START_REF] Murata | State equation, controllability, and maximal matchings of Petri nets[END_REF] provides a simple over-approximation of Petri net reachability relations that was successfully used in two recent algorithms for deciding the coverability problems [START_REF] Esparza | An SMT-based approach to coverability analysis[END_REF][START_REF] Blondin | Approaching the coverability problem continuously[END_REF]. This equation is obtained by introducing the total function ∆(t) in Z P called the displacement of a transition t and defined for every place p by ∆(t)(p) = F (t, p) -F (p, t). Let us assume that a marking m f inal is in the coverability set of a Petri net N . It follows that there exist an initial marking m init , a word t 1 . . . t k of transitions, and a marking m ≥ m f inal

such that m init t1 -→ • • • t k -→ m.
We derive the following relation:

m init + ∆(t 1) + • • • + ∆(t k) = m ≥ m f inal
By reordering the sum ∆(t 1) + • • • + ∆(t k), we can group together the displacements ∆(t) corresponding to the same transition t. Denoting by λ(t) the number of occurrences of t in the word t 1 . . . t k , we get:

m init + t∈T λ(t)∆(t) ≥ m f inal (2)
The relation (2) is called the state inequation for the coverability problem. Notice that a similar equation can be derived for the reachability problem by replacing the inequality by an equality. We do not consider this equality in the sequel since we restrict our attention to the coverability problem. We introduce the following set I S where Q ≥0 is the set of non-negative rational numbers.

I S = {m ∈ N P | ∃m init ∈ Init ∃λ ∈ Q T ≥0 : m init + t∈T λ(t)∆(t) ≥ m} (3
)
Proposition 5.1. The set I S is a downward-closed invariant with a polynomialtime membership problem.

The downward-closed invariant I S contains Cov N so we may use it as parameter to the ICover algorithm of Section 4. A more precise downward-closed invariant can be obtained by requiring that λ ∈ N T . In particular, the pruned backward algorithm presented in Section 4 should produce smaller sets of markings with this more precise invariant. In practice, we do not observe any significant improvement on a large set of benchmarks. Moreover, whereas the membership problem of a marking m is decidable in polynomial time when λ ranges over Q T ≥0 , the problem becomes NP-complete when λ is restricted to N T .

Sign Analysis for Downward-Closed Invariants

The invariant presented in the previous section over-approximates the behavior of Petri nets by allowing places to hold negative amounts of tokens. In this section, we explore another direction by ignoring the precise numbers of tokens in each place and only accounting for their sign (namely, zero or positive).

We call a place p ∈ P a zero place when m(p) = 0 for every marking m ∈ Cov N . Given a set Z of zero places, we let

I Z = {m ∈ N P | p∈Z m(p) = 0} (4)
The set I Z is obviously a downward-closed invariant, hence, it contains Cov N . Moreover, I Z has a linear-time membership problem. So we may use I Z as parameter to the ICover algorithm of Section 4. The question remains how to compute a suitable set Z of zero places. Ideally, we get the most precise over-approximation I Z by taking Z to be the set of all zero places. However, the question whether a given place is not a zero place is equivalent to (i.e., logspace interreducible with) the coverability problem, which is the problem that we want to solve in the first place. So we settle for the computation of a subset of zero places, using data-flow sign analysis [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF].

Rephrased in the context of Petri nets, an invariant I is said to be inductive if m t -→ m and m ∈ I implies m ∈ I. Sign analysis can be formulated as the computation of the maximal (for inclusion) subset Z ⊆ P such that the set I Z defined in Equation (4) is an inductive invariant. The unicity of that set is immediate since the class of sets Z such that I Z is an inductive invariant is clearly closed under union. In the sequel, Z denotes the maximal set satisfying this property, and this maximal set is shown be computable in polynomial time thanks to a fixpoint propagation. We introduce the operator prop t : 2 P → 2 P associated to a transition t and defined for any set Q of places as follows:

prop t (Q) = out(t) if in(t) ⊆ Q ∅ otherwise It is understood that for a transition t ∈ T , in(t) = {p ∈ P | F (p, t) > 0} and out(t) = {p ∈ P | F (t, p) > 0}.
Intuitively, if t is a transition such that in(t) ⊆ Q then from a marking with large number of tokens in each place of Q, it is possible to fire t. In particular places q in out(t) cannot be in Z. This property is formally stated by the following lemma.

Lemma 6.1. We have prop t (Q) ⊆ P \Z for every set Q ⊆ P \Z.

Proof. We can assume without loss of generality that in(t) ⊆ Q since otherwise the set prop t (Q) is empty. For the same reason, we can assume that there exists q ∈ out(t). Let us prove that such a place q cannot be in Z. We introduce the markings m t and m t defined by m t (p) = F (p, t) and m t (p) = F (t, p) for every p ∈ P . Those markings are the minimal ones satisfying m t t -→ m t . Observe that for every p ∈ Z, we have p ∈ P \Q since Q ∩ Z is empty. It follows that F (p, t) = 0 for every p ∈ Z. Hence m t is in the inductive invariant I Z . Since m t t -→ m t , we deduce that m t ∈ I Z . As F (t, q) > 0, we get m t (q) > 0. Hence q ∈ Z.

The set Z can be computed as a fixpoint by introducing the non-decreasing sequence Q 0 , Q 1 , . . . of places defined as follows:

Q 0 = {q ∈ P | ∃m init ∈ Init m init (q) > 0} Q k+1 = Q k ∪ t∈T prop t (Q k)
Let us notice that the set Q = k≥0 Q k is computable in polynomial time. The following lemma shows that Q provides the set Z as a complement. Lemma 6.2. We have Z = P \Q.

Proof. Since Q 0 ⊆ P \Z, Lemma 6.1 shows by induction that Q k ⊆ P \Z for every k. It follows that Q ⊆ P \Z. We derive Z ⊆ P \Q. The converse inclusion is obtained by proving that the set M = {m ∈ N P | p∈P \Q m(p) = 0} is an inductive invariant. First of all, since Q 0 ⊆ Q, we deduce that there exists m init ∈ Init ∩ M . Now let us consider m ∈ M and a transition t such that m t -→ m for some marking m . Observe that m(p) ≥ F (p, t) for every p ∈ P . In particular, for p ∈ P \Q, the equality m(p) = 0 implies F (p, t) = 0. Assume by contradiction that m ∈ M . In that case, there exists q ∈ P \Q such that m (q) > 0. Since m (q) = m(q) + F (t, q) + F (q, t) and m(q) = 0 = F (q, t), we deduce that F (t, q) > 0. Thus q ∈ prop t (Q). By definition of Q, we get q ∈ Q and we obtain a contradiction. Thus M is an inductive invariant. By maximality of Z, we get the inclusion P \Q ⊆ Z. Thus Z = P \Q.

Corollary 6.3. The set Z is computable in polynomial time.

As mentioned above, we may use I Z as parameter to the ICover algorithm of Section 4. In practice, though, we use it as a pre-processing step to simplify the Petri net under analysis. This was already hinted at in Remark 4.9. The remainder of this section presents this pre-processing in detail.

Consider a Petri net N = (P, T, F, Init) and two subsets Q ⊆ P and U ⊆ T . Given a marking m ∈ N P , we let m| Q denote the restriction of m to Q, i.e., the marking in

N Q defined by m| Q (p) = m(p) for every p ∈ Q. The restriction of the flow function F to Q and U is the function F | Q,U : (Q × U) ∪ (U × Q) → N defined by F | Q,U (p, t) = F (p, t) and F | Q,U (t, p) = F (t, p) for every p ∈ Q and every t ∈ U . Finally, the restriction of the Petri net N to Q and U is the Petri net N | Q,U = (Q, U, F | Q,U , Init| Q) where Init| Q = {m init | Q | m init ∈ Init}.
Theorem 6.4. Let Q be a set of places of a Petri net N such that all places that are not in Q are zero places. Let U denote the set of transitions t of N such that in(t) ⊆ Q. A marking m is coverable in N if, and only if, m| Q is coverable in N | Q,U and m(p) = 0 for every place p ∈ Q.

Proof. Assume that m is coverable in

N . There exists m 0 t1 -→ m 1 • • • t k -→ m k in N such that m 0 ∈ Init and m k ≥ m. Observe that each m i ∈ Cov N , hence, m i (p) = 0 for every place p ∈ Q. It follows that each t i satisfies in(t i) ⊆ Q, hence, t i ∈ U . The above definition of restriction immediately entails that m 0 | Q t1 -→ m 1 | Q • • • t k -→ m k | Q in N | Q,U . Moreover, m 0 | Q ∈ Init| Q and m k | Q ≥ m| Q . We have thus shown that m| Q is coverable in N | Q,U . Since m k ≥ m and m k (p) = 0 for every place p ∈ Q, we also get that m(p) = 0 for every place p ∈ Q. Conversely, assume that m| Q is coverable in N | Q,U and m(p) = 0 for every place p ∈ Q. There exists x 0 t1 -→ x 1 • • • t k -→ x k in N | Q,U such that x 0 ∈ Init| Q and x k ≥ m| Q .
To show that m is coverable in N , we lift this sequence of steps into a sequence of steps in N . Let us define the markings m 0 , . . . , m k of N by

m i (p) = x i (p) if p ∈ Q F (t 1 , p) + • • • + F (t i , p) otherwise
It is understood that F denotes the flow function of N . Since each t i is a transition in U , it holds that F (p, t i) = 0 for every place

p ∈ Q. It follows that m 0 t1 -→ m 1 • • • t k -→ m k in N . Since x k ≥ m| Q and m(p) = 0 for every place p ∈ Q, we get that m k ≥ m. It remains to show that m 0 ∈ Init. Recall that x 0 ∈ Init| Q . This means that x 0 = m init | Q for some m init ∈ Init. Since m init ∈ Cov N ,
m init (p) = 0 for every place p ∈ Q. It follows that m init = m 0 , which concludes the proof. Remark 6.5. The above theorem allows us to simplify the input to the coverability problem as follows. Given a Petri net N = (P, T, F, Init) and a target marking m f inal ∈ N P , we compute the maximal subset Z ⊆ P such that I Z is an inductive invariant. This set is computable in polynomial time by Corollary 6.3. If m f inal (p) = 0 for some place p ∈ Z then we answer that m f inal is not coverable in N . Otherwise, we compute the restrictions N | Q,U and m f inal | Q , where Q = P \ Z and U = {t ∈ T | in(t) ⊆ Q}, and we solve coverability for N | Q,U and m f inal | Q . Theorem 6.4 guarantees the correctness of this approach.

Experimental Evaluation

We implemented our approach using the QCover [START_REF] Blondin | Approaching the coverability problem continuously[END_REF] tool as a starting point. This tool, which implements a backward coverability algorithm for Petri nets, is written in Python and relies on the SMT-solver z3 [START_REF] De Moura | Z3: an efficient SMT solver[END_REF]. QCover also uses some other heuristics that we kept unchanged. QCover was competitive with others tools especially for uncoverable Petri net. Only the BFC tool performs significantly better on coverable Petri net. We have made two modifications to QCover. First, we have added a pre-processing step based on sign analysis (see Remark 6.5). Second, we have replaced their pruning technique, which is based on coverability in continuous Petri nets, by the state inequation presented in Section 5. ICover is available on GitHub as a fork [START_REF] Geffroy | ICover: Petri net coverability checker with invariant-based pruning[END_REF] of QCover [START_REF] Blondin | QCover: an efficient coverability verifier for discrete and continuous Petri nets[END_REF].

To test our implementation, we used the same benchmark as Petrinizer [START_REF] Esparza | An SMT-based approach to coverability analysis[END_REF] and QCover [START_REF] Blondin | Approaching the coverability problem continuously[END_REF]. It comprises models from various sources: Mist [START_REF] Ganty | Mist -A safety checker for petri nets and extensions[END_REF], BFC [START_REF] Kaiser | A widening approach to multithreaded program verification[END_REF], Erlang programs abstracted into Petri nets [START_REF] Osualdo | Automatic verification of Erlang-style concurrency[END_REF], as well as so-called medical and bug_tracking examples [START_REF] Esparza | An SMT-based approach to coverability analysis[END_REF]. We let each tool work for 2000 seconds in a machine on Ubuntu Linux 14.04 with Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz with 16 GB of memory for each benchmark. The computation times are the sum of the system and user times. Overall QCover solved 106 uncoverable instances on 115 Petri net and 37 coverable problems on 61 Petri nets. ICover was able to find one more coverable instance. In fact calling QCover on the Petri net computed by the pre-processing, that we will call QCover/Pp, can even solve one more uncoverable instance than ICover. On the 143 instances that QCover solved, the tool took 9729 seconds, QCover/Pp used 6827 seconds, and ICover used only 5213 seconds. that ICover was faster than QCover and conversely. There are three instances where QCover performs very well, under a second, and where ICover took a few tens of seconds to answer. For the three cases, the formula used by QCover for coverability in Q was enough to discard the target as uncoverable and it did not have to enter in the while loop. But ICover was not able to discard the target and had to enter the while loop in the three cases. We also see two dots above the line at the middle of the figure. The pre-processing took respectively 12 and 45 seconds while the initial Petri net was solved by QCover in respectively 16 and 33 seconds. Figure 2(b) and (c) show the intermediate comparisons: ICover versus QCover/Pp and QCover/Pp versus QCover. We can observe that the pre-processing has a major impact on the good performance of ICover compared to QCover.

Figure 2(e) and Figure 2(f) aims to show the effect of the pre-processing on the size of Petri nets. The former show the percentage of places left after pre-processing. Some Petri nets kept all their places but others were left with only 2.5% of their initial places. And most of Petri nets lost a significant number of places. The latter shows the percentages of transitions left after the preprocessing. Overall less transitions were cut than places. Half of the Petri nets kept all their transitions, but some were left with only 4% of their initial transitions.

Figure 2(d) compares the efficiency of pruning between ICover and QCover. Again, each dot represents a coverability question. As discussed in Section 8, QCover always prunes at least as many markings as ICover (but at the expense of more complex pruning tests). A value of 100% means that ICover was able to prune the same markings as QCover. It turns out that on most instances, this perfect value of 100% is obtained. This is rather surprising at first sight, and warrants an investigation, which is the focus of the next section.

Comparison with Continuous Petri Net

Continuous Petri nets are defined like Petri nets except that transitions can be fired a non-negative rational number of times. The firing of such a transition produces markings with non-negative rational numbers of tokens. Under such a semantics, called the continuous semantics, the reachability problem was recently proved to be decidable in polynomial time [START_REF] Fraca | Complexity analysis of continuous Petri nets[END_REF]. Based on this observation, the tool QCover implements the pruning backward coverability algorithm presented in Section 4 with a downward-closed invariant derived from the continuous semantics. Whereas this invariant is more precise than the downward-closed invariant obtained from the state inequation introduced in Section 5, we have seen in Section 7 that such an improvement is overall not useful in practice for pruning in the backward coverability algorithm. In this section, we provide a simple structural condition on Petri nets in such a way the two kinds of downward-closed invariants derived respectively from the continuous semantics and the state inequation are "almost" equal. This structural condition is shown to be natural since it is fulfilled by the Petri nets obtained after the pre-processing introduced in Remark 6.5.

A continuous marking is a mapping m ∈ Q P ≥0 where Q ≥0 denotes the set of non-negative rational numbers, and P the set of places. Given r ∈ Q ≥0 and a transition t, the continuous rt-step binary relation For every positive natural number k, we have:

(1, 0, 0)

1 k t1 (1 - 1 k , 1 k , 0) 1 k t2 1 k t3 (1 - 1 k , 2 k , 1 k) • • • 1 k t2 1 k t3 (1 - 1 k , 1 + 1 k , 1)
It follows that (

. Notice that the relation (

The downward-closed invariant used in the tool QCover for implementing the pruning backward algorithm is defined as follows:

I C = {m ∈ N P | ∃m init ∈ Init ∃m ∈ Q P ≥0 : m init * m ≥ m} (5)
Recall that in Section 5 we introduced the set I S for denoting the downwardclosed invariant derived from the state inequation. The following result provides a characterization of that invariant when the Petri net satisfies a structural condition. Theorem 8.2 ([14, Theorem 7]). Assume that Init is a set of markings of the following form where Q ⊆ P and x ∈ N Q :

Init = {m init ∈ N P | q∈Q m init (q) ≤ x(q)}
And assume that every transition is fireable from the downward-closed invariant I Z introduced in Section 6. We have:

I S = {m ∈ N P | ∃m init ∈ Init ∃m ∈ Q P ≥0 : m init ∞ m ≥ m} (6)
Proof. The statement of Theorem 7 in [START_REF] Recalde | Autonomous continuous P/T systems[END_REF] is wrong since it is based on a too strong definition of limit-reachability. Rephrased with our notations, that theorem claims that I S is the set of markings m such that there exists a sequence (m k) k≥0 of continuous markings that converges towards a marking m ≥ m and such that m 0 ∈ Init and m k * m k+1 for every k. Example 8.1 shows that this claim is wrong. However, the proof becomes correct with our definitions and notations. The proof is obtained as follows. First of all, if m is a marking such that there exists m init ∞ m ≥ m for some m init ∈ Init and m ∈ Q P ≥0 , we derive that there exists a sequence (m k) k≥0 of continuous markings that converges towards m such that m init * m k for every k. It follows that m k satisfies the system of linear equations of I S for every k. As a limit, it follows that m satisfies the same system. In particular m ∈ I S .

Conversely, let us assume that m is a marking in I S , and assume that every transition is fireable from the downward-closed invariant I Z introduced in Section 6. Given a word σ = (r 1 t 1) . . . (r k t k) with (r j , t j) ∈ Q ≥0 × T , we denote by σ the binary relation over the continuous markings defined as the concatenation

r1t1 • • • r k t k
. Moreover, we say that σ is fireable from a continuous marking m if there exists a continuous marking y such that x σ y. Given r ∈ Q ≥0 , we define rσ as the word (rr 1 t 1) . . . (rr k t k). Observe that if x σ y then x εσ x + ε(y -x) for every ε satisfying 0 ≤ ε ≤ 1. Moreover, if x σ y then rx rσ ry for every r ≥ 0. Let (Q k) k∈N be the sequence introduced in Section 6 and let us show by induction on k that there exists a sequence of continuous markings (x k) k∈N such that x 0 ∈ Init, x k * x k+1 , and x k (q) > 0 for every q ∈ Q k . The rank k is immediate thanks to the special form of Init. Assume the sequence x 0 , . . . , x k built. Notice that there exists a sequence t 1 , . . . , t n of transitions in T such that F (p, t j) = 0 for every p ∈ P \Q k and for every 1 ≤ j ≤ n, and such that

Q k+1 \Q k ⊆ {q | F (t, q) > 0}.
Observe that for a rational number > 0 small enough, we have x k εt1 . . . εtn x k+1 where x k+1 satisfies x k+1 (q) > 0 for every q ∈ Q k+1 .

It follows that there exists x 0 ∈ Init, a continuous marking x, an a word w such that x 0 w x with x(q) > 0 for every q ∈ Q where Q = k Q k . Now, let us consider a marking m ∈ I S . There exist m init ∈ Init and a word t 1 . . . t k of transitions such that m init + ∆(t 1) + • • • + ∆(t k) = y ≥ m. Thanks to the form of Init, we can assume without loss of generality that m init ≥ x 0 . Let σ = (1t 1) . . . (1t k) and let ε such that 0 < ε < 1. From x 0 w x and m init ≥ x 0 , we derive

m init εw (1 -ε)[m init + z ε] where z ε = ε 1-ε (x + m init -x 0)
. Since z ε (q) > 0 for every q ∈ Q, and every transition is fireable from I Z , we deduce that there exists n ≥ 1 large enough such that the word

1 n σ is fireable from z ε . Since 1 n σ is fireable from z ε , it is in particular fireable from k n m init + n-k n y + z ε for every 0 ≤ k < n. From m init + ∆(t 1) + • • • + ∆(t k) = y, we get the following relation: n -k n m init + k n y + z ε 1 n σ n -(k + 1) n m init + k + 1 n y + z ε
By concatenating the previous relations, we deduce that

m init + z ε * y + z ε . With m init * (1 -ε)[m init + z ε], we deduce the relation m init * (1 - ε)[y + z ε] = (1 -ε)y + ε(x + m init -x 0). It follows, when ε tends to 0, that m init ∞ y.
The two equalities Equation (5) and Equation [START_REF] Esparza | An SMT-based approach to coverability analysis[END_REF] show that I S and I C are very similar for Petri nets satisfying the structural condition stated in Theorem 8.2. This condition is fulfilled by the Petri nets produced by the pre-processing algorithm introduced in Remark 6.5. Notice that even if the membership problem in I S and I C are both decidable in polynomial time, the extra computational cost for deciding the membership problem for the invariant I C , even for efficient SMT solvers like Z3, is not negligible. Naturally, if a marking is in I C then it is also in I S , and the converse property is false in general as shown by Example 8.1. However, in practice, we observed that markings that are in I S are very often also in I C (see Figure 2(d)), as already mentioned in Section 7.

Forward Analysis of Omega Places

We have presented in Sections 5 and 6 two downward-closed invariants, which are over-approximations of Cov N , to be used as parameter to the algorithm ICover. In practice, the invariant derived from sign analysis is used as a preprocessing as seen in Remark 6.5. The idea is to eliminate places that we know remain forever empty starting from Init. In this section, we exhibit some places that can receive an arbitrary high number of tokens. We show that those places can be safely eliminated for solving coverability problems.

We introduce the unit vector e p in N P defined as zero everywhere except for the index p where it is one. A place p ∈ P is called an omega place if the marking m + ne p is coverable for arbitrarily large natural numbers n and for every coverable marking m. A simple induction on n shows that p is an omega place if, and only if, Cov N + e p ⊆ Cov N . Here, the sum Cov N + e p stands for the set {m + e p | m ∈ Cov N }.

Example 9.1. Figure 3 depicts a Petri net such that every marking is coverable. It follows that p 1 , p 2 , p 3 are omega places.

The following theorem shows that omega places can be safely eliminated without changing results of coverability problems. This reduction is implemented as a pre-processing in our tool ICover (see Section 9.1 for experimental evaluations). Theorem 9.2. Let Q be a set of places of a Petri net N such that places that are not in Q are omega places. A marking m is coverable in N if, and only if, m| Q is coverable in the restriction N | Q of N to the set of places Q.

Proof. In order to simplify notations, the step relation

t - → of N | Q is denoted by t - → Q . Observe that if x t - → y for some markings x, y then x| Q t - → Q y| Q . It follows that if a marking m is coverable in N then m| Q is coverable in N | Q . Let us prove the converse property.
We first prove by induction over k that for every x 0 t1

-→ Q x 1 • • • t k -→ Q x k with x 0 ∈ Init| Q , there exists a marking m k ∈ Cov N such that x k ≤ m k | Q .
(p) = m k (p) -F (p, t k+1) + F (t k+1 , p) ≥ x k (p) -F (p, t k+1) + F (t k+1 , p) = x k+1 (p). It follows that x k+1 ≤ m k+1 | Q . We have proved the induction. Now, assume that m is a marking of N such that m| Q is coverable in N | Q . There exists x 0 t1 -→ Q x 1 • • • t k -→ Q x k with x 0 ∈ Init| Q such that m| Q ≤ x k . From the previous paragraph, there exists m k ∈ Cov N such that x k ≤ m k | Q .
Notice that places of m k indexed by P \Q can be replaced by arbitrarily large numbers since P \Q is a set of omega places. So, we can assume without loss of generality that m k (p) ≥ m(p) for every p ∈ P \Q. It follows that m ≤ m k . Thus m is coverable in N .

To apply the pre-processing induced by Theorem 9.2, we need to compute omega places. It would be too costly in time to compute them all. In fact, as shown in Lemma 9.3, the detection of omega places is at least as hard as the coverability problem itself. More formally, we introduce the omega place problem that asks, given a Petri net N = (P, T, F, Init) and a place p ∈ P , whether p is an omega place.

Lemma 9.3. The coverability problem is logspace reducible to the omega place problem.

Proof. Let N = (P, T, F, Init) a Petri net and m f inal a marking. We define

N Ω = (P Ω , T Ω , F Ω , Init Ω) such that P Ω = P ∪ {p Ω } with p Ω / ∈ P a new place, T Ω = T ∪ {t f inal , t add } is
F Ω : (P Ω × T Ω) ∪ (T Ω × P Ω) → N is such that
• for all t ∈ T the transition has the same effect as in N ,

• t add is a transition that takes a token in p Ω , puts a token in every place in P Ω \{p Ω } and puts two tokens in p Ω , i.e., F Ω (p Ω , t add) = 1, F Ω (p, t add) = 0 for every place p = p Ω , F Ω (t add , p) = 1 if p ∈ P Ω \{p Ω }, F Ω (t add , p Ω) = 2, and F Ω (t add , p) = 0 for every place p ∈ P Ω , and

• t f inal is the transition such that F Ω (q, t f inal) = m f inal (q) for all q ∈ P and that put a token in p Ω .

We will prove that m f inal is coverable in N if, and only if, p Ω is an omega place in N Ω .

First, if m f inal is coverable in N . Let us prove that all markings in N P Ω are coverable. Because m f inal is coverable in N , it is coverable in N Ω by definition of F Ω . It would be then possible to fire t f inal to cover m f inal + e p Ω . But from e p Ω we can put tokens in every places we want with t add . Hence, all markings are coverable in N Ω . We have then that p Ω is an omega place in N Ω .

For the converse, if p Ω is an omega place in N Ω it means in particular that e p Ω is coverable. Therefore there exist some markings m 0 , m 1 , . . . , m k and some transitions t

1 , t 2 , . . . t n in T Ω such that m 0 ∈ Init Ω (hence m 0 (p Ω) = 0), for all 0 ≤ k < n, m k (p Ω) = 0 and m 0 t1 -→ m 1 . . . * -→ m n-1 tn -→ m n ≥ e p Ω .
Only the transition t f inal can put a token in p Ω when there is no token in it yet. Therefore t n = t add and for all 1 ≤ k < n, t k ∈ T . Furthermore that transition can be fire, by definition, only if there are at least m f inal (q) tokens for each place q ∈ N P . We have then m

n-1 ≥ m f inal and m 0 t1 -→ m 1 . . . * -→ m n-1 is a path in N . This prove that m f inal is coverable in N .
Rather than trying computing the whole set of omega places of a Petri net N = (P, T, F, Init), we will only use a simple forward fixpoint computation to find some of them. We define a sequence of sets of omega places such that:

Ω 0 = {p ∈ P | ∀m init ∈ ↓Init, m init + e p ∈ ↓Init} Ω k+1 = Ω k ∪ t∈T in(t)⊆Ω k out(t)
The set Ω 0 is exactly the set of places for which there is no constraint in Init. The sequence Ω 0 , Ω 1 , . . . is non-decreasing (for ⊆) and furthermore this sequence is ultimately stationary because Ω k ⊆ P for all k > 0 and P is finite. We note Ω = k Ω k . We will show that Ω is a set of omega places.

We first need to show that we can put a token in any place in Ω from an initial marking that has tokens only in places in Ω 0 . But first, we need the following technical lemma. Proof. We will prove it by induction on k > 0. For the basis k = 1, let p ∈ Ω 1 , we have trivially m init = e p ≥ e p . Hence the basis k = 1 holds.

For the induction step, let k > 0. Let q ∈ Ω k+1 \Ω k . By construction of Ω k+1 , there exists t ∈ T such that q ∈ out(t) and in(t) ⊆ Ω k . By induction hypothesis, for all places p ∈ in(t) ⊆ Ω k , there exists m init,p ∈ p0∈Ω0 N • e p0 and m p such that m init,p * -→ m p ≥ e p . According to Lemma 9.4 we have

m init = p∈in(t) F (p, t) • m init,p * -→ p∈in(t) F (p, t) • m p ≥ p∈in(t) F (p, t) • e p .
Let m = p∈in(t) F (p, t) • m p . We can then fire t from m. We have m t -→ m with m (q) = F (t, q) -F (q, t). We have F (q, t) = 0 because q /

∈ Ω k and in(t) ⊆ Ω k hence q / ∈ in(t), and F (t, q) > 0 because q ∈ out(t). We have then m (q) > 0 and therefore m init * -→ m ≥ e p . Furthermore, it is readily seen that m init ∈ p∈Ω0 N • e p .

We now show that all places in Ω are indeed omega places. We can now eliminate all the places in Ω that are identified as omega places thanks to Theorem 9.2.

Example 9.7. Figure 3 depicts a Petri net such that every marking is coverable. It follows that p 1 , p 2 , p 3 are omega places. Observe that Ω 0 = ∅ and Ω k = {p 1 } for every k ≥ 1. It follows that our forward fixpoint computation detects that p 1 is an omega place but fails to detect that p 2 and p 3 are omega places as well.

Experimental evaluation

We now continue the experiments seen in Section 7. The computation of the omega places as described before is embedded with the sign analysis. It is an option of ICover. We denote by ICover + Ω the procedure that start with the pre-processing that eliminates some omega places and then proceeds the same way as described in Section 7. ICover + Ω was able to solve as much uncoverable instance as ICover but six more coverable instance. For the total of 144 instances where both algorithm concluded, ICover took 6362 seconds and ICover + Ω took 3134 seconds. Furthermore, ICover + Ω used only 1964 seconds for the same instances where QCover took 9729 seconds. Remark 9.8. In a restricted Petri net, a transition t can be such that out(t) = ∅. We can safely remove this transition without changing the result of the computation.

Now we analyze how many places where cut with the method described in this section. Over the 176 instances, 112 have omega places found. And 102 of these instances have only one omega place. Those last Petri nets were mostly extracted from tts systems where one place represents the number of threads at the initial state. And that number has no constraints. Those places are omega places. One instance, kanban from the tool Mist [START_REF] Ganty | Mist -A safety checker for petri nets and extensions[END_REF], our pre-processing had computed Ω which is the set of all places. The instance was therefore trivially solved, despite the fact that QCover and ICover both did not terminate.

As in Section 7, we presents comparison between ICover + Ω and ICover in Figure 4(a). We observe a good impact. In Figure 4(b) we compare ICover+Ω and QCover which summarize the effect of our modifications: state inequation, sign analysis and omega places. We can see a substantial improvement. Even with only one place cut in a Petri net with a few tens of places, the effect can be important: the procedure can be accelerate by a factor of three in some cases. The Example 9.9 shows why we can have this effect. Example 9.9. Consider the simple Petri net N in Figure 5 with the set of initial markings Init = {m init ∈ N P | m init (p 2) ≤ 1}.

We want to know whether the target marking m f inal = 100e p2 is coverable. Without the pre-processing, the sequence of (B I k) will be for 0 < i < 100, B I i = {(je p1 + (100 -j)e p2) ∈ N P | j ≤ i}. And finally ↓Init ∩ B I 99 = ∅ will prove that m f inal is coverable. The size of the last basis B I 99 is 99 despite a Petri net of a very limited size.

But our pre-processing will compute Ω = Ω 0 = {p 1 }, and then the restricted Petri net will only contain one place p 2 , and a simple transition that take one token in p 2 and put two tokens in that same place. The initial set will be Init| Q = ↓e p2 . And now the sequence will be for all 0 ≤ i < 100, B I i | Q = {(ie p1 + (100 -i)e p2)}. All the bases will be of size one. This simple computation leads to a great effect despite being a simple forward analysis.

Conclusion

Petri nets have recently been used as low-level models for model-checking concurrent systems written in high-level programming languages [START_REF] Donaldson | Symmetry-aware predicate abstraction for shared-variable concurrent programs[END_REF][START_REF] Osualdo | Automatic verification of Erlang-style concurrency[END_REF]. The original verification question on the concurrent program reduces to a coverability question on the resulting Petri net. We have proposed in this paper a family of simple coverability algorithms parametrized by downward-closed invariants. Additionally, we have presented two simple pre-processings that reduce the size of Petri nets while preserving the desired coverability information. As future work, we intend to look for classes of downward-closed invariants with a good tradeoff between precision and efficient membership.

Figure 1 :

 1 Figure 1: Simple Petri net example

Example 2 . 1 .

 21 ∀p ∈ P : m(p) ≥ F (p, t) ∧ m (p) = m(p) -F (p, t) + F (t, p) The one-step binary relation → is the union of these t-step relations. Formally, m → m ⇔ ∃t ∈ T : m t -→ m . The many-step binary relation * -→ is the reflexive-transitive closure of →. Figure 1 depicts a simple Petri net N = (P, T, F, Init) with places

Lemma 4 . 3 .

 43 The sequence (B I k) is ultimately stationary. Proof. The definition of (B I k) entails, with Lemma 3.2, that the sequence of upward-closed sets (↑B I k) is growing. It follows from Lemma 3.1 that (↑B I k) is ultimately stationary. The observation that B I k = Min(↑B I k) for every k concludes the proof of the lemma. This observation is an easy consequence of the fact that Min ↑S = Min S = Min(Min S)

begin 2 if m f inal ∈ I then 3 B ← {m f inal } 4 else 5 B ← ∅ 6 while ↓Init ∩ B = ∅ do 7 N 8 P 9 if P = ∅ then 10 return 11 B 12 returnLemma 4 . 5 .Remark 4 . 7 .

 234567891011124547 Init), a target marking m f inal ∈ N P and a set I such that Cov N ⊆ I Output: Whether there exist two markings m init ∈ Init and m ∈ N P such that m init * -→ m and m ≥ m f inal . 1 ← cpre N (B) \ ↑B /* new predecessors */ ← N ∩ I /* prune uncoverable markings */ False ← Min(B ∪ P) True B I k = B I k+1 if, and only if, P I k = ∅. Proof. Assume first that B I k = B I k+1 . Since B I k+1 = Min(B I k ∪P I k), it follows that P I k ⊆ ↑B I k+1 . From B I k = B I k+1 , we get P I k ⊆ ↑B I k . Moreover, from P I k ⊆ N I k and N I k ∩ ↑B I k = ∅, we get P I k ∩ ↑B I k = ∅. It follows that P I k = ∅. Conversely, if P I k = ∅ we get B I k+1 = min(B I k) = B I k since any B set is defined as a set of minimal elements. Theorem 4.6. The procedure ICover terminates on every input and is correct. Proof. For the termination, Lemma 4.3 shows that the sequence (B I k) k∈N is ultimately stationary. It follows that there exists k ∈ N such that B I k+1 = B I k . Lemma 4.5 shows that P I k = ∅. Therefore the algorithm cannot execute the main loop more than k times. Hence, the termination is guaranteed. The correctness directly follows from Lemmas 4.4 and 4.5. The algorithm ICover can be implemented just by assuming that the membership problem for I and ↓Init are decidable. In fact, line 7 can be implemented by removing from cpre N (B) the markings m such that m ≥ b for some b ∈ B.

Figure 2 (

 2 a) shows the comparison between ICover and QCover in time. The straight line represents when the two tools took the same time. Each dot represents a coverability question. When the dot is under the line, it means 10 0 10 1 10 2 10 3 the original Petri net % of transitions left (f) Pre-processing and # of transitions

Figure 2 :

 2 Figure 2: Experimental results for ICover, QCover and QCover/Pp

Example 8 . 1 .

 81 ∈ P : m(p) ≥ r.F (p, t) ∧ m (p) = m(p) -r.F (p, t) + r.F (t, p) The one-step continuous binary relation is the union of these rt-step relations. Formally, m m if there exists r ∈ Q ≥0 and t ∈ T such that m rt m . The many-step continuous binary relation * is the reflexivetransitive closure of . We also introduce the binary relation ∞ defined over the continuous markings by m ∞ m if there exists a sequence (m k) k≥0 of continuous markings that converges towards m with the classical topology on Q P ≥0 and such that m * m k for every k. Let us look back at the simple Petri net N depicted in Figure 1.

Figure 3 :

 3 Figure 3: A Petri net with omega places

 a set of new transitions, Init Ω has all the same constraints of Init and a new constraint: m init (p Ω) ≤ 0. And the flow function

Lemma 9 . 4 .Lemma 9 . 5 .

 9495 We have x + y * -→ x + y for every x * -→ x and y * -→ y .Proof. First we prove that if x * -→ x then for every z ∈ N P we have x+z * -→ x +z. Let z ∈ N P and suppose that x * -→ x . There exist x 0 , x 1 , . . . , x n and t 1 , t 2 , . . . , t n such thatx = x 0 t1 -→ x 1 . . . tn -→ x n = x . It is readily seen that for every 0 ≤ k < n, x k + z t k -→ x k+1 + z. We have then x + z * -→ x + z.To conclude, we have x + y * -→ x + y * -→ x + y for every x * -→ x and y * -→ y . For all k > 0 and for all p ∈ Ω k , there exists an initial marking m init ∈ p∈Ω0 N • e p such that m init * -→ m ≥ e p for some marking m.

Lemma 9 . 6 .

 96 For all places p ∈ Ω, Cov N + e p ⊆ Cov N . Proof. Let p ∈ Ω. Let m ∈ Cov N a coverable marking. There exists m init ∈ Init such that m init * -→ m ≥ m. According to Lemma 9.5, there exists m init ∈ p∈Ω0 N • e p such that m init * -→ m ≥ e p . By definition of Ω 0 and direct induction, we have m init + m init ∈ ↓Init, and therefore there exists δ ∈ N P such that m init + m init + δ ∈ Init. According to Lemma 9.4 we have m init + m init + δ * -→ m + m + δ ≥ m + e p . Hence m + e p is coverable. Therefore Cov N + e p ⊆ Cov N .

10 0 10 1 10 2

 2 ICover + Ω vs QCover

Figure 4 :

 4 Figure 4: Experimental results for the effect of omega places

2 Figure 5 :

 25 Figure 5: Simple Petri net that can be solved easily with the omega pre-processing

 It holds that pre N (↑S) = ↑cpre N (S) for every subset S ⊆ N P .

	• If m(p) ≤ F (p, t) then cpre t N (m)(p) = F (p, t) ≤ u(p).
	• If m(p) ≥ F (p, t) then cpre t N (m)(p) = F (p, t) + m(p) -F (t, p). Since v ≥ m, we get that cpre t N (m)(p) ≤ F (p, t) + v(p) -F (t, p) = u(p).
	In both cases, we obtain that cpre t N (m)(p) ≤ u(p). We have thus shown that u ∈ ↑cpre t N (m).
	Conversely, let u ∈ ↑cpre t N (m). This means that u(p) ≥ cpre t N (m)(p) for
	every place p ∈ P . Therefore, u(p) ≥ F (p, t) and u(p) ≥ F (p, t) + m(p) -F (t, p).
	It follows that u	t -→ v for the marking v ≥ m defined by v(p) = u(p) -F (p, t) +
	F (t, p). We have thus shown that u ∈ pre t N (↑m).
	Corollary 3.5.
			. The function
	cpre t N is extended to sets of markings by cpre t N (S) = {cpre t N (m) | m ∈ S}, and is further extended to all transitions by cpre N (S) = {cpre t N (m) | t ∈ T, m ∈ S}.
	Lemma 3.4. It holds that pre t N (↑m) = ↑cpre t N (m) for every marking m ∈ N P .
	Proof. Let u ∈ pre t N (↑m). There exists v ≥ m such that u	t -→ v. Consider a
	place p ∈ P . It holds that u(p) ≥ F (p, t) and v(p) = u(p) -F (p, t) + F (t, p)
	since u	t -→ v. We consider two cases.

 as shown in Example 4.1 below, this requirement does not ensure that (B I k) preserves coverability. Instead of the reachability set, we require in Lemma 4.2 that I contains the coverability set. Consider the very simple Petri net with only one place p, one transition t such that F (p, t) = 1 and F (t, p) = 3, and one initial marking m init = p. Since p 5p, we get that m f inal = 4p belongs to Cov N . Now consider the set I = {p, 3p, 5p, . . .}. It is readily seen that I is the reachability set of N . But since m f inal ∈ I, we get that B I

	Example 4.1.

t -→ 3p t -→ k = ∅ for all k. So (B I k) does not preserve coverability. Lemma 4.2. If Cov N ⊆ I then it holds that

 The base case k = 0 is immediate. Assume the property proved for some k, and assume thatx k t k+1 ---→ Q x k+1 . By induction, there exists a marking m k ∈ Cov N such that x k ≤ m k | Q . Noticethat places of m k indexed by P \Q can be replaced by arbitrarily large numbers since P \Q is a set of omega places. So, we can assume without loss of generality that m k (p) ≥ F (p, t k+1) for every p ∈ P \Q. It follows that there exists m k+1 such that m k t k+1 ---→ m k+1 . Since the coverability set is an inductive invariant, it follows that m k+1 ∈ Cov N . Moreover, notice that for every p ∈ Q we have m k+1