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Using ecological modelling tools to inform policy makers of potential changes in crop 

distribution: an example with cacao crops in Latin America 

Juan Fernandez-Manjarrés 

 

Summary 

Species distribution models (SDM) is a powerful simulation tool that has become widely used 

in the ecological and agronomical sciences. The use of easily available presence data, global 

downscaled climate layers and software that can run on desktop computer has contributed to 

their popularity. The most used application is based on maximum entropy models that fit 

presence data to a series of environmental descriptors. SDM can be used to predict crop 

distribution under future conditions but the level of uncertainty of those models can be very 

high. The best use of these models is to be used as generators of hypothesis to be combined 

with other type of analysis. 

 

Introduction 

One consequence of climate change that is becoming increasingly clear, is the shift in species 

distribution of certain wild species because of climate change (Parmesan 2006). However, 

assigning climate effects to distributional shifts has not always been straightforward because of 

other factors. For instance, changes in land use can produce new empty ecological niches1 and 

                                                           
1 The definition of niche is characterized by the ecological role of a species in a natural community, but is also 

used in a looser form to refer to the microhabitat or the physical space occupied by a species. In this chapter, we 

retain the latter use. 
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habitats2 that are used by local or alien species (Parmesan and Hanley 2015). Likewise, 

economists, agroecologists and enterprises ask themselves if the current distribution of crops 

would change with ongoing climate change, and if yes, to what extent. Clearly, if the climate 

related to crops is no longer suitable, the economic and social costs of replacing crops, or of 

changing cultivated areas is extremely large, so early awareness of what might happen is needed 

for policy makers.  

To simulate the potential shifts in the distribution of species, ecologists have been using 

for the last 15 years or so the so called ‘species distribution models’ (hereafter SDM) or ‘niche 

models’. As we will see in the following sections, SDM are statistical models that correlate the 

observed presence of a species (or crop for that matter) with climatic and geographic features 

of the zones for which occurrences of the species in question are known. They are not 

mechanistic models, but correlational models built upon a series of assumptions. These models 

have attracted the researchers in ecology, because they are less data intensive than mechanistic 

models (i.e., models based on photosynthesis and mineral exchanges with the air and the soil) 

and are easy to spatialize. 

  These models are extensively used not only for endangered species but for managed 

forests, pests and invasive species as we will see later in the text. Crops, on the other hand, have 

used somewhat different statistical models based mostly on matching the current requirements 

of a crop with its climate, but to some extent, models in ecology and agronomy may have to 

start to converge in the same family of modelling tools. 

                                                           
2 Habitat is the locality, site and particular environment occupied by an organism and as such the definition 

overlaps that of niche in terms of spatial occupation. For coherence with the models, we will use only niche in this 

text. 
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  The world distribution of crops has been traditionally understood as zones delimited by 

extremes of temperature and precipitation (Kottek, et al. 2006) while the changes of crop 

productivity and distribution has been modelled with several types of models (see Holzkämper 

2017and references therein). They include empirical, suitability, biophysical, meta- and 

decision making models. 

In this chapter, we will discuss the use of SDM in crop science, that is a type of 

suitability model sensu Holzkämper (2017). The approach might be perceived as biased, but as 

we will see, it may be flexible enough to forecast potential shifts not only in crops, but in their 

related pests and diseases as well as invasive species, all of which have economic impacts with 

relatively small quantities of data.  

We will first review briefly the literature on SDM and crops. Second, we present the 

general background of the models and introduce MaxEnt (Phillips, et al. 2006, Phillips and 

Dudik 2008), that has emerged as very robust modelling platform based on maximum entropy 

theory models. We then present an application for crops zones in Latin America where both 

coffee and cacao are planted, as these zones are very likely to be affected by climate change, 

with impacts on two very independent value chains. We finish by discussing the limits of the 

approach and with a word of caution regarding the mis-use of this kind of models. 

 

Current use of species distribution models 
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Overall, the use of SDM models is relatively recent. The oldest reference in our search examines 

the potential conflict of geese and crops (Jensen, et al. 2008) just about 10 years ago at the time 

of publishing. As said in the introduction, the question of crop distribution and climate has been 

treated for a long time, but it is the use of SDM that appear as a cost-efficient alternative for 

researchers and managers. 

  This first generation of use of SDM in agriculture has led to a majority of articles on 

staple foods likes corn, wheat and rice, but also on diseases, invasive species, pests and 

pollinator distribution under current and climate change conditions. A search on "SPECIES 

DISTRIBUTION MODELS") AND TOPIC: (CROPS) in Web of Science ® in early 2018 

provided 75 records from which only four were review papers (Figure 1). 

 

 

 

Figure 1. Proportion of articles that use species distribution models for crop science studies. 

See text for details. 

 

As we will see in the next section, the power (and weaknesses) of SDM resides in the use of 

geo-localized data to infer current suitable habitat that is easily transposable to future conditions 

if climate change projections are available. The fact that known localities are used as the main 

input, makes SDM highly applicable to different types of organisms (vertebrates, insects, 
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nematodes, etc.) and for crops that are thought to be cultivated within their normal biological 

niche. 

 

Species distribution models: Maximum Entropy models 

An intuitive relation between climate, soil, altitude and the distribution of animals and plants is 

probably one of the oldest ecological observations that human kind has made. However, what 

appears so self-evident and intuitive has proved enormously difficult to formalize correctly in 

statistical terms. As it is well known, correlational methods can adequately model and predict 

on models calibrated on what is seen (observed localities) but cannot make inferences about 

what is not seen (unknown parts of the distribution) without making assumptions and 

simplifications.   

Earlier SDM models used an empirical approach for calculating a climatic ‘envelope’ 

for a given species based on the known occurrences. But this kind of model very soon attained 

their limits because a) it is frequently unknown if the current distribution of a species represent 

the complete physical and climatic space that a species can survive and reproduce; and b) the 

more variables used, the more difficult to generalize the distribution to unknown parts as almost 

everywhere the variable combinations are unique, so they are not transposable in space and 

time. Hence, several statistical methods emerged to allow for a probabilistic approach to the 

problem. From about a dozen that appeared in the early 2000’s, the maximum entropy approach 

(hereafter MaxEnt) by Phillips and collaborators (Phillips, et al. 2006, Phillips and Dudik 2008, 

Steven J. Phillips, et al. 2018) appeared particularly robust but not completely exempt of 

controversy about the assumptions and meaning of the output. MaxEnt methods have been used 
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in more than 7000 peer-reviewed studies at the time of writing and its popularity seems to 

continue. Interestingly, recent generalizations of the species distribution problem is showing 

that many different competing methods can be related through an alternative approach of not 

modelling the probability of presence but by modelling the probability of a point observation 

in a given space (Renner, et al. 2015). 

Before explaining the procedure, let us first formalize the input data and the goal of the 

simulation. Frequently, when discussing SDM, two families of models are are mentioned, those 

based on presence/absence data, and those presence only data. MaxEnt belongs to the second 

category but the notion of absence is necessary in the formalization of the model. The general 

idea of using maximum entropy methods is explained by Phillips et al. (2006) in his original 

paper: “The idea of MaxEnt is to estimate a target probability distribution by finding the 

probability distribution of maximum entropy (i.e., that is most spread out, or closest to uniform), 

subject to a set of constraints that represent our incomplete information about the target 

distribution.” 

 

The idea of maximum entropy approaches imply that the goal is to find the most spread out 

distribution based on what is known from the data, i.e., a maximum entropy distribution. Next, 

I summarize the statistical description given by (Elith, et al. 2011) skipping many details for 

the sake of brevity. The approach assumes that the data available are a set of locations within a 

landscape of interest L. Next, the presence of the focus species needs to be coded in binary 

form:  y = 1 denote presence, y = 0 denote absence. Associated to the presence points, there is 

a need to define a vector of environmental covariates (mean annual temperature, summer 
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precipitation, drought index, altitude, soil type…) which is called z. Finally, there is a need to 

define a ‘background’ in which the z vectors occur, that is defined as a random sample of 

locations within the landscape (Elith, et al. 2011). The environmental covariates z are available 

for the whole landscape as is the case for example with climate or elevation layers from 

geographic information systems that are found in pixel form. 

The next step is to define independent probability distribution related to the covariates 

in the landscape, for the occurrences and for the absences. Hence, f(z) defines the probability 

density of covariates across the landscape, f1(z) the probability density of covariates for the 

locations where the species is present, and f0(z) where the species is absent. It follows then that 

the quantity to be estimated when presence-absence data is available, is the probability of 

presence of the species, conditioned on the environment:  

Pr(y = 1|z). 

 

Presence-only data only allow only to estimate f1(z), which cannot be used to estimate the 

probability of presence, because it is assumed that not all localities are known for the focus 

species. However, presence/background data allow to model both f1(z) and f(z) if we knew how 

the two relate them through a constant C using Bayes’ rule: 

Pr(y = 1| z) = f1(z)*C/ f(z) 

It turns out that the needed constant C = Pr(y = 1), corresponds to the ‘prevalence of the species’ 

(or the proportion of occupied sites) in the landscape. So the challenge is to estimate Pr(y = 1), 

of course. In entropy terms, the probability of the distribution of the covariates across the 
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landscape f1(z), can be found through the Gibbs distribution exponential form (Elith, et al. 

2011): 

f1(z) =  f (z)eη(z) 

 

where η(z) = α + β*h(z) and α is a normalizing constant that ensures that f1(z) sums to 1, β is 

vector of coefficients applied to the different terms of model, and h(z) is the vector of 

constrained features. Hence, the target of a MaxEnt model is the exponential term that estimates 

the ratio f1(z)/f(z). As there is no analytical solution, the parameters are estimated by regression 

methods and machine learning techniques. The lack of explicit absence observations (museum 

samples only record presence, for example) is worked around by using random-pseudo 

absences during the regression iterations. Typically of machine learning techniques, MaxEnt 

sets aside a portion of the data to train the model and the rest to test the model. 

 

MaxEnt transforms the original covariates (environmental information) in polynomials and 

splines, including piecewise linear functions data that are termed ‘features’ to allow for the 

complex response of organisms to climate and other biotic data. Restrictions to the features are 

needed to avoid the overfitting of the models. For a detailed description of the analytical 

development, the reader is directed to the work of Phillips and colleagues (Phillips, et al. 2006, 

Phillips and Dudik 2008, Steven J. Phillips, et al. 2018, Elith, et al. 2011, Elith, et al. 2006). 
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In its current version3 3.41, MaxEnt produces several types of outputs, including tests 

to evaluate the overall robustness of the model and for identifying which variables are more 

important. The raw output of MaxEnt represents a probability of suitable conditions issued 

directly from the exponential model above that are extremely low. However, the recommended 

output is a complementary log-log (cloglog) transform that is most appropriate for estimating a 

measure of abundance – the number of presence records per unit area (Steven J. Phillips, et al. 

2018, Renner, et al. 2015, Fithian, et al. 2015) than probability of presence that is riddled with 

several theoretical and practical issues.  

 

Potential changes of cocoa and coffee plantation zones in Latin America 

We will show briefly an example of the application of MaxEnt procedures to a crop distribution 

that can be of great interest to economists and policy makers. Cocoa (Theobroma spp.) and 

coffee (Coffea arabica, C. robusta) are two staple products in Latin America. In general, they 

do not occupy the same ecological zones. These localities where found from an internet and 

library search of co-occurrences of coffee and cacao plantations using the Spanish and 

Portuguese languages (C. Castañeda, unpublished report). We focused on these transition areas 

(Figure 2) as climate change is opening new areas for the culture of cacao, that are often in 

zones where coffee plantations are decreasing their productivity because of warmer climates, 

droughts and emerging pests (Quiroga, et al. 2015). 

                                                           
 

 
3 https://biodiversityinformatics.amnh.org/open_source/maxent/ 
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Figure 2. Transition zones between coffee and cocoa plantation localities in Latin America use 

to run the species distribution model (n = 199). 

 

The input data for MaxEnt is then composed of the latitude/longitude of the localities plus the 

different environmental variables (Table 1) chosen to explain the distribution of the species 

(crops in this case). 

 

Table 1. First ten records of the MaxEnt input file. The first column is the name of the species 

in question, the second and third column are the geographic coordinates and the fourth column 

is the altitude in meters. The columns marked as bio_ represent bioclimatic variables, and the 

last column is soil data4 See text for additional details. 

 

The most common source of downscaled environmental and climatic files is the Worldclim 

organization5. The variables typically used in the ecological field are the so called bio-climatic 

variables6 because they have been shown to represent mean conditions and more importantly, 

limiting factors for many plant and animals. In our case we selected the following variables: 

                                                           
4 http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-

v12/en/  
5 http://www.worldclim.org/  
6 http://www.worldclim.org/bioclim  

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.worldclim.org/
http://www.worldclim.org/bioclim
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BIO1 = Annual Mean Temperature, BIO4 = Temperature Seasonality (standard deviation *100 

for temperatures and BIO12 = Annual Precipitation, BIO15 = Precipitation Seasonality 

(Coefficient of Variation) for precipitation. Typically, about a dozen or so climatic variables 

are used, but here we chose just to use only mean annual values and intra-annual measures of 

variability for illustration purposes.  

Particular efforts must be done to ensure that the localities are not auto-correlated or 

artificially clustered around roads or research centres, which is often the case. Also, the use of 

several climate variables may be unnecessary and even counterproductive because of over-fit 

of the models, but more importantly because of correlation between variables. A first screening 

of pairwise variable correlation is common practice to avoid duplicate entries that can overfit 

models and that also obscure the interpretation of results. However, some correlation in the 

climate data is always present and there are no current recommendations of how to deal with 

this. 

 

To produce an output in graphic form, MaxEnt requires that the user provides a directory with 

each one of the layers included in the input data table, i.e., from altitude, bioclimatic variables 

and soil types for current conditions. If the distribution model is intended also for a simulation 

under climate change for example, the same equivalent files area needed for the period in 

question as we will see later in the text. MaxEnt will produce maps for current and expected 

distributions that can be used as input for other analyses. The command line to run the model 

in our case was:  
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“java density.MaxEnt nowarnings noprefixes -E "" -E cacao_coffee responsecurves jackknife 

"outputdirectory=F:\Maxent Cacao\current_out" "samplesfile=F:\Maxent 

Cacao\maxent_cacaocoffee.csv" "environmentallayers=F:\Maxent Cacao\current" 

replicates=10 -t soil”  

but the program has an interface that does not require command line commands. Note that the 

program is instructed to use the specific sample file “maxent_cacaocoffee.csv” (Table 1), 

produce response curves for the different variables and to jackknife the data to have replicates 

of training/test runs. In the case of a climate change simulation, an additional “projection layers” 

instruction is needed as well as an additional output directory for the projection. Finally, it is 

specified that ‘soil’ is not a continuous variable but a discrete one indicated by ‘-t‘. 

 

 

Figure 3. Output for the probability of abundance from the maximum entropy model for a 

reference climate derived from 1970-2000 observations (see text for details). 

 

Typically, more than one climate change model will be used, not only for each frame time, but 

from each representative concentration pathways (rcp) as currently defined in the fifth IPCC 

report7. Here we present only one simulation (Figure 4) for the rcp 6.0 and the IPSL global 

circulation model8  

                                                           
7 http://www.ipcc-data.org/guidelines/pages/glossary/glossary_r.html  
8 http://ocmip5.ipsl.fr/models_description/ipsl_ipsl-cm4.html  

http://www.ipcc-data.org/guidelines/pages/glossary/glossary_r.html
http://ocmip5.ipsl.fr/models_description/ipsl_ipsl-cm4.html
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Figure 4. Output for the probability of abundance from the maximum entropy model for the 

projection in 2070 of the model fitted on 1970-2000 climate (Figure 3). 

 

The most popular statistic for examining the robustness of a SDM is the AUC or area under the 

receiver operating characteristic (ROC) curve that remains controversial (Jiménez-Valverde 

2012). This index depends on the use of thresholds that remain themselves a matter of research 

(Liu, et al. 2016).  . In general the presence threshold is varied from 0 to 1 to be able to compute 

how many false positives and false negatives you get at each level. Figure 5 shows the MaxEnt 

output 

 

 

Figure 5. Average sensitivity (true positive rate of simulated locations) against false positive 

rate (1 – Specificity). Sensitivity is the probability that a model correctly classifies a presence. 

Specificity is the probability a model correctly classify an absence. The average AUC for this 

model is 0.897. 

 

The cocoa/coffee was split into two partitions, 75% for training and 25% for testing during 10 

different runs (cross-validation). The red (training) line shows the “fit” of the model to the 

training data while the blue (testing) line indicates the fit of the model to the testing data, 
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corresponding to the predictive power of the model. The black diagonal line depicts a model no 

better than random (Figure 5). 

For what kind of application can these distributions be used in the economic sciences?  

In general terms, the SDM predict suitable areas for a species or for a crop if the known 

distribution covers enough of the climate niche of the species or crop. Hence, one 

straightforward analysis would be to subtract the future suitability from the current suitability 

to examine which areas will loose suitability and which will gain. Such information could be 

easily translated into economic models (but see last section) and help managers and decision 

makers (Figure 6). Clearly, the lowlands show a deterioration of climatic conditions and the 

Andean region seems to be the most suitable for cacao and coffee plantations for the conditions 

predicted with this model for 2070. Likewise, one could do the same exercise regarding 

coffee/cocoa pests and diseases to further refine this analysis if the data were available. 

 

 

 

 

Figure 6. Differences in expected abundance between a baseline scenario (1970-2000) and 

2070 (Figures 3 and 4).  Light green-blue areas represent zones for which the two cultures will 

potentially increase their abundance as a result of shifting climatic conditions; yellow and the 

different shades of brown represent zones where potentially the conditions for 2070 will reduce 

the abundance of the two crops.  



15 

 

A word of caution 

We have seen that with relatively few records (n = 199) we are able to produce more than decent 

suitability maps for the crops in question as their AUC was quite five (~0.90). All this with 

relative low computer power and using available downscaled climate change models. However, 

several points must be mentioned first before it is recommended to use this kind of models: 

 SDM models produce better predictions near the real observations. Predictions 

outside of these areas have large uncertainty. MaxEnt provides various analysis to 

verify this, and they should be taken seriously. 

 The biggest danger is probably due to the fact that a modest number of observation 

produce decent models and always a very appealing map can be produced. The more 

data, the better (but see next) 

 Data need to be trimmed as auto-correlated data, like excess of collection around 

research stations biased the models. Remember the models assume a random sample 

of the presence of the species 

 The use of several auto-correlated climate layers can improve the AUC of an 

otherwise mediocre model 

 The use of statistically downscaled climate layers for future conditions is subject to 

debate. The output of global circulation models is quite coarse (typically 5 degrees or 

so) and statistical downscaling might be considered an artefact to get high resolution 

maps 
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 For many invasive species with short life cycles, it has been shown that their original 

climatic niche does not correspond to their climatic niche when they invade new areas 

as evolutionary adaptation can occur very rapidly in some organisms. Thus, SDM 

may underestimate the invasive potential of a species. 

 And last, but not least, SDM should be used to generate hypothesis of what might 

happen and not to anticipate events. 
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