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In this study, a numerical approach has been developed to predict the near surface residual stresses and

plastic strain resulting from turning in orthogonal cutting configuration. This approach is based on the

Arbitrary Lagrangian–Eulerian (ALE) formulation using the commercial finite element code Abaqus–

Explicit. The coefficients of the used material behavior law and friction model required for the

simulation are identified experimentally in this study. The simulated results are validated by

experiments carried out on AISI 316L stainless steel. Using this method, the effect of the depth of cut

(Doc) and the cutting speed (Vc) on the surface properties has been established. The simulated residual

stress gradient resulting from machining has been experimentally validated by X-ray diffraction

measurements. The simulated plastic strain gradient has been validated by an experimental

microhardness–strain relationship established in this study.
1. Introduction

The tool–material interactions under machining conditions
appreciably modify the properties of near surface layers of metal
and subsequently their behavior and durability. The nature and
the extent of the modifications depend on the types of tool–
workpiece interactions. The identification of these modifications
is extremely useful for a better prediction of the in-service life
time of machined components subject to cyclic loading or stress
corrosion cracking. For a long time, the identification of the
properties of the near surface layers affected by machining was
based on experimental approaches combining various techniques
and methods of mechanical and physicochemical investiga-
tions [1]. These approaches are expensive and lead to more or
less significant uncertainties of surface properties. For this reason,
analytical approaches, based generally on geometrical considera-
tions, have been developed. These approaches have recognized
continuous development since the beginning of the previous
century [2]. Nevertheless, the developed analytical models were
mainly used to predict machining power or tool life by estimation
of cutting forces and generated heat and are rarely used to predict
the properties of machined surface. This is attributed to the large
number of the involved and coupled physical phenomena as
: þ216 71 391 166.

hom).
contact mechanics, thermal transfer, metallurgical transforma-
tions, dynamics of machining, etc.

The numerical approaches found successful applications in
recent years. Three different approaches were commonly used to
simulate metal cutting: Lagrangian, Eulerian and Arbitrary
Lagrangian–Eulerian. The main advantages of each formulation
are summarized in Table 1.

However, the numerical investigations were focused com-
monly on cutting forces and chip morphology prediction [3,4].

The Lagrangian formulation has been used in several works to
investigate the effect of machining parameters on residual stres-
ses distribution. These works focused commonly on analyzing the
effect of cutting speed [5–10], depth of cut [6,8,10–12], number of
passes [8,13,14] and cutting tool geometry and coating [8,15–20].
Nevertheless, the drawbacks of Lagrangian models cited in
Table 1 reduce the profitability of these models.

Despite the advantages of the ALE formulation, its use in metal
cutting simulation was very limited. Nasr [21] and Munoz [22]
have presented an ALE finite element model to simulate the
residual stresses induced by orthogonal dry cutting of the auste-
nitic stainless steel AISI 316L. The works were limited to the study
of the effect of tool edge radius on machining residual stresses.

Examination of the main numerical investigations of material
cutting process can lead to the following comments:
�
 The numerical simulation results are very sensitive to the used
material behavior laws [23], friction model [13,17,24] and
mesh smoothness [14,21].
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Table 1
Comparison between different formulations used in metal cutting simulation.

Formulation Advantages Drawbacks

Lagrangian � Simulation of discontinuous chip � Mesh related to material¼4excessive distortion

� A separation criterion must be used

� Dependence of the calculated residual stresses and plastic strains

on separation criterion

� High computing time of remeshing

Eulerian � Reduced computing time � Initial chip shape must be introduced

� No separation criterion to use � Do not consider the material elastic behaviorZno residual

stress prediction

� No mesh distortion

Arbitrary Lagrangian–Eulerian (ALE) � Distinction between the mesh and material

evolution¼4no mesh distortion

� Initial chip shape must be introduced

� No separation criterion to use � No simulation of discontinuous chip

Fig. 1. Numerical simulation description.
�
 The explicit integration scheme is more efficient for applica-
tions involving high nonlinearities such as metal cutting
simulation [21,22].

�
 The machining residual stress is very sensitive to the friction

condition of the tool–chip interface. Nevertheless, the coulomb
model with a constant coefficient was usually used to describe
friction in metal cutting simulation [8,14,16,17,25].

�
 The simulated machining residual stress distributions are

characterized by high tensile value near the surface in both
directions (circumferential and axial) for austenitic stainless
steels [8,11,19–22]. Moreover, in cutting direction (circumfer-
ential) the tensile residual stress is higher. In all cases, their
levels are mainly controlled by the selected machining para-
meters which affect the generated heat flux.

�
 The simulated machining residual stresses are rarely validated

by experimental measurements for different cutting condi-
tions. The models validations are usually based on cutting
forces measurements [7,13,20].

�
 The simulated residual stresses were never been confirmed by

an assessment of plastic deformation fields which is the bases
of their generation.

For these reasons, we propose, in this study, a numerical approach
to predict the surface residual stress and strain gradients resulting
from cutting material process. This approach is based on the ALE
formulation using the commercial finite element code Abaqus–Explicit
and pre-defined experimental material behavior laws and friction
models. The finite element model is calibrated by residual stresses
and plastic strains measured on AISI 316L stainless steel samples
machined in different cutting conditions. The effects of cutting condi-
tion on surface residual stress and strain distribution are investigated.
2. Numerical approach

2.1. Numerical simulation procedure

The approach adopted to predict the near surface residual
stresses and strains induced by turning consists of reproducing
the generation mechanisms of residual stress and strain in metal
cutting by simulating separately:
�
 The phase of tool/material interaction, in a kinematic of cut,
that consists of simulating the viscoplastic flow of the material
on the tool cutting face (model I Fig. 1(a)).

�
 The phase of unloading and cooling of the workpiece until

reaching mechanical equilibrium and room temperature in the
workpiece (model II Fig. 1(b)).
In this procedure, the friction coefficient and material behavior
law are provided from experimental data (Fig. 2).

2.1.1. Simulation of tool/material interaction (model I)

In a first step, an ALE model is used to simulate the visco-
plastic flow of the material at the tool cutting face that is
considered as fixed.



Fig. 2. Methodology used to predict machining residual stress and plastic strain by FE method.

Table 2
Chemical composition.

C Si Mn P S N Cr Mo Ni Cu Co

0.018 0.38 1.84 0.035 0.029 0.078 16.6 2.02 10.2 0.36 0.18
2.1.1.1. Material behavior law. The material used in this study is
the austenitic stainless steel AISI 316L. The chemical composition
and thermo-mechanical properties of this material are summarized
in Table 2 and Table 3, respectively. The AISI 316L thermo-
mechanical properties are introduced in the finite element code as
function of temperature to describe the material behavior.

The constitutive law proposed by Johnson and Cook [26],
available in ABAQUS/Explicit, provides a good description of
material behavior subjected to large strains, high strain-rates
and thermal softening. This law, described by Eq. (1), is used in
the simulation proposed in this study. Table 4

s¼ ðAþBðeÞnÞð1þC ln_enÞð1�ðTn
Þ
m
Þ ð1Þ

where: _en ¼ _e=_e0 and Tn
¼ T�T0=Tm�T0

In Eq. (1), s is the material flow stress, e is the equivalent
plastic strain, _e0 ¼ 10�3 is the reference plastic strain rate, _e is the
plastic strain rate, Tm and T0 are the melting and the room
temperatures, respectively. Tensile tests at different temperatures
and strain rates were conducted on the studied stainless steel.
The coefficients (A, B, C, n and m), listed in Table 5, are obtained
from tensile curves using a fitting program. The difference
between the material behavior law coefficients obtained in this
work and those given by M’Saoubi [27] can be explained by the
difference in cold work hardening associated with the initial
material manufacturing process.
2.1.1.2. Conservation law. In ALE formulation conservation laws
must be expressed considering the mesh motion throughout
simulation. The relative velocity between material and mesh,
called convective velocity (c) is defined by c¼ v�v̂ where ðvÞ and
ðv̂Þ are the particle velocities in material domain and the mesh
velocity, respectively.

As described by Donea et al. [28], the relation between the
material time derivatives, the referential time derivatives and the
spatial gradient given by Eq. (2), allows to establish the conserva-
tion laws in ALE description (Eqs. (3)–(5)) from those in pure
Eulerian configuration. In Eqs. (3)–(5), (r) is the mass density, ð f

!
Þ

is the body force, (s) is the Cauchy stress tensor, (e) is the specific
internal energy, (D) is the strain rate tensor, (r) is the body heat
generation and ð q

!
Þ is the heat flux vector.
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2.1.1.3. Geometries, mesh and boundary conditions. The workpiece
and tool geometries as well as initial and boundary conditions are
introduced into the model (Fig. 3). The workpiece and the tool
were meshed with, respectively, 2804 and 1802 isoparametric
quadrilateral elements (CPE4RT) available in Abaqus element
library. The workpiece is defined in the model as an adaptive
mesh domain where continuous remeshing is applied to reduce
mesh distortion during simulation. A plane-strain coupled thermo-
mechanical analysis was performed using orthogonal assumption.
The mesh is extremely refined near the tool–workpiece and tool–
chip interfaces until a length of 10 mm for the workpiece elements
and 5 mm for the tool’s elements (Fig. 3). In the current model,
workpiece is subdivided into four zones. Zones 1, 3 and 4 were



Table 4
Coefficients of Johnson Cook law for the AISI 316 L.

A (MPa) B (MPa) C n m _e0 (s�1) Ref.

30070.449 113271.96 0.05170.001 0.74870.001 1.28670.009 0.001 Current work

301 1472 0.090 0.807 0.623 0.001 [27]

Table 5
Measured cutting forces and friction coefficient for different cutting conditions.

Condition 1 2 3 4 5 6 7 8 9

Cutting speed (m/min) 140 100 60 140 100 60 140 100 60

Depth of cut (mm) 0.25 0.25 0.25 0.2 0.2 0.2 0.3 0.3 0.3

Cutting force (N) 192 320 320 135 250 250 190 437 360

Thrust force (N) 80 155 165 50 110 160 80 225 225

Friction coefficient (m) 0.42 0.48 0.51 0.37 0.44 0.64 0.42 0.51 0.62

Fig. 3. Mesh, boundary and initial conditions of model I.

Table 3
Mechanical and thermal properties of workpiece and tool–materials.

Property AISI 316L [23] Coated carbide insert [31]

Mass density r (kg/m3) 7921–0.614Tþ2.10�4T2 11,900

Poisson ratio n 0.29 0.3

Hardness HV50 gf 192

Specific heat capacity Cp (J/kg K) 440.79þ0.58T�10�3T2
þ7.10�7T3 360.5

Thermal conductivity l (W/m K) 14.3þ0.018T�610�6T2 29.71

Melting temperature Tm (1C) 1400

Thermal expansion a (mm/mm 1C) 10.4

Inelastic heat fraction b 0.9

T (1C) Value

Young modulus E (GPa)

20 210.3

150 191.7

260 180

350 191

425 188.2

480 186.2

540 156.5

650 113.7

1200 68
assumed as Lagrangian regions where the mesh is attached to the
underlying material. This can be justified by the existing of free
surfaces in these zones where the boundary conditions can be
easily applied using Lagrangian description. The initial chip shape
introduced in zone 4 is automatically updated along calculation to
satisfy the thermo-mechanical equilibrium. The final shape and
dimensions of chip depend on the evolution of thermal and
mechanical loads independently from the first configuration.
Nevertheless, to reduce time calculation it is suitable to
approximate a convenient initial shape of chip by testing
different shapes and dimensions before final calculation. The
mesh in zone 2 was totally fixed in space according to an
Eulerian description, where the material particle flows through
the mesh as a fluid. This method allows to avoid the mesh
distortion problem that represents the main drawback of the
Lagrangian formulation.
2.1.1.4. Time integration method. In dynamic coupled thermo-
mechanical problem such as metal cutting simulation, stresses
are function of strain ðeÞ, strain rate ð_eÞ and temperature ðTÞ. The
interdependence and the variation of these parameters with time
require calculating them simultaneously at each time increment
where the use of explicit time integration is more suitable. In
addition, explicit time integration is more efficient for analysis
involving high nonlinearities. In explicit integration method, at
each time increment, nodal acceleration has to be expressed in
terms of displacements (u(i)), velocities ð _uðiÞÞ and accelerations
ð €uðiÞÞ at previous increment and calculated by resolving Eq. (6).
The equations of body motion is integrated using the explicit



central difference integration rule:

_uðiþ1=2Þ
¼ _uði�1=2Þ

þ Dtðiþ 1Þ þDtðiÞ

2
€uðiÞ

uðiþ1Þ ¼ uðiÞ þDtðiþ1Þ _uðiþ1=2Þ

(
ð6Þ

Mechanical non equilibrium is corrected for the global struc-
ture with implicit integration by simultaneously resolving of
differential equations after formulation and inversion of the
global structural matrix.

2.1.1.5. Contact and friction law. The most realistic description of
normal and frictional stress distributions at tool–chip interface
has been proposed by Zorev [29]. As shown in Fig. 4, the author
assumes that the tool–chip interface is subdivided into two zones.
In the first zone (xr lp) the shear stress reaches the saturation
values tMax and sticking occurs. In the second zone (lpoxr lc),
the frictional shear stress does not reach the saturation values
tMax and sliding occurs.

According to Zorev’s description, the frictional stress can be
expressed as follow:

tf ¼ m� sn if m� snotMaxðSlidingÞ

tf ¼ tMax if m� snZtMaxðStickingÞ

(
ð7Þ

The friction coefficient ðmÞ is calculated from rake angle value ðgÞ
and measured force components extracted from experimental
Fig. 4. Normal and frictional stress distributions at tool–chip interface [25].

Fig. 5. Effects of frictional shear str
results, presented in Table 5, by the relation:

m¼ FtþFc tan g
Fc�Ft tan g

ð8Þ

Fig. 5 shows a high dependence of strain and temperature
distribution in machined subsurface layers on frictional shear
stress limit value ðtMaxÞ. This can be explained by variation of the
tool/chip contact area according to tMax value.

The value of frictional shear stress limit was obtained by
carrying out several simulations where the latter was varied until
having a good agreement between the measured and calculated
residual stresses and strains for machining conditions 2, 3, 6, 7
and 9 (Fig. 2).

The value of frictional stress limit ðtMaxÞ was expressed as
function of the cutting parameters by a polynomial function (Eq.
(9)), where (Vc) is the cutting speed and (Doc) is the depth of cut.

tMax ¼�3:49ðVcÞþ0:027ðVcÞ2�11408:5ðDocÞ

þ23828:5ðDocÞ2þ1607:5 ð9Þ

It is important to notice that this expression is useful within the
ranges of variation of the cutting speed (60 to 140 m/min) and
depth of cut (0.2 to 0.3 mm) as indicated in Table 5. These ranges
are recommended by the cutting insert manufacture (Sandvik) for
stainless steels.

In this work thermal conductance coefficient (h1) of 1000
kW/m2 K was used to characterize the heat transfer at the tool–
chip and tool–workpiece interfaces. Filice et al. [24] show that this
value allows to reach the stationary regime of temperature quickly
so that good agreement between the simulated and measured
profiles of residual stresses can be obtained.

2.1.1.6. Heat generation in orthogonal metal cutting. In machining,
the temperature increases in cutting zone results from material
plastic deformation and friction at tool–workpiece interface.

The local temperature increase induced by plastic work ðDTpÞ

and friction ðDTf Þ in a time interval ðDtÞ, is calculated using Eqs.
(10) and (11), respectively, where Zp is the fraction of plastic
deformation energy converted to heat, s the material flow stress,
_ep the plastic strain rate tensor, J the equivalent heat conversion
factor, r the density, Cp the specific heat capacity t, the shear
stress at contact point and _S the slip velocity.

DTp

Dt
¼ Zp

s_ep

JCpr
ð10Þ

DTf

Dt
¼ Zf

t _S
JCpr

ð11Þ
ess limit on simulation results.



The fraction of frictional heat transferred to workpiece (b) is
function of tool and workpiece effusivities (Ef) and obtained by
Eq. (12), where (l) is the thermal conductivity.

b¼
Ef wp

Ef wpþEf t

where Ef ¼ ðl� r� CpÞ
0:5

ð12Þ

The temperatures are calculated by resolving the heat equa-
tion Eq. (13), where (p) is the voluminal heat quantity and (Rpl)
defines the thermal internal source coming from mechanical
contribution.

rCp
_T�lDT ¼ pþRpl ð13Þ

2.1.2. Simulation of residual stress and strain after relaxation and

cooling (model II)

After cutting simulation, an implicit Lagrangian model was
used to predict the induced residual stress and plastic strain. At
this step the workpiece finds its mechanical balance and thermal
cooling until the room temperature (25 1C). The modifications
induced in workpiece subsurface during tool/material interaction
in model I (stresses, strains and temperatures) are introduced in
model II as initial conditions as shown in Fig. 1. In this model, the
number of elements is reduced by deleting the tool and the chip.
The heat transfer between the part and the ambient air is
controlled by air convection factor h2¼10 kW/m2 K.

2.1.3. Numerical simulation results

Using the above mentioned procedure, the stress, strain and
temperature distributions during cutting (model I) and after
cooling (model II) were calculated for several cutting conditions.
Simulation results for cutting condition (Vc¼140 m/min and
Doc¼0.25 mm) are shown in Fig. 6((a)–(e)). It can be seen from
Fig. 6(a) that the maximum Von Mises equivalent stress is located
in the primary shear zone. A lower stress value of about 1170 MPa
is obtained in the new generated surface. After unloading and
Fig. 6. Simulation results for condition
cooling, the surface stress decreases to 827 MPa in cutting
direction and 542 MPa in axial direction (Fig. 6((d) and (e)).

Fig. 6(a) shows a high level of strain in secondary shear zone.
This can be explained by a high thermal softening caused by
excessive heating in this zone as shown in Fig. 6(c). A slighter
value of strain is obtained in new generated surface and its value
decreases, after unloading and cooling, to about 66% (Fig. 6(f)).

These results are validated by experimental data provided in this
study, involving residual stress and plastic strain measurements.
3. Validation procedure

3.1. Experimental setup

An experimental investigation is proposed in this work to
assess the predictive capability of the numerical approach. Cut-
ting tests have been carried out by turning of AISI 316L disks of
50 mm diameter and 5 mm thickness, under orthogonal cutting
configuration (Fig. 7).

Nine cutting experiments using different cutting conditions
(Table 5) have been conducted. Five of them have been used to
calibrate the frictional shear stress limit given by Eq. (9) (condi-
tions 2, 3, 6, 7 and 9) and four others (conditions 1, 4, 5 and 8)
have been used to validate the numerical simulation results. For
all machining conditions the feed rates are chosen equal to the
depths of cut to avoid the effects of sequential cuts. A CVD TiCN–
Al2O3–TiN coated carbide insert with a rake angle g of 01, a
clearance angle a of 71 and a cutting edge radius Rn of 20 mm is
used for the experiments. The turning tests were carried out on a
numerical controlled lathe (RealMeca T400), equipped with a
piezo-electric transducer-based type dynamometer (type Kistler
9257B). The cutting and feed forces for all test conditions are
listed in Table 5. The recorded values of cutting and thrust forces
have been used to determine friction coefficient used in numer-
ical model as explained previously.
1 (Vc¼140 m/min, Doc¼0.25 mm).



Fig. 7. Experimental setup used for orthogonal turning and cutting force measurement.

Table 6
Experimental results.

Machining conditions Machined surface properties

N1 Vc (m/min) Doc (mm) Microhardness (HV) Residual stresses (MPa)

sR
11ðMaxÞ sR

33ðMaxÞ
ALT (mm)

1 140 0.25 460 8277266 542762 130

2 100 0.25 352 989744 664748 117

3 60 0.25 335 6507114 570762 145

4 140 0.2 480 7567107 426770 135

5 100 0.2 370 861729 728772 114

6 60 0.2 360 590768 435760 140

7 140 0.3 500 10497125 897766 132

8 100 0.3 420 1302750 1076793 120

9 60 0.3 390 8157104 662760 150

Table 7
X-ray diffraction conditions.

Radiation Mn Ka
l¼0.209 nm

Voltage 20 kV

Current 5 mA

X-ray diffraction

planes
2y¼1521

Beam diameter 2 mm

f angles 01 and 901

c oscillation 731

Number of c angles 17

Fig. 8. Shape and dimensions of specific tensile sample before and after

tensile test.
3.2. Identification of the machined surface properties

3.2.1. Microhardness tests

A Shimadzu HMV2000 micro-hardness tester is used to quan-
tify the cold work hardening by measuring the variation of
microhardness generated by machining for each cutting condi-
tion. The applied force and duration of indentation are 50 gf and
15 s, respectively. The obtained surface microhardness levels for
the different cutting conditions are listed in Table 6.
3.2.2. X-ray diffraction

Residual stress profiles were evaluated by the c tilt X-ray
method using a SET-X-type diffractometer (manufactured by
Elphyse France) under the conditions listed in Table 7. The in-
depth residual stresses were measured after performing an
incremental electrochemical etching. Near surface residual stres-
ses and affected layer thickness for different cutting condition are
listed in Table 6.
3.2.3. Relationship between microhardness and plastic strain

In order to establish a relationship between the micro-hard-
ness and the equivalent plastic strain, a tensile test was carried
out on a specific tensile sample. The shape of the specific tensile
sample offers different levels of plastic strain values along the
calibrated area (Fig. 8). Micro hardness measured along the
tensile sample can be plotted as function of equivalent plastic
strain.



To find out the shape and dimension of tensile sample, the law
of evolution of the useful section during the tensile test was
established. In this step, the material behavior was described by
the relation:

sy ¼ AþBðep
eqÞ

n
ð14Þ

By selecting a coefficient K controlling the plastic strain evolution
along the useful zone equal to 0.016, the shape and dimension of
tensile sample were totally determined. The sample was obtained
by wire EDM from the same bar used for cutting tests and
electro polished by layers of 50 mm until reaching a homogeneous
micro-hardness of 192HV. A grid made up of squares (1�1 mm)
was electro graved on the tensile sample (Fig. 8).

The grid’s dimensions before and after tensile test were
observed by optical microscope and used to calculate the equiva-
lent plastic strain evolution in calibrated area (Fig. 9(a)). After
tensile test, the evolution of microhardness along the sample was
measured (Fig. 9(b)). The level of microhardness at each point was
performed by averaging five measurements. Thereafter, the curve
expressing the evolution of the micro-hardness according to the
equivalent plastic strain was established (Fig. 10). This curve will
be used to validate the plastic strain calculated by numerical
simulation.
3.2.4. Validation

In order to verify the capability of the proposed numerical
approach to predict the properties of layers affected by machin-
ing, the residual stress and plastic strain calculated by the finite
element model were compared to experimental results. Fig. 11
illustrates the predicted and measured residual stress profiles for
the same cutting conditions. The plastic strains calculated by
numerical model are compared to those deduced from
microhardness–plastic strain relationship as explained previously
(Fig. 12). The simulation results show good agreement between
calculated and measured residual stresses and plastic strains
proving the satisfactory capability of the suggested procedure to
predict the gradients of properties induced by machining.
Fig. 10. Microhardness/plastic strain correspondence of the AISI 316L

stainless steel.
4. Effects of cutting conditions on the near surface properties

The numerical simulation approach described and validated in
this study will be used to establish the effect of cutting conditions
on AISI 316L surface gradient properties. This study is based on
the analysis of simulated profiles of residual stress and plastic
strain resulting from nine cutting conditions (Figs. 13 and 16).
Fig. 9. Evolution along tensile sample of: (a) eq
4.1. Residual stresses

The residual stress distributions plotted in Fig. 13 show that
both circumferential and axial residual stresses are tensile in the
near surface layers with higher value in the outer layer. The
maximum calculated residual stress value varies from 600 to
1290 MPa and it is much higher than the bulk material yield
stress (300 MPa). The residual stresses in cutting direction are
higher than those in axial direction. It can be seen that the cutting
speed and the depth of cut have a significant influence on the near
surface residual stresses and on the affected layers thickness.

4.1.1. Effect of cutting speed

There are two residual stress evolution tendencies with
increasing the cutting speed for each depth of cut (Fig. 14):

For low cutting speed (Vco100 m/min), tensile surface resi-
dual stresses increase significantly in both directions with
increasing of the cutting speed.

For high cutting speed (Vc4100 m/min), tensile surface resi-
dual stresses decrease in both directions with increasing the
cutting speed.

This result can be explained by the contribution of thermal
effect in the machining residual stress generation process
(Fig. 15). Two competitive phenomena are thought to occur at
the cutting zone: an increase of generated heat in cutting zone (Q)
with increasing cutting speed which is counterbalanced by a
decrease of transferred heat fraction to workpiece (QW). In fact,
two sources of heat are assumed to generate the temperature rise
in the machined part during cutting: plastic deformations in shear
zones and friction between the tool and the workpiece (Fig. 15).
The created heat is transferred to chip (QC), to tool (QT) and to
workpiece (QW) in proportions depending on tool and material
properties and cutting conditions. For a range of cutting speed
lower than a value of 100 m/min, the material removal rate _Z is
low and leads to a weak rate of thermal dissipation by the chip
ð _Q CÞ. A higher quantity of heat is then transmitted to the work-
piece surface (QW) causing an increase of tensile residual stress
uivalent plastic strain, (b) microhardness.



Fig. 12. Measured and simulated plastic strain comparison.

Fig. 11. Measured and simulated residual stresses comparison.

N. Ben Moussa et al. / International Journal of Mechanical Sciences 64 (2012) 82–9390
(Fig. 14). For higher speeds, the material removal rate _Z raises and
the chip as well as the quantity of associated heat (QC) remains in
the cutting zone for shorter time. Therefore, the rate of heat
dissipation in the machined surface ð _Q W Þ decreases (Fig. 14). This
leads to a decrease of the tensile residual stress. The same
residual stress evolution tendency depending on the cutting
speed was observed by Pawade et al. [30] when nickel alloy
was machined. These authors found that the maximum residual
stress was reached at a cutting speed of 300 m/min. This was
explained by the quantity of heat dissipation that determines the
nature of deformation for materials with poor thermal
conductivity.
4.1.2. Effect of depth of cut

The numerical simulation results show an increase in tensile
surface residual stress in both directions when depth of cut
increases from 0.2 to 0.3 mm (Fig. 14). This result can be
explained by the contribution of the thermal effects resulting
from an increase of cutting zone size and the heat created by



Fig. 14. Effect of cutting conditions on near surface residual stresses.

Fig. 15. Effect of cutting speed on thermal load during cutting.

Fig. 13. Effect of cutting conditions on residual stresses.
friction and plastic deformation when the depth of cut becomes
higher. This result is in good agreement with the result found by
Outeiro et al. [8] and by Mohammadpour et al. [9] by numerical
simulation of residual stress induced by machining of AISI316L
and AISI1045, respectively.

4.2. Plastic strain

4.2.1. Effect of cutting speed

In the current work, the cold work hardening induced in
machined surface layers is quantified in term of plastic strain that
can be converted to microhardness as explained previously. For all
cutting conditions, a work hardening takes place at the machined
subsurface layers until a depth of around 150 mm with higher levels
in the outer layers (Fig. 16). The cross section optical micrograph
reveals a deformed structure resulting from machining character-
ized by slip lines localized in the stretched grains (Fig. 17).

As shown in Fig. 18, a rise of subsurface plastic strain was
obtained for higher cutting speeds. In fact, an increase of plastic
strain of about 24% was obtained, for a depth of cut of 0.25 mm,
when cutting speed increases from 60 to 140 m/min. This
increase is accompanied by a drop of affected layer thickness of
about 55 mm. It can be seen from Fig. 18, that the effect of cutting
speed on plastic strain in the machined surface is more important



Fig. 16. Effect of cutting conditions on the residual strain distribution.

Fig. 17. Deformed structure of machined surface layers.

Fig. 18. Effect of cutting conditions on maximal plastic strain and hardened layer thickness.
for lower levels of depth of cut. For higher cutting speed level
(140 m/min), the plastic strain seems to depend slightly on depth
of cut and it stabilizes at a value of around 68%. The affected layer
thickness decreases gradually with a further increase of cutting
speed and tends to stabilize at a value of around 120 mm.

4.2.2. Effect of depth of cut

The cold work induced to machined surface layers is less
sensitive to the depth of cut. Nevertheless, the cold work has a
tendency to increase for higher level of depths of cut (Fig. 18).
This result can be explained by material softening caused by high
thermal load when depth of cut increases.
5. Conclusions

In this study a numerical approach was developed using an
ALE approach to predict machining induced residual stresses and
plastic strain in orthogonal cutting. A set of experimental results
was used to calibrate the frictional shear stress limit and the
simulated plastic strain gradient has been validated by a
microhardness–strain relationship established experimentally in
this study. This relationship is based on the use of a specifically
designed tensile sample that offers different levels of cold work
hardening values along the calibrated area after tensile test.

The simulated machining residual stresses are experimentally
validated by X-ray diffraction under different cutting conditions
and supported by an assessment of plastic strain which is the
basis of their generation.

The proposed method is suitable to investigate the effects of
process parameters on cold work hardening in the machined
affected layer.

The good agreement between experimental and numerical
results proves the efficiency of the proposed procedure to inves-
tigate the influence of cutting parameters on the gradient of
properties of machined surface. The model has been applied to
predict the residual stress and plastic strain induced by machin-
ing the AISI 316L with different levels of cutting speed and depth
of cut. Numerical results show that a reduction of tensile stress
level in machined subsurface was obtained when a high cutting



speed and a low depth of cut are used. This result was confirmed
by experimental investigations. The proposed methodology can
be extended for other materials and cutting processes.
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