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ABSTRACT
Recent advances in sensor technology and information processing
have allowed connected environments to impact various appli-
cation domains. In order to detect events in these environments,
existing works rely on the sensed data. However, these works are
not re-usable since they statically define the targeted events (i.e.,
the definitions are hard to modify when needed). Here, we present
a generic framework for event detection composed of (i) a repre-
sentation of the environment; (ii) an event detection mechanism;
and (iii) an Event Query Language (EQL) for user/framework in-
teraction. This paper focuses on detailing the EQL which allows
the definition of the data model components, handles instances of
each component, protects the security/privacy of data/users, and
defines/detects events. We also propose a query optimizer in order
to handle the dynamicity of the environment and spatial/temporal
constraints. We finally illustrate the EQL and conclude the paper
with some future works.
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1 INTRODUCTION
Recent advances in the fields of Information & Communication
Technologies (ICT), Big Data, Sensing Technologies, and the In-
ternet of Things (IoT) have paved the way for the rise of smart
connected environments. These environments are defined as in-
frastructures that host a network of sensors capable of providing
data that can be later mined and processed using advanced tech-
niques, for high level applications. Hence, Sensor Networks (SN)
are currently impacting numerous domains (e.g., medical, environ-
mental, cities, buildings). This allowed a plethora of sensor-based
applications such as monitoring a patient's health [20], detecting
fires in the wilderness [24], monitoring pollution levels or traffic
congestion in a city[15], and optimizing energy consumption/occu-
pants' comfort in buildings[1, 8, 14, 19, 23, 25]. Even though these
applications have different objectives, they all rely on sensed data
from the environment in order to detect specific events (e.g., a
stroke for a patient, a volcanic eruption, a storm, polluted air in a
city, temperature rising in an office). Therefore, these applications
share the following needs: (i) representing the infrastructure and
the sensor network of the connected environment; (ii) defining and
detecting the targeted events; and (iii) protecting the security of the
sensed data and the privacy of the users in the environment (e.g.,
protecting patients' medical records). In the aforementioned works,
the authors do not emphasize on the environment's representation
and define the events statically. They also proposed event detection

mechanisms that perfectly fit the description of the targeted events.
This is constraining since these works are not re-usable in different
contexts. Event Query Languages (EQL) have been proposed to
overcome this issue. Users express their needs through EQLs by
defining the structure of the targeted events. However, existing lan-
guages [2, 3, 6, 7, 9–11] focus mainly on the event descriptions and
do not consider other environment components (e.g., infrastruc-
ture, sensor network, application domain). They share the following
limitations:

(1) Lack of considered components. It is important that the EQL
allows the definition of the entire connected environment.
This includes components related to the environment itself,
its sensor network, the targeted events, and the application
domain.

(2) Lack of considered functionality. It is important that the EQL
(i) allows the definition of components (e.g., buildings, sen-
sors, data, events); (ii) allows the manipulation of component
instances (e.g., inserting new instances, updating, deleting,
selecting them); and (iii) protects the security/privacy of
data/users.

(3) Lack of re-usability. It is important that the EQL remains
generic and independent from any technological constraints
or underlying infrastructure. Some languages heavily rely on
a specific syntax or data model (e.g., SQL-based, or SPARQL-
based) and this limits their re-usability in different contexts.

In order to consider the dynamicity of connected environments and
spatial/temporal distributions, we consider the following limita-
tions as well. First, the difficulty in handling dynamic environments.
Since sensors might breakdown, or mobile sensors could change
locations or even enter/exit the network, sensors/observations that
are needed for a previously defined event might become unavailable.
Therefore, it is important that the EQL allows query re-writing in
order to update obsolete event definitions. This entails replacing
missing sensors by others capable of providing the required data
or replacing missing observations with others that fit the event
definition. Second, the lack of spatial distribution of sensors. Since
the sensors' locations impact event detection, the EQL should allow
users to define spatial distributions of the sensors over the infras-
tructure in order to better detect the targeted events. This entails
specifying where each sensor should be located or how they should
be distributed over the space (e.g., nearest sensors to a point of in-
terest, sensors within a range of a point of interest, sensors that fit
a mathematical distribution around a point of interest). Finally, the
lack of temporal distribution of sensor observations. Since sensors
provide observations at specific rates, one could end up with either:
(i) big volumes of unnecessary data (if the rate is too quick); or (ii)



undetected events (if the rate is too slow). Therefore, it is important
to have an EQL that allows the adjustment of the temporal distri-
bution of sensor observations based on events' needs/requirements.
This entails specifying which sensor observations/sensing rates are
considered for a specific event, or selecting a temporal distribution
of these observations (e.g., the closest observations to a certain
point in time, all observations within a temporal range, distributed
sensing rates).
Many other challenges emerge when considering an EQL for con-
nected environments (e.g., handling big volumes of data, continu-
ous heterogeneous data streams). However, in this paper, we focus
mainly on the aforementioned limitations. Hence, we propose here
an EQL specifically designed for connected environments and parti-
tioned into three layers: conceptual, logical, and physical. It allows
(i) the composition of high level generic queries that can be parsed
into various data model specific languages (re-usability); and (ii) full
coverage of components and functionality (we will detail security
related tasks in a dedicated future work). We also propose a query
optimizer module that will handle spatial/temporal distributions
and query re-writing in order to redefine components that need to
evolve when handling the environment's dynamicity (the optimizer
will be fully detailed in a separate work). Our proposal, denoted
EQL-CE, is part of a global framework for event detection in con-
nected environments which we will also present in this work.
The remainder of the paper is organized as follows. Section 2
presents a scenario that motivates our proposal. Section 3 evaluates
existing approaches. Section 4 presents our event detection frame-
work and details EQL-CE. An illustration example is presented
in Section 5. Finally, Section 6 concludes the paper and discusses
future research directions.

2 MOTIVATING SCENARIO
In order to motivate our proposal, consider the following scenario
that illustrates a smart mall. This is a simplified example that illus-
trates the setup, the needs, and motivations behind our proposal.
Of course, it does not summarize all needs found in a connected en-
vironment/event detection application scenario. Figure 1 details the
infrastructure's location map, and individual locations (i.e., shops
and open areas). The mall is equipped with a hybrid sensor network
having static/mobile sensors, single sensor nodes/multi-sensor de-
vices capable of monitoring the environment and producing scalar/-
multimedia observations (e.g., temperature, video). A manager uses
an Event Query Language (EQL) in order to define/detect inter-
esting events that occur within the mall's premises. Although this
seems enough to manage the smart mall, many improvements can
still be integrated:

• Need 1: Modeling the environment and its sensor network.
Before defining and detecting events, a mall manager needs
to represent the smart mall using the EQL. This includes
defining the infrastructure (i.e., the mall), the locations (e.g.,
shops), and their spatial relations. Then, the manager needs
to define the sensor network that is hosted in the mall. This
entails modeling the available sensors (e.g., temperature,
humidity), their deployment locations, the data they sense
and so on. Once all component structures are defined, the
mall manager needs to use the EQL to create instances of

Figure 1: The Smart Mall

each component (e.g., temperature sensor in food court). This
is currently not possible since the EQL used in the example
only defines events.

• Need 2: Measuring the average temperature in the grocery
store (for food storage concerns). The mall manager uses
the existing EQL to define the targeted event (i.e., the aver-
age temperature in the grocery store). The EQL allows the
manager to consider all sensors within the area of interest.
However, Figure 2.a shows that the sensors are not evenly
distributed in the store (most are located in the upper left
corner). Hence, considering all sensors and calculating the
average will produce a biased temperature measure that does
not reflect the reality of the situation. This can be solved
by allowing the manager to define a specific distribution of
sensors over the space (e.g., even distribution, only consider-
ing sensors within a range of the center of the store). The
current setup is limited since it does not allow the definition
of spatial distributions of sensors.

• Need 3: Minimize data overload/missed events. Currently,
the manager can use the EQL to define one sensing rate for
all sensors or sensor types (e.g., temperature, humidity). This
is constraining since (i) a quick sensing rate overloads the
system with big volumes of unwanted/unnecessary data;
and (ii) a slow sensing rate could lead to missing events
that began and ended in a short time lapse. Therefore, the
temporal distribution of sensor observations (i.e., a start
time, a specific rate, a stop time) should be based on the
event definition and therefore considered/handled in the
event queries (e.g., selecting the closest observations to a
time of interest, considering different sensing rates from
various sensors at once). The EQL used by the mall manager
does not allow such customization of temporal constraints
(cf. Figure 2.b).

• Need 4: Detecting a fire event in Shop 1. The mall manager
defines this fire event using the EQL. His/Her definition
relies on the smoke, humidity, and CO2 sensors located in
Shop 1. However, what if the smoke sensor broke down ?
Or what if the mobile device that he/she was depending on
left the shop ? Then, the previously defined event query will
become obsolete since there are no more smoke observations
coming from shop 1, and there is no way of changing the
event definition. Hence, query re-writing is necessary in
order to update the definition: (i) by replacing the smoke
sensor by another capable of providing the same data (e.g.,



mobile device 1 - cf. Figure 2.c.left); or (ii) by replacing the
event describing feature smoke by another (e.g., temperature
from mobile device 1 if no other sensors can provide smoke
observations - cf. Figure 2.c.right). The current EQL is limited
since it does not allow such re-writing.

(a) Need 2 (b) Need 3

(c) Need 4

Figure 2: Spatial Distribution (a) | Temporal Distribution (b)
| Query Re-writing (c)

In order to address the aforementioned needs, the EQL should
provide a means for defining the structure of various components
related to the environment, sensor network, targeted events, and
application domain. Moreover, the EQL should not be limited to
defining components. Its functionality should extend to managing
instances of these components, and protecting the security/privacy
of the data/users (cf. Need 1). In addition, customizing the sensors'
spatial distribution over the infrastructure/environment based on
event requirements is required (cf. Need 2). This benefits the event
detection since it provides the user with the ability to customize
the setup in the way that he/she believes is optimal. The same
is also applied for temporal distribution of sensor observations.
The EQL should allow the user to select specific observations, or a
set of distributed observations in time (e.g., considering different
sensing rates, temporal distance to a point in time) when defining
the event (cf. Need 3). Finally, the EQL should allow re-writing
queries (cf. Need 4) to handle the dynamicity of the connected
environment. This is especially beneficial when faults or sensor
breakdowns/mobility can render some event definitions obsolete.

However, when considering various components, functionality,
data distribution (e.g., spatial, temporal), and query re-writing the
following challenges emerge:

• Challenge 1: How tomodel components and inter-component
relations? How to establish ties between the different con-
nected environment elements (i.e., environment, sensor net-
work, events, and application domain)?

• Challenge 2: How to define different query types to cover all
the required functionality?

• Challenge 3: How to establish a generic query syntax that
can be re-used regardless of the underlying infrastructure
(e.g., in a traditional database or in an ontology data model)?

• Challenge 4: How to integrate variables that specify spa-
tial/temporal distributions in the query syntax ? How to
propose different types of distribution queries ?

• Challenge 5: How to enable query re-writing upon user re-
quest ? How to replace missing sensors/event describing
features when re-writing a query ?

Therefore, we propose here a high-level generic event query lan-
guage, denoted EQL-CE, capable of covering all components. Our
covered functionality are partitioned into three main categories for
component definition, manipulation of component instances, and
data protection (to be discussed in a future work). We also propose a
query optimizer that handles query re-writing and spatial/temporal
distribution functions. In this paper, we present the optimizer but
leave the details of the query re-writing and distribution functions
to a separate dedicated work.

3 RELATEDWORK
In this section, we review existing works on Event Query Languages
(EQL). We propose the following criteria based on the challenges
and limitations discussed in Section 2:

• Criterion 1. Component/Functionality Coverage: Denoting
if the EQL covers (i) the entire components that constitute a
connected environment (i.e., environment, sensor network,
application domain, and event related components); and
(ii) the entire set of functionality needed for the definition
of components, the manipulation of their instances, and
protection of the data/user security and privacy (cf. Need 1).

• Criterion 2. Re-usability: Indicating if the EQL is generic
and technology independent in order to re-use it in various
setups with different underlying infrastructures (e.g., tra-
ditional database, ontology). It is beneficial to have a high
level, generic, and declarative EQL that can be parsed into
data-model specific languages (instances). This facilitates its
integration in various contexts.

• Criterion 3. Spatial/Temporal Distributions: Specifying if the
EQL allows (i) spatial distribution queries (e.g., selecting sen-
sors that are distributed based on a mathematical law, within
a specific range, or near a point of interest); and (ii) temporal
distribution queries (e.g., selecting sensor observations that
are closest to a point in time that have various sensing rates).
This is important for the definition of specific events where
such level of detail is required (cf. Needs 2 and 3).

• Criterion 4. Handing Environment Dynamicity: Stating if the
EQL provides themeans tomodify the structure of previously



defined components (e.g., events) in order to keep up with
environment changes. This is useful in a dynamic setup,
where sensor mobility causes gain/loss of data in certain
areas of the environment (cf. Need 4).

We group the existing works into three main categories: (i) con-
ceptual languages (e.g., Event-Condition-Action languages) ; (ii)
logical languages; and physical languages (e.g., SQL/SPARQL-based
languages). We compare in the following some works from each
category (we do not detail here every existing event query language
for the sake of brevity).

3.1 Conceptual Languages
This category of languages includes Event Condition Action (ECA)
languages that allow the declaration of three event attributes: (i)
an event name or label; (ii) a set of conditions (the pattern) that
best define the event; and (iii) the set of actions that should be
triggered once the event is detected. In [9], the authors propose an
intuitive event query language denoted SNOOP. They follow the
ECA model when defining event structures. They integrate oper-
ators for inter-condition relations (e.g., conjunction, dis-junction,
and sequence) and represent repetitive events through the usage
of the periodic/aperiodic operators. In [6], the authors propose a
language denoted CeDR. In comparison with SNOOP, CeDR adds
a WHERE clause for filtering statements and has a wider range
of operators. Therefore, CeDR is considered more expressive in
terms of event pattern description. CeDR also includes an event
lifetime operator and a detection window operator. The authors
in [11] propose an event query language for data streams called
SaSE. They include the WITHIN and RETURN statements to respec-
tively declare sliding time windows and the required output. SaSE
also allows event pattern operators (similar to CeDR) in a WHERE
clause.

Discussion: The aforementioned works are intuitive, practical,
and allow various composition operators for event definition. Their
syntax is also independent from specific data models (e.g., SQL or
SPARQL). However, they all suffer from the same limitations. None
of them covers the environment or sensor network definition in
their queries (cf. Criterion 1 - Component Coverage). They mainly
focus on the definition and retrieval of events while neglecting other
tasks such as updating definitions or inserting data (cf. Criterion 1 -
Functionality Coverage). They also do not consider spatial/temporal
distributions (cf. Criterion 3).

3.2 Logical Languages
This category includes works that define events in logic style for-
mulas. To give a few examples, consider ETALIS[3]. This EQL de-
scribes events as rules. The authors propose a set of temporal rela-
tions and composition operators to define the event patterns. The
syntax of the rules is independent of any underlying data model.
XChangeEQ[7] is another logical language. The authors allow the
following features in its queries: (i) data-related operations such as
variable bindings and conditions containing arithmetic operations;
(ii) event composition operators such as conjunction, dis-junction,
and order; (iii) temporal and causal relations between events in the
queries; and (iv) event accumulation, for instance aggregating data
from previous events to discover new ones.

Discussion: The aforementioned languages are re-usable in dif-
ferent contexts since their syntax, a logical rule-based notation,
is independent of specific data models (cf. Criterion 2). They also
cover the majority of temporal and composition operators. How-
ever, they do not cover spatial/temporal distributions (cf. Criterion
3). These languages have not fully detailed query re-writing (cf.
Criterion 4), and they mainly focus on the events. They cannot be
used to define and manage the environment and sensor network
components (cf. Criterion 1).

3.3 Physical Languages
This category includes data model specific languages. We detail
here languages that were specifically designed for either relational
database or linked data management systems. Therefore, the follow-
ing EQLs are either inspired from or directly extend SQL/SPARQL.
ESPER[10] is an implementation for event detection in database sys-
tems. The authors proposed an SQL-like syntax for event processing.
Therefore, known operators such as CREATE, SELECT, INSERT, UP-
DATE, and DELETE are available for event definition and detection.
ESPER also includes temporal operators and a specific statement
for event definition (i.e., the pattern). In addition to the aforemen-
tioned advantages, this language has a fast learning curve since it
is highly similar to traditional SQL. CQL[4] is another language
that can be used for event definition/retrieval. CQL extends SQL
by emphasizing on continuous data streams/queries. The authors
add temporal operators, sliding windows, and window parameters
to better handle continuous data. Many languages extend SPARQL
for linked data management systems. For instance, C-SPARQL[5]
extends SPARQL to consider stream data in the queries. To do so,
the authors integrate sliding time windows. SPARQL-ST[17] ex-
tends SPARQL by adding operators for spatial/temporal queries.
This covers the definition and manipulation of spatial shapes and
temporal entities. Finally, EP-SPARQL[2] integrates event process-
ing operators (e.g., sequence) into the SPARQL syntax. This work
allows the definition of simple and complex event patterns in a
linked data management system.

Discussion: The aforementioned works are all user friendly since
they extend known languages. They cover definition and manipu-
lation queries for various components or entities (cf. Criterion 1).
They also provide a basis for spatial/temporal operators and query
re-writing. However, distribution queries are not considered (cf.
Criterion 3) and their high reliance on a specific data model syntax
(SQL or SPARQL) limits their re-usability in different systems (cf.
Criterion 2). For instance, EP-SPARQL cannot be used in a relational
database infrastructure.

To conclude this section, none of the mentioned works fully consid-
ers our entire list of criteria. Therefore, we propose in the following
section the Event Query Language for connected environments
(EQL-CE). Our proposal has three layers (conceptual, logical, and
physical). It ensures re-usability, handles dynamic environments,
fully covers the components/required functionality, and integrates
spatial/temporal distribution variables in its queries.



4 EQL-CE: AN EQL FOR CONNECTED
ENVIRONMENTS

In order to highlight the usage of EQL-CE, we present here an
overview of our framework for event detection in connected en-
vironments. This framework includes the following modules: (i) a
data model representing the connected environment; (ii) an event
Virtual Machine (eVM) for event detection; and (iii) an event query
language for user/framework interaction. We start by briefly de-
scribing these modules. Then, we detail our proposed event query
language for connected environments, denoted EQL-CE.

4.1 Event Detection Framework

Figure 3: Global Framework Overview

Figure 3 illustrates our event detection framework. It contains
three main modules:

• An event query language for connected environments (EQL-
CE) and its query optimizer.

• A data model for connected environment representation.
• An event Virtual Machine for event detection (eVM).

4.1.1 Event Query Language. Users interrogate the system using
the event query language. It is pivotal since it affects both the data
model and the event Virtual Machine (event detector) modules. EQL-
CE offers queries that can be used to define the structures of the data
model components (i.e., entities that represent the connected envi-
ronment). In addition, the language allows users to import external
data models in the framework. Once the data model is defined, it
is saved in the data storage. EQL-CE also manages instances of
the previously defined components. It supports operations such as
inserting new instances or even modifying, deleting, and retrieving
existing ones. Also, the security and privacy of data/users can also
be provided by EQL-CE via specific queries. From an event detec-
tion standpoint, users can trigger the event Virtual Machine via
the query language in order to detect specific events. Finally, the
query optimizer allows re-writing queries when needed, and can
integrate spatial/temporal distribution functions in the queries (cf.
Criterion 3 and 4). Both EQL-CE and its query optimizer will be
further detailed in the following subsection.

4.1.2 Data Model. The data model of the connected environment
gathers components that describe the environment itself, the sensor

network, the events, and the application domain. When considering
the environment, one might represent physical, real world, infras-
tructures such as buildings or offices and all their characteristics.
This includes spatial descriptors (e.g., location maps, zones, indi-
vidual locations, spatial relations), and specific entities that can
be found in the environment (e.g., machines, equipment, devices).
When considering the sensor network, one might represent sensors,
observable properties, scalar/multimedia data, and so on. The tar-
geted events should also be defined and described in the model. This
includes event features, types, and patterns. Finally, the application
domain is also a part of the model since it affects both the events
and the environment. For instance medical events (e.g., high heart
rate) differ from environmental events (e.g., temperature overheat
in a room). Similarly, the equipment and entities found in a mall
are different from the ones found in a hospital.

4.1.3 Event Detector. Weproposed the event VirtualMachine (eVM)
in a previous work [16]. It is an event detector that needs an event
definition and a set of data objects (e.g., sensor observations) in or-
der to detect targeted events. eVM is re-usable in different contexts,
extensible, accepts various datatypes, easy to integrate, and requires
low human intervention. The event detection process starts by re-
trieving the targeted event definition form the storage unit. The
event definition is analyzed first in order to check its describing
features. For instance a fire event is described by the following
features: time, location, temperature, smoke, and CO2. Then, the
pre-processor retrieves data objects (e.g., sensor observations) hav-
ing attributes related to these features (e.g., smoke, temperature,
CO2 observations). Once this is done, we use Formal Concept Anal-
ysis (FCA), a conceptual clustering technique, in order to construct
a graph from the selected data objects/attributes. Finally, we detect
the targeted events by examining the graph nodes and selecting
the ones that are compatible with the event definition. Also, eVM
is pluggable in the framework and can be replaced by any other
event detector that requires data and an event definition in order
to detect events. We do not detail the event detection mechanism
in this paper since the aim is to focus on the event query language
for connected environments.

4.2 The EQL-CE Proposal
We structure our proposal into three layers: (i) the conceptual layer
provides an overview of the connected environment's components
and their relations in the form of a graph; (ii) the logical layer al-
lows the construction of generic queries written in EBNF (Extended
Backus Norm Form) syntax; and (iii) the physical layer parses
the EBNF queries into a data model-specific language (e.g., SQL,
SPARQL) and executes the parsed queries. A simplified overview
of EQL-CE is presented in Figure 4. In the following we detail each
layer separately.

4.2.1 Conceptual Layer. Here, we detail the top layer of EQL-
CE. The aim is to provide a clear and easy to exploit conceptual
view of the connected environment. Therefore, we use a graph to
represent the various elements (i.e., components and properties).
The latter are split into the following categories (cf. Figure 5):



Figure 4: EQL-CE Overview

Figure 5: EQL-CE Conceptual Layer

Core Modeling: This part contains the basic elements that always
exist in a connected environment. For a clear organization, we
group the elements into the following two parts:

• Sensor Network modeling, where we represent (i) sensor
networks; (ii) various sensor types (e.g., static, mobile); (iii)
the different types of properties (i.e., scalar, multimedia) ob-
served by sensors; and (iv) the observation values produced
by sensors (i.e., textual values, multimedia objects and their
respective metadata).

• Environment modeling, where we represent (i) platforms (i.e.,
infrastructure, devices) that host sensors or sensor networks;
(ii) physical infrastructures, such as buildings, and their de-
tailed description (i.e., location maps, spatial relations); (iii)
devices, such as mobile phones, and their detailed description
(i.e., hardware, software, provided services).

Many other components can still be added to the core part. The
full description of the environment and sensor network can be
inspired from ontologies such as SOSA/SSN [12] and HSSN (Hybrid
Semantic Sensor Network).1

Event Modeling: This part contains the representation of events
that one might wish to detect in a connected environment. Here,
the application domain should also be considered since it affects
the definition of specific events. For instance a body overheating
(medical) event cannot be defined the same way as a room overheat-
ing (environmental) event. Hence, the application domain dictates
the type of an event, its describing features, its pattern, and the
required data for its detection. Therefore, we do not detail the event
modeling, we keep it generic and restrict it to the following com-
ponents: (i) event that defines an event and its type; (ii) dimensions
to mathematically represent the event features (provided by the
Application Domain) in a n-dimensional space; and (iii) event data
1http://spider.sigappfr.org/research-projects/hybrid-ssn-ontology/

to represent sensor observations that contributed in each event.
This allows us to have a generic event definition that applies to var-
ious events from different application domains. All context specific
details are defined in the application domain and then imported in
the event definition via the mediator.

Application Domain Modeling: This part represents the applica-
tion domain (e.g., medical, energy, military). Since these elements
differ from one field to another, this part is pluggable into the con-
ceptual model. It contains basic components/properties denoted
concepts and relations respectively. Instances of the concept com-
ponent can be used to define any domain specific entities, and
instances of the relation property can be used to interconnect the
concepts (e.g., Figure 5 shows an Event Feature concept that helps
define event dimensions). This allows the customization of environ-
ment descriptions and event definitions based on specific contexts.
For instance, one might wish to represent medical equipment and
health related constraints when modeling a hospital environment.
These elements are not the same when describing a shopping center.
Similarly, what describes medical related events is different from
normal every day events that happen in a mall. To conclude, this
part of the data model complements the event description on one
side, and enriches the environment representation on the other.

The Mediator: This part of the conceptual model only contains
properties that ensure the interconnection of the previously men-
tioned parts (i.e., the core, event, and application domain). For
instance, a platform hosts a sensor network, the observation values
produced by the sensors provide event data, the event dimensions
are defined by event features, and the concept field enriches the
description of an infrastructure based on the application domain. In
addition, the mediator can also be used to plug in an external data
model and align it with the existing elements.

4.2.2 Logical Layer. The middle layer of EQL-CE, denoted the
logical layer, allows users to compose/design their queries. The
process starts by choosing a specific query type. To cover a wider
set of functionality (cf. Criterion 1), we provide three main groups
of queries:

• The Component Definition Language defines the structure of
components. Various query types are included in this group
(e.g., CREATE, ALTER, RENAME, DROP).

• The Component Manipulation Language handles compo-
nent instances. Here we propose the following query types:
SELECT, INSERT, UPDATE, and DELETE.

• Component Access Control (e.g., GRANT, REVOKE). These
queries manage access rights to component data. We detail
access control tasks in a dedicated future work.

The process of composing a query is described in Figure 6. First,
the user chooses the query type (e.g., CREATE, INSERT, DELETE).
Then, the user starts filling the mandatory statements (e.g., what
to CREATE, what to SELECT, from which component). Once this
is done, the user can add optional statements for filtering, order-
ing, calling external functions. Finally, the query is written using
an Extended Backus-Naur Form syntax, denoted EBNF [22]. This
context-free grammar is used to formally describe programming
languages. It extends the Backus-Naur Form (BNF). We use EBNF
since it allows the conception of technology independent queries

http://spider.sigappfr.org/research-projects/hybrid-ssn-ontology/


Figure 6: EQL-CE Logical Layer

(i.e., queries that do not depend from any data model specific syn-
tax). This highlights the ability to re-use (cf. Criterion 2) EQL-CE
in different setups, since EBNF can later be parsed, in the physical
layer, to a specific data model instance, such as SQL or SPARQL,
depending on the underlying infrastructure [13, 18, 21]. Any com-
ponent from the conceptual model (i.e., related to the environment,
sensor network, event, and application domain modeling) can be de-
fined, manipulated, and protected using these queries (cf. Criterion
1). Finally, the EBNF query is sent to the physical layer.

4.2.3 Physical Layer &Query Optimizer. The bottom layer of
EQL-CE (cf. Figure 7) saves the received EBNF queries in a dedi-
cated storage unit for future use. Then, it parses the aforementioned
queries into a specific syntax depending on the underlying data
model (e.g., SQL, SPARQL). Finally, the parsed query is saved and
sent to the query run engine where it is executed. If needed, exter-
nal functions, methods, or even algorithms are called (e.g., string
comparison functions, mathematical libraries). All the above de-

Figure 7: EQL-CE Physical Layer

scribes how EQL-CE can be re-used in various contexts, since it is
independent from any technological infrastructure (cf. Challenge 3).
Using the EBNF queries, one can define the data model and all its
various related components (cf. Challenge 1). In addition, EQL-CE
allows users to handle instances of each component for data re-
trieval, modification, deletion, security/privacy, and event detection
by providing a plethora of functionality (cf. Challenge 2). However,
when defining specific events, one might need to manage the spatial
distribution of sensors over a location (cf. Need 2). For instance, con-
sider k-nearest sensors to a specific location, or all sensors within
a range R of a point in space. Also, one might consider mathemat-
ical distributions of sensors over a zone (e.g., even distribution).
Similarly, one might need to manage the temporal distribution of
sensor observations for specific events (cf. Need 3). For example,

selecting the k-most recent sensor observations, or all observations
that were produced during a specific time lapse. Also, one might
need to select observations based on specific sensing rates. To do
so, the query optimizer allows the integration of spatial/temporal
distribution functions in the queries (cf. Criterion 3 and Challenge
4). Finally, in dynamic connected environments sensors might suffer
from breakdowns, mobile sensors could enter/leave the network, or
even change locations. This is challenging since event definitions
rely on sensors and their provided observations. Hence, some pre-
viously defined events might become obsolete over time. Therefore,
in some cases, queries need to be re-written or updated in order to
handle the dynamicity of the environment, and keep up with its
evolution (cf. Criterion 4 and Challenge 5). This is also possible via
the query optimizer. In this paper, we do not fully detail the query
re-writing and spatial/temporal distribution functions. We leave
this to a dedicated future work.

5 ILLUSTRATION EXAMPLE
In this section, we illustrate how EQL-CE works. The aim here,
is to demonstrate the component syntax and provide some EBNF
query examples. To do so, we consider the smart mall scenario of
Section 2. For the sake of brevity, we do not define the entire con-
nected environment (e.g., all locations, sensors in the mall). A fully
detailed example (i.e., containing various query types and compo-
nents) can be found on the following link: http://spider.sigappfr.
org/research-projects/eql-ce/smart-mall/.

5.1 Environment Modeling
The mall is an infrastructure having a location map and various
locations (e.g., shop 1, food court) that are tied by spatial relations.
First, we need to define these components. Then, we INSERT in-
stances. Syntax 1 defines an infrastructure as an entity that has a
location map, and a set of embedded platforms (e.g., infrastructures,
devices). A location map contains various locations (cf. Syntax 2).
Finally, each location can be spatially tied to other locations (cf.
Syntax 3).

Syntax 1: Defining the structure of an Infrastructure

CREATE INFRASTRUCTURE ( <id> = <string> ,
[ LOCATION MAP <id> = <string> ,] [ { HOSTED PLATFORM <id> = <string> } ] ) ;

Syntax 2: Defining the structure of a Location Map

CREATE LOCATION MAP ( <id> = <string> , [ { LOCATION <id> = <string> } ] ) ;

Syntax 3: Defining the structure of a Location

CREATE LOCATION ( <id> = <string> ,
[ { RELATION TYPE <relation_type> = 'directional'|'distance'|'topological',

RELATION NAME <relation_name> = 'above'|'below'|'leftOf'|'opposite'|
'rightOf'|'closeTo'|'farFrom'|'contains'|'covers'|'crosses'|
'disjoint'|'equals'|'overlaps'|'touches',
OTHER LOCATION <id> = <string> } ] ) ;

In addition, one can rename, drop, or alter component definitions.
We give an example for each of these queries in the following:

http://spider.sigappfr.org/research-projects/eql-ce/smart-mall/
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Syntax 4: Renaming a component

RENAME COMPONENT <id> = <string>, <new_id> = <string> ;

Syntax 5: Dropping a component

DROP COMPONENT <id> = <string> ;

Syntax 6: Altering the Location component (add a description field)

ALTER LOCATION ( <id> = <string> ,
ADD [ DESCRIPTION <description> = <string> ,] ) ;

Once the components' definitions are established, we can start
creating instances using INSERT queries. Queries 1, 2, and 3 instan-
tiate an infrastructure, a location map, and location components
respectively. We do not cover all locations found in Figure 1 to
avoid redundancies.

Query 1: Inserting an Infrastructure instance

INSERT INFRASTRUCTURE HAVING ( <id> = 'Mall Infra',
LOCATION MAP <id> = 'Mall Map' ) ;

Query 2: Inserting an Location Map instance

INSERT LOCATION MAP HAVING ( <id> = 'Mall Map' ,
LOCATION <id> = 'Shop 1', 'Movie Theatre' ) ;

Query 3: Inserting two Location instances

INSERT LOCATION HAVING ( <id> = 'Shop 1' ,
RELATION TYPE <relation_type> = 'directional',
RELATION NAME <relation_name> = 'leftOf',
OTHER LOCATION <id> 'Movie Theatre' ) ;

INSERT LOCATION HAVING ( <id> = 'Movie Theatre' ,
RELATION TYPE <relation_type> = 'directional',
RELATION NAME <relation_name> = 'rightOf',
OTHER LOCATION <id> 'Shop 1' ) ;

In addition, one can select, update, or delete instances of compo-
nents. We give an example for each of these queries in the following:

Query 4: Selecting all Locations from the Location Map

SELECT LOCATION <id> FROM LOCATION MAP WHERE
LOCATION MAP <id> = 'Mall Map';

Query 5: Updating the location relation between Shop 1 and Movie Theatre

UPDATE LOCATION CHANGE RELATION NAME <relation_name> = 'leftOf'
INTO RELATION NAME <relation_name> = 'opposite',
WHERE ( LOCATION <id> = 'Shop 1', OTHER LOCATION <id> = 'Movie Theatre');

Query 6: Deleting a Location

DELETE LOCATION WHERE LOCATION <id> = 'Shop 1';

This concludes the definition and manipulation syntax/queries
for the environment part. Next, we discuss sensor networks, events,
and application domains. Due to space limitations, we focus mainly
on the syntax to define the components' structures.

5.2 Sensor Network Modeling
The sensor network hosted in the mall comprises of various static
and mobile sensors. They monitor the environment properties and
produce observations. Some properties/observations are scalar (e.g.,
temperature) while others are multimedia (e.g., video surveillance).
Therefore, we define here the following components: (i) Scalar
Property; (ii) Media Property; (iii) Scalar Value; (iv) Media Value;
and (v) Sensor. Syntax 7 details the structure of a scalar property
which is mapped to a set of scalar observation values. Similarly, a
media property (cf. Syntax 8) is mapped to a set of media values and
a specific type (e.g., audio, video, image). Syntax 9 defines any scalar
observation value produced by a sensor. Each observation has a
timestamp, location, related sensor, a datatype, a value, and a unit.
Media observation values are detailed in Syntax 10. Each media
value is composed of a data object and a set of metadata/value
pairs. Similarly to scalar values, each media value has a timestamp,
location, and a related sensor. Finally, a sensor is defined as en entity
that has a type (e.g., static, mobile), a current location/coverage
area, a set of previous locations/coverage areas/capabilities. Each
sensor is capable of sensing specific properties and can be hosted
on a particular platform (a device or an infrastructure). Syntax 11
describes the sensor component structure.

Syntax 7: Creating a Scalar Property

CREATE SCALAR PROPERTY ( <id> = <string> ,
[ { SCALAR VALUE <id> = <string> } ] ) ;

Syntax 8: Creating a Media Property

CREATE MEDIA PROPERTY ( <id> = <string> ,
[ MEDIA TYPE <id> = 'audio' | 'image' | 'video' , ]
[ { MEDIA VALUE <id> = <string> } ] ) ;

Syntax 9: Creating a Scalar Value

CREATE SCALAR VALUE ( <id> = <string> ,
[ DATATYPE <dt> = 'integer' | 'float' | 'boolean' | 'date' | 'time' |
'date time' | 'character' | 'string' , VALUE <val> = <empty> , ]
[ UNIT <id> = <string> , ] [ TIMESTAMP <val> = <empty> , ]
[LOCATION <location_id> = <empty> , ] [ SENSOR <sensor_id> = <empty> ] ) ;

Syntax 10: Creating a Media Value

CREATE MEDIA VALUE ( <id> = <string> ,
[ DATA OBJECT TYPE <dot> = 'audio segment'|'visual segment' ,
DATA OBJECT <do> = <empty> , ]
[ { METADATA <meta> = 'text annotation descriptor'|'fundamental frequency'|
'harmonic descriptor'|'harmonic spectral centroid'|
'harmonic spectral deviation'|'harmonic spectral spread'|
'harmonic spectral variation'|'log attack time'|'power descriptor'|
'spectral centroid'|'spectrum basis'|'spectrum centroid'|
'spectrum envelop'|'spectrum flatness'|'spectrum projection'|
'spectrum spread'|'temporal centroid'|'waveform'|'camera motion descriptor'|
'motion activity descriptor'|'parametric motion descriptor'|
'trajectory descriptor'|'warping parameters'|'bounding box descriptor'|
'point descriptor'|'media duration descriptor'|'media time point descriptor'|
'color layout descriptor'|'color structure descriptor'|
'contour shape descriptor'|'dominant color descriptor'|
'edge histogram descriptor'|'face recognition descriptor'|
'scalable color descriptor' , VALUE <val> = <empty> } ,]
[ TIMESTAMP <val> = <empty> , ] [LOCATION <location_id> = <empty> , ]
[ SENSOR <sensor_id> = <empty> ] ) ;



Syntax 11: Creating a Sensor

CREATE SENSOR ( <id> = <string> ,
( [ HAVING
[ SENSOR TYPE <sensor_type> = 'static' | 'mobile' , ]
[ CURRENT LOCATION <id> = <string> , ]
[ { PREVIOUS LOCATION <id> = <string> , TIME INTERVAL <ti> = <empty> } , ]
[ CURRENT COVERAGE AREA <id> = <string> , ]
[ { PREVIOUS COVERAGE AREA <id> = <string> , TIME INTERVAL <ti> = <empty> } , ]
[ { CAPABILITY <id> = <string> , VALUE <val> = <string> } ] ] , )
( [ SENSING { SCALAR PROPERTY <id> = <string> |

MEDIA PROPERTY <id> = <string> } ] , )
( [ HOSTED ON PLATFORM <id> = <string> ] ) ) ;

5.3 Event Modeling
Here we detail the event modeling in EQL-CE. We define the event
as a n-dimensional space where each dimension mathematically
represents an event describing feature. The latter are provided by
the application domain (cf. Figure 5). Moreover, event data is the
set of sensor observations that help detect the event (i.e., event data
belong to the event's n-dimensional space). Therefore, an event
has a set of dimensions and event data. In addition, an event also
has a set of sensors that provide the required observations for the
detection. Finally, we added a type parameter to the event definition
to distinguish elementary or atomic events (i.e., that require one
observation from one sensor) from complex events (i.e., that require
various observations from one sensor), and composite ones (i.e., that
require various observations from different sensors). The following
syntax defines event modeling components.

Syntax 12: Creating an Event Structure

CREATE EVENT ( <id> = <string> ,
[ EVENT TYPE <event_type> = 'elementary' | 'complex' | 'composite' , ]
[ { SENSOR <sensor_id> = <string> } , ]
[ { DIMENSION <dimension> = <string> } , ]
[ { EVENT DATA <data_object> = SCALAR OBSERVATION <so> |

MEDIA OBSERVATION <mo> } ] ) ;

The following query defines a particular event instance, denoted
’Overheat in Shop 1’, where the three main dimensions are time,
location, and temperature. This event relies on scalar temperature
observations that surpass the value 30. Once the event instance
is defined, any external event detection mechanism (e.g., eVM cf.
Figure 3 can use this definition to detect occurrences of this event.

Query 7: Creating an Event Instance

INSERT EVENT HAVING ( <id> = 'Overheat in Shop 1' ,
EVENT TYPE <event_type> = 'elementary',
{ SENSOR <sensor_id> = ANY },
{ DIMENSION <dimension> = 'Time', 'Location', 'Temperature' },
{ EVENT DATA <data_object> = SCALAR OBSERVATION <so> } ),
WHERE ( <so>.<id> = 'Temperature',

<so>.<location_id> = 'Shop 1', <so>.<val> > 30 ) ) ;

To keep up with the environment changes (cf. Criterion 4), one
could need to re-write obsolete event definitions. Query re-writing
is provided automatically by the query optimizer (cf. Figure 3). How-
ever, users can request an update at any time. This is illustrated in
the following query where we update the event definition provided
in Query 7 by only considering observations from Sensor 1.

Query 8: UPDATING an Event Instance

UPDATING EVENT CHANGE (
SENSOR <sensor_id> = 'Sensor 1',
WHERE (EVENT <id> = 'Overheat in Shop 1') ) ;

5.4 Application Domain Modeling
As previously mentioned in the conceptual layer, application do-
mains have different components, inter-component relations, and
targeted events. Therefore, we provide here a generic definition of
an application domain related components and relations (denoted
Concept, Relation respectively cf. Syntax 13). We also provide a
definition for event describing features (cf. Syntax 14) and their
datatypes (cf. Syntax 15) that can be instantiated in different do-
mains.

Syntax 13: Creating a Concept/Relation

CREATE CONCEPT ( <id> = <string> , [ { ATTRIBUTE <id> } ] ) ;
ATTRIBUTE <id> = CONCEPT <id> | VARIABLE ( <label> = <string> ,
DATATYPE <datatype> = 'integer'|'float'|'boolean'|'date'|'time'|
'date time'|'character'|'string', VALUE <val> = <empty> ) ;

CREATE RELATION ( <id> = <string> ,
[ { CONCEPT <source_id> = <string> } , ]
[ { CONCEPT <target_id> = <string> } ] ) ;

Every event feature has an identifier, a set of granularities (e.g.,
second, minute, hour for time), a function that converts a gran-
ularity to another (e.g., 1 minute = 60 seconds), a boolean field
indicating if intervals can be created from this feature's values, and
a datatype.

Syntax 14: Creating an Event Feature

CREATE EVENT FEATURE ( <id> = <string> ,
[ GRANULARITY SET { VALUE <val> = <string> } , ]
[ GRANULARITY FUNCTION <id> = <string> , ]
[ INTERVAL <boolean> = '0' | '1' , ]
[ EVENT FEATURE DATATYPE <event_feature_datatype_id> = <string> ] ) ;

An event feature datatype has an identifier, a primitive datatype ,
a range of allowed values (i.e., lower bound min, upper bound max),
and a function that measures the distance between values having
the same event feature datatype. These details help translate event
describing features (application domain) into dimensions of the
event's n-dimensional space (event modeling) using the mediator
(cf. Figure 5).

Syntax 15: Creating a Event Feature Datatype

CREATE EVENT FEATURE DATATYPE ( <id> = <string> ,
[ DATATYPE <datatype> = 'integer'|'float'|'boolean'|'date'|'time'|
'date time'|'character'|'string', ]
[ RANGE ( MIN <min> = VALUE <val> , MAX <max> = VALUE <val> ) , ]
[ DISTANCE <function_id> = <string> ] ) ;

6 CONCLUSION & FUTUREWORK
Many challenges emerge when proposing a EQL adapted to con-
nected environments. In this paper, we addressed the issues of
re-usability, and covering various components/functionality. To do
so, we proposed EQL-CE: a three layered event query language for
connected environments. We detailed its conceptual, logical, and
physical layers. EQL-CE users compose EBNF queries, that can be



later parsed into SQL, SPARQL, or other languages (re-usability).
Our proposal covers various connected environment components
(environments, sensor networks, events, and application domains)
and functionality (definition, manipulation, access control, event
detection). We also proposed a query optimizer that allows query
re-writing and the integration of spatial/temporal distribution func-
tions. As future work, we would like to detail the security/privacy
related queries and distribution/query re-writing functions. Also,
we are currently developing an online simulator to allow users to
run tests on a connected environment (e.g., the smart mall). Finally,
we want to address additional challenges such as integrating batch
queries and continuously processing data streams.
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