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Abstract. The boundedness problem is a well-known exponential-space complete problem for
vector addition systems with states (or Petri nets); it asks if the reachability set (for a given initial
configuration) is finite. Here we consider a dual problem, the co-finiteness problem that asks if
the complement of the reachability set is finite; by restricting the question we get the co-emptiness
(or universality) problem that asks if all configurations are reachable.

We show that both the co-finiteness problem and the co-emptiness problem are exponential-space
complete. While the lower bounds are obtained by a straightforward reduction from coverability,
getting the upper bounds is more involved; in particular we use the bounds derived for reversible
reachability by Leroux (2013).

The studied problems were motivated by a result for structural liveness of Petri nets; this problem
was shown decidable by Jančar (2017), without clarifying its complexity. The structural liveness
problem is tightly related to a generalization of the co-emptiness problem, where the sets of
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initial configurations are (possibly infinite) downward closed sets instead of just singletons. We
formulate the problems even more generally, for semilinear sets of initial configurations; in this
case we show that the co-emptiness problem is decidable (without giving an upper complexity
bound), and we formulate a conjecture under which the co-finiteness problem is also decidable.

Keywords: vector addition system, Petri net, co-finite reachability set, universal reachability
set, structural liveness, complexity.

1. Introduction

Context. Analysis of behavioural properties of (models of) systems is a wide research area, in which
the decidability and complexity questions constitute an important part. As the most relevant for us, we
recall the reachability, coverability and liveness problems for Petri nets.

A concrete source of our motivation was the paper [1] that answered the decidability question for
structural liveness in Petri nets positively; the open status of this question was previously recalled,
e.g., in [2]. It is natural to continue with studying the computational complexity of this problem. Here
we contribute indirectly to this topic by studying some related problems concerning reachability sets.

The algorithm in [1] reduces the structural liveness problem to the question if a Petri net with a
downward closed set of initial markings is “universal”, in the sense that every marking is reachable
from (some of) the initial ones. This question has been solved by using the involved result proved
in [3], namely that there is an algorithm that halts with a Presburger description of the reachability
set when this set is semilinear. Since this approach is not constructive, it does not provide any com-
plexity upper bound. This led us to consider the universality problem, which we call the co-emptiness
problem, on its own. There is also a naturally related co-finiteness problem asking if a set of initial
markings allows to reach all but finitely many markings; this problem can be thus seen as dual to the
well-known boundedness problem that asks if the reachability set is finite.

Contributions. We formulate the co-emptiness and co-finiteness problems generally for semilinear
sets of initial markings. Our results are summarized in Table 1. We show that the co-emptiness
problem is decidable using a reduction to [3] that is similar to the above-mentioned approach used
in [1] to decide the structural liveness problem. As before, no complexity upper bound can be derived
from that approach. In the case of the co-finiteness problem we are even not sure with decidability, but
we formulate a conjecture under which the problem is decidable. We then consider restrictions to the
case with finite sets of initial markings and then in particular to the case with singleton sets of initial
markings.

In the case of finite initial sets we show that the co-emptiness problem reduces in logarithmic space
to the reachability problem, which is a famous non-elementary decidable problem (we can refer to [4]
for the best known upper bound, and to [5] for the best known lower bound). The converse reduction
(reachability to co-emptiness) is left open. We also show that the co-finiteness problem is decidable
for finite initial sets (without relying on the above-mentioned conjecture).

In the case of singleton initial sets we show EXPSPACE-completeness for both co-emptiness and
co-finiteness. This is the main technical result of the paper. While the lower bound is obtained by an
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Initial Set Co-Emptiness Co-Finiteness

Semilinear Decidable Conjectured Decidable

Finite 6log Reachability Decidable

Singleton EXPSPACE-complete EXPSPACE-complete

Table 1. Contributions of the paper on the decidability and complexity of the co-emptiness and co-finiteness
problems (6log denotes logspace reducibility). The main technical results are indicated in boldface.

easy reduction from the coverability problem (a well-known EXPSPACE-complete problem, similarly
as boundedness, cf. [6]), getting the upper bound is more involved. Using the bounds obtained for
reversible reachability by Leroux in [7], we reduce the co-emptiness problem (with a single initial
marking) to a large number of coverability questions in a large Petri net. The latter is bounded in such
a way that the questions can still be answered in exponential space, using Rackoff’s technique [6].

Though our results do not improve our knowledge about the complexity of structural liveness
directly, we show that a related problem, namely the structural deadlock-freedom problem is tightly
related (interreducible in logarithmic space) with the co-emptiness problem in the case of downward
closed sets of initial markings.

We have found more convenient to present our results on the model of vector addition systems
with states, or shortly VASSs. This model is equivalent to Petri nets and all our results, while proved
for VASSs, also hold for Petri nets.

A preliminary version of this paper appeared, under the same title, in the proceedings of the 39th
International Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS
2018), LNCS 10877, pp. 184–203, Springer 2018. Decidability of the co-finiteness problem for finite
initial sets (see Theorem 3.12) was added subsequently, similarly as problem extensions comprising
semilinear containment and projections.

Outline. In Section 2 we recall some preliminary notions, such as vector addition systems with
states, and semilinear sets; we also show some straightforward extensions of the reachability problem
that will be useful in later proofs. Section 3 defines the co-emptiness problem and the co-finiteness
problem, and presents our partial decidability results for the general case (with semilinear initial sets)
and for the restriction to finite sets of initial configurations. The main result is contained in Section 4
where we show the EXPSPACE-completeness of co-emptiness and co-finiteness in the case with sin-
gleton sets of initial configurations. Section 5 presents two applications of the co-emptiness problem:
we recall the structural liveness, and show the tight relation of structural deadlock-freedom to the
co-emptiness problem with downward closed sets of initial configurations. We conclude by Section 6.

2. Preliminaries

By Z, N, and N+ we denote the sets of integers, nonnegative integers, and positive integers, respec-
tively. For i, j ∈ Z, we let [i, j] denote the set {i, i+1, . . . , j}; this set is empty when i > j.
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For a vector v ∈ Zd, where d ∈ N, by v(i) we denote the i-th component of v (for i ∈ [1, d]). On
Zd we define the operations +, − and the relations ≥, ≤ componentwise. For v1, v2 ∈ Zd, we thus
have v1 + v2 = w where w(i) = v1(i) + v2(i) for all i ∈ [1, d]; we have v1 ≤ v2 iff v1(i) ≤ v2(i) for
all i ∈ [1, d]. For k ∈ N and v ∈ Zd we put k · v = (k · v(1), k · v(2), . . . , k · v(d)); we also write kv
instead of k · v.

The norm ‖v‖ of a vector v ∈ Zd is max{|v(i)|; i ∈ [1, d]}, and the norm ‖V ‖ of a finite set
V ⊆ Zd is max{‖v‖; v ∈ V }; here we stipulate max ∅ = 0.

When the dimension d is clear from the context, by 0 we denote the zero vector (0(i) = 0 for all
i ∈ [1, d]), and by ei (i ∈ [1, d]) the vector satisfying ei(i) = 1 and ei(j) = 0 for all j ∈ [1, d] r {i}.

For a set A, by A∗ we denote the set of finite sequences of elements of A, and by ε we denote the
empty sequence. For w ∈ A∗, |w| denotes its length.

Vector addition systems with states (VASSs).

A vector addition system with states (a VASS) is a tuple V = (d,Q,A, T ) where d ∈ N is the dimen-
sion, Q is the finite set of (control) states, A ⊆ Zd is the finite set of actions, and T ⊆ Q×A×Q is
the finite set of transitions. We often present t ∈ T where t = (q,a, q′) as q a−→ q′ or t : q

a−→ q′. We
also say that V = (d,Q,A, T ) has d counters, denoted 1, 2, . . . , d.

The set of configurations of V = (d,Q,A, T ) is the setQ×Nd; we prefer to denote a configuration
(q, v) by q(v), where q ∈ Q and v ∈ Nd. For every action a ∈ A, we define the relation a−→V on the
set Q× Nd of configurations by

q(v)
a−→V q′(v′) if q a−→ q′ is a transition in T and v′ = v + a.

Hence, for a transition q a−→ q′ and v ∈ Nd, we have q(v)
a−→V q′(v + a) if, and only if, v + a ≥ 0.

Relations a−→V are naturally extended to relations α−→V for α ∈ A∗; we write just α−→ instead of
α−→V when V is clear from the context. The extension is defined inductively: we put q(v)

ε−→ q(v);
if q(v)

a−→ q′(v′) and q′(v′) α−→ q′′(v′′), then q(v)
aα−→ q′′(v′′). We note that q(v)

α−→ q′(v′) where
α = a1a2 · · ·am implies that v′ = v +

∑
i∈[1,m] ai. We also note the monotonicity:

if q(v)
α−→ q′(v′), then for every v̄ ≥ v we have q(v̄)

α−→ q′(v′ + v̄ − v).

Example 2.1. Consider the VASS depicted on the left of Figure 1. This VASS has dimension 2. It

has two states A and B, five actions and five transitions. (If we replaced the transition B
(2,0)−−−→ B

with B
(1,0)−−−→ B, then we would have four actions and five transitions.) We can observe, e.g., that

A(1, 0)
(−1,0)−−−−→ B(0, 0), B(0, 0)

(2,0)−−−→ B(2, 0), B(2, 0)
(1,0)−−−→ A(3, 0), and A(3, 0)

(−2,1)−−−−→ A(1, 1).
Hence A(1, 0)

α−→ A(1, 1) for α = (−1, 0)(2, 0)(1, 0)(−2, 1).

Reachability sets.

Given a VASS V = (d,Q,A, T ), by q(v)
∗−→V q′(v′), or by q(v)

∗−→ q′(v′) when V is clear from the
context, we denote that q′(v′) is reachable from q(v), i.e., that q(v)

α−→ q′(v′) for some α ∈ A∗. The
reachability set for an (initial) configuration q(v) is the set
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A B

(−1, 0)

(1, 0)

(−2, 1)

(0,−2)

(2, 0)

A B

(1, 0)

(−1, 0)

(2,−1)

(0, 2)

(−2, 0)

Figure 1. An example VASS of dimension 2 (left) and its reversed VASS (right).

[
q(v)

〉
V = {q′(v′) | q(v)

∗−→V q′(v′)}.

For a set C ⊆ Q× Nd of (initial) configurations we put[
C
〉
V =

⋃
q(v)∈C

[
q(v)

〉
V .

We also write just
[
q(v)

〉
and

[
C
〉

when V is clear from the context.
We write q(v)

∗−→ C if there is q′(v′) ∈ C such that q(v)
∗−→ q′(v′); similarly C ∗−→ q(v) if there is

q′(v′) ∈ C such that q′(v′) ∗−→ q(v).

Semilinear sets of configurations.

A set C ⊆ Q× Nd is linear if

C = {q(b+n1p1+ · · ·+nkpk) | n1, . . . , nk ∈ N}

for some q ∈ Q, k ∈ N, and b, p1, . . . , pk ∈ Nd. A set C ⊆ Q × Nd is semilinear if C = L1 ∪ L2 ∪
· · · ∪ Lm for some m ∈ N and linear sets Lj , j ∈ [1,m]. We recall that semilinear sets correspond to
the sets definable in Presburger arithmetic [8].

It was shown in [9] that for every 2-dimensional VASS the reachability set of a configuration is
effectively semilinear. The following example illustrates this property. But this property breaks for
larger dimensions, as there exists a 3-dimensional VASS with a non-semilinear reachability set [9].

Example 2.2. Continued from Example 2.1. It can be routinely checked that the reachability sets of
A(0, 0), A(1, 0) and A(2, 0) are the following semilinear sets:[

A(0, 0)
〉

= {A(0, 0)},[
A(1, 0)

〉
= {A(1+2n1, n2) | n1, n2 ∈ N} ∪ {B(2n1, n2) | n1, n2 ∈ N},[

A(2, 0)
〉

= {A(2n1, n2) | n1, n2 ∈ N ∧ n1 + n2 > 0} ∪ {B(1+2n1, n2) | n1, n2 ∈ N}.

Vector addition systems (VASs).

A vector addition system (VAS) is a VASS (d,Q,A, T ) where Q is a singleton. In this case the single
control state plays no role, in fact; it is thus natural to view a VAS as a pair U = (d,A) for a finite set
A ⊆ Zd. The configurations are here simply v ∈ Nd, and for a ∈ A we have
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v
a−→ v′ if, and only if, v′ = v + a

for every v, v′ ∈ Nd. We write
[
v
〉
U , or just

[
v
〉
, for the reachability set of v. For a VAS the terms

“action” and “transition” are identified.

Binary and unary presentations.

Instances of the problems that we will consider comprise VASSs and (presentations of semilinear sets
of) configurations. We implicitly assume that the numbers in the respective vectors are presented in
binary. When giving a complexity lower bound, we will explicitly refer to a unary presentation to
stress the substance of the lower bound.

Multi-reachability, and semilinear reachability.

We will later make use of the following two extensions of the standard reachability problem, called
the multi-reachability problem and the semilinear-reachability problem.

Multi-reachability
Instance: a positive integer k, and

a VASS Vj and two configurations qj(vj), q′j(v
′
j), for each j ∈ [1, k].

Question: is qj(vj)
∗−→Vj q′j(v′j) for each j ∈ [1, k] ?

When k is restricted to 1, the problem is the standard reachability problem; as already mentioned,
this problem is decidable [10], and there are recent results concerning its complexity: the long known
EXPSPACE-hardness [11] has been shifted to the “least” non-elementary lower bound [5], while the
best known upper bound is now given by the “least” nonprimitive recursive function [4]. The multi-
reachability problem has the same complexity, as follows by the next lemma.

Lemma 2.3. The multi-reachability problem is logspace reducible to the reachability problem.

Proof:
We assume a VASS Vj = (dj , Qj ,Aj , Tj) and two configurations qj(vj), q′j(v

′
j), for each j ∈ [1, k].

By renaming control states we can assume that Q1, . . . , Qk are pairwise disjoint, and by adding extra
counters we can even assume that d1, . . . , dk are equal to the same dimension d and that the VASSs
Vj are working on disjoint subsets of counters, i.e., for each j ∈ [1, k] the non-zero components of the
vectors in {vj , v′j} ∪ Aj form a set Ij , and I1, . . . , Ik are pairwise disjoint.

Now we consider the VASS V of dimension d comprising the VASSs V1, . . . ,Vk and the additional
transitions q′j−1

0−→ qj , for j ∈ [2, k]. We observe that

qj(vj)
∗−→Vj q′j(v′j) for all j ∈ [1, k] if, and only if, q1(v1 + · · ·+ vk)

∗−→V q′k(v′1 + · · ·+ v′k).

The claimed logspace reduction is thus clear. ut
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Semilinear reachability
Instance: a VASS V and two (presentations of) semilinear sets of configurations C,D.
Question: is q1(x)

∗−→V q2(y) for some configurations q1(x) ∈ C and q2(y) ∈ D ?

Lemma 2.4. The semilinear-reachability problem is logspace reducible to the reachability problem.

Proof:
We assume a VASS V = (d,Q,A, T ), and first show a reduction in the case when C and D are linear
sets, of the form

C = {q1(b+n1p1+ · · ·+nkpk) | n1, . . . , nk ∈ N},
D = {q2(b′+n1p′1+ · · ·+nk′p′k′) | n1, . . . , nk′ ∈ N},

where k, k′ ∈ N and b, b′, p1, . . . , pk, p′1, . . . , p
′
k′ ∈ Nd.

From V we create the VASS V ′ by adding two fresh states q′1 and q′2, loop-transitions q′1
pi−→ q′1 for

all i ∈ [1, k] and q′2
−p′i−−→ q′2 for all i ∈ [1, k′], and transitions q′1

b−→ q1, q2
−b′−−→ q′2. It is obvious that

there are q1(x) ∈ C and q2(y) ∈ D such that q1(x)
∗−→V q2(y) if, and only if, q′1(0)

∗−→V ′ q′2(0).
It is straightforward to extend this logspace reduction to the case where both C and D are given

as finite unions of linear sets. ut

3. Co-Finiteness and Co-Emptiness of Reachability Sets

Now we introduce the two main problems considered in this paper, together with their restrictions.
The co-finiteness problem is defined as follows:

Co-finiteness
Instance: a VASS V = (d,Q,A, T ) and

a (presentation of a) semilinear set C ⊆ Q× Nd.
Question: is

[
C
〉

co-finite, i.e., is the set (Q× Nd) r
[
C
〉

finite ?

By narrowing the co-finiteness question we get the co-emptiness problem:

Co-emptiness
Instance: a VASS V = (d,Q,A, T ) and

a (presentation of a) semilinear set C ⊆ Q× Nd.
Question: is

[
C
〉

co-empty, i.e., is
[
C
〉

= Q× Nd ?

We note that co-emptiness could also naturally be called universality.
We have left the semilinearity of initial sets implicit in the names of the above problems. When

we restrict the problems to the instances with finite initial sets, we use the names FMIC co-finiteness
problem and FMIC co-emptiness problem (where FMIC refers to “Finitely Many Initial Configura-
tions”). Similarly, SIC co-finiteness problem and SIC co-emptiness problem refer to the restrictions
with singleton initial sets (SIC refers to “Single Initial Configuration”).
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Example 3.1. Continued from Example 2.2. None of the three reachability sets
[
A(0, 0)

〉
,
[
A(1, 0)

〉
and

[
A(2, 0)

〉
is co-finite. The reachability set

[
{A(1, 0), A(2, 0)}

〉
is co-finite but not co-empty, as it

is equal to the set ({A,B} × N2) r {A(0, 0)}. The reachability set
[
{A(0, 0), A(1, 0), A(2, 0)}

〉
is

co-empty (since it is equal to {A,B} × N2).

3.1. Decidability of the General Problems

In this section we investigate the decidability of the co-emptiness and co-finiteness problems. By
combining the acceleration techniques of [3], and the decidability of Presburger arithmetic [12], it is
straightforward to derive decidability of the co-emptiness problem. In fact, we show decidability of a
more general problem, the semilinear containment problem defined as follows:

Semilinear containment
Instance: a VASS V = (d,Q,A, T ) and

two (presentations of) semilinear sets C,D ⊆ Q× Nd.
Question: does

[
C
〉

contain D, i.e., is D ⊆
[
C
〉

?

We first recall a crucial fact.

Theorem 3.2. (reformulation of Lemma XI.1 of [3])
Given a VASS V = (d,Q,A, T ) and a semilinear set C of configurations, for every semilinear set
D ⊆

[
C
〉
V there is a sequence α1, . . . , αk of words in A∗ such that for every q(v) ∈ D we have

C
α
n1
1 ...α

nk
k−−−−−−→V q(v)

for some n1, . . . , nk ∈ N.

We thus deduce that the semilinear containment problem can be decided by the following two
procedures that are executed concurrently:

• One procedure systematically searches for some configuration q(v) ∈ D such that q(v) 6∈
[
C
〉

which is verified by using an algorithm deciding (semilinear) reachability; this search succeeds
if, and only if, D 6⊆

[
C
〉
.

• The other procedure systematically searches for some words α1, . . . , αk such that for every

configuration q(v) ∈ D there are n1, . . . , nk in N such that C
α
n1
1 ...α

nk
k−−−−−−→ q(v). This property

(of α1, . . . , αk) can be expressed in Presburger arithmetic and is thus decidable. The search
succeeds if, and only if, D ⊆

[
C
〉
.

We can refer, e.g., to [13] for details of the above mentioned expressibility; here we just sketch
a crucial fact. Given q and α = a1a2 . . .am where q(x)

α−→ q(x+a) for some x and a =∑
i∈[1,m] ai, we can construct the least x0 such that q(x0)

α−→ q(x0+a) and the least y0 such that

q(y0−a)
α−→ q(y0), and then the set of triples (x, n, y) in Nd×N+×Nd such that q(x)

αn

−−→ q(y)
is captured by the Presburger formula n ≥ 1 ∧ x ≥ x0 ∧ y ≥ y0 ∧ y = x+ na.
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However, the complexity of the semilinear containment problem is still open. Moreover, even for
the restricted case of the co-emptiness problem, we do not know any better algorithm than the one
presented above. In fact, we even have no reduction from or to the reachability problem.

The decidability status of the co-finiteness problem is not clear. We show how to solve the problem
under a conjecture. Let us first introduce the notion of inductive set. A set of configurations D of a
VASS V = (d,Q,A, T ) is inductive if for every configuration q(v) inD and every transition t : q

a−→ q′

in T such that v+ a ≥ 0, we have q′(v+ a) ∈ D. We observe that if an inductive set D contains a set
of initial configurations C then

[
C
〉
⊆ D. Moreover, we can effectively decide if a semilinear set D

is inductive since in this case (given a presentation of a semilinear set D) the above condition can be
easily expressed in Presburger arithmetic (which is decidable).

We note that
[
C
〉

is inductive but it might be non-semilinear even if C is semilinear. Nevertheless,
we conjecture that

[
C
〉

can be extended to an inductive semilinear set as follows:

Conjecture 3.3. Given a VASS V and a semilinear set C of configurations, if
[
C
〉
V is co-infinite (i.e.,

not co-finite), then there is an inductive semilinear set D such that C ⊆ D (hence also
[
C
〉
V ⊆ D)

and D is co-infinite.

Under this conjecture, the co-finiteness problem can be also decided by two algorithmic proce-
dures executed concurrently:

• One procedure systematically searches for some inductive co-infinite semilinear set D that con-
tains C; this search succeeds if, and only if,

[
C
〉

is co-infinite (under the conjecture).

• The other procedure systematically searches for some words α1, . . . , αk and a natural number
n, such that for every configuration q(v) with ‖v‖ ≥ n there are n1, . . . , nk in N satisfying

C
α
n1
1 ...α

nk
k−−−−−−→ q(v). This property (of α1, . . . , αk and n) can be formulated in Presburger arith-

metic, and is thus decidable. The search succeeds if, and only if,
[
C
〉

is co-finite, thanks to
Theorem 3.2. Indeed, when the reachability set

[
C
〉

is co-finite then it is semilinear, and we can
apply Theorem 3.2 with D =

[
C
〉
.

Hence we have derived:

Theorem 3.4. The semilinear containment problem and the co-emptiness problem are decidable. The
co-finiteness problem is decidable provided that Conjecture 3.3 holds.

Remark 3.5. We have extended the co-emptiness problem to the decidable semilinear containment
problem in order to decide variants that will be introduced in the next subsection. The co-finiteness
problem could be naturally extended in the same way by asking whether D\

[
C
〉

is finite for two
given (presentations of) two semilinear sets C,D. This extension of the co-finiteness problem is also
decidable provided that a natural extension of Conjecture 3.3 holds.

3.2. Projected Extensions

We introduce two variants of the co-finiteness and co-emptiness problems that are both reducible to
the semilinear containment problem. These variants are defined as follows:
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Projected co-finiteness
Instance: a VASS V = (d,Q,A, T ),

a (presentation of a) semilinear set C ⊆ Q× Nd,
a state q ∈ Q and a counter i ∈ [1, d].

Question: is N\{v(i) | q(v) ∈
[
C
〉
} finite ?

Projected co-emptiness
Instance: a VASS V = (d,Q,A, T ),

a (presentation of a) semilinear set C ⊆ Q× Nd,
a state q ∈ Q and a counter i ∈ [1, d].

Question: is {v(i) | q(v) ∈
[
C
〉
} = N ?

Theorem 3.6. The projected co-emptiness and projected co-finiteness problems are decidable.

Proof:
Let us consider a VASS V = (d,Q,A, T ), a state q ∈ Q, a counter i ∈ [1, d], and a semilinear set
C ⊆ Q × Nd. From [14] we know that N = {v(i) | q(v) ∈

[
C
〉
V} is semilinear. Since the proof of

semilinearity of N given in that paper is not constructive, we cannot directly conclude the decidability
of the two projected problems. To overcome this difficulty, we introduce the VASS V ′ obtained from

V by adding the transitions q
−ej−−→ q for every j 6= i. It is easy to verify that

N = {v(i) | q(v) ∈
[
C
〉
V} = {n ∈ N | q(nei) ∈

[
C
〉
V ′}.

Indeed: We have
[
C
〉
V ⊆

[
C
〉
V ′ , and q(v)

∗−→V ′ q(v(i) · ei) due to the transitions q
−ej−−→ q. On the

other hand, if C ∗−→V ′ q(nei) due to a sequence of transitions (performed from some q0(v0) ∈ C),

then we can simply omit the transitions q
−ej−−→ q (j 6= i) in this sequence; by the monotonicity of

VASSs this yields that C ∗−→V q(v) for some v with v(i) = n.
Hence {v(i) | q(v) ∈

[
C
〉
V} = N iff {q(nei) | n ∈ N} ⊆

[
C
〉
V ′ ; the projected co-emptiness

problem thus reduces to the semilinear containment problem (which is decidable by Theorem 3.4).
The projected co-finiteness can be decided by two algorithmic procedures executed concurrently:

• One procedure systematically searches for some n0 ∈ N such that {q(nei) | n ≥ n0} ⊆
[
C
〉
V ′

(which is an instance of the semilinear containment problem); this search succeeds if (and only
if) N\N is finite.

• The other procedure systematically searches for some b ∈ N and p ∈ N+ such that
[
C
〉
V ′ is

disjoint from {q(nei) | n = b + mp for some m}, which is an instance of the semilinear-
reachability problem; this search succeeds if (and only if) N\N is infinite since in that case
N\N is an infinite semilinear set, and in particular it contains an infinite linear set of the form
{b+mp | m ∈ N} for some b ∈ N and p ∈ N+.

ut
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3.3. Finitely Many Initial Configurations

As already mentioned, we have no complexity upper bound for the (decidable) co-emptiness problem
in our general form (with semilinear initial sets). In this section, we focus on the FMIC co-emptiness
problem, and the FMIC co-finiteness problem, where “FMIC” refers to “Finitely Many Initial Config-
urations”. We show that both problems are decidable via reductions to the reachability problem.

Remark 3.7. In Section 4 we show that the problems are “only” EXPSPACE-complete when re-
stricted to the SIC problems, i.e., to the singleton sets of initial configurations. Nevertheless, it is not
clear how to reduce an FMIC problem to the respective SIC problem.

We fix a VASS V = (d,Q,A, T ), and start with some useful observations on co-emptiness and
co-finiteness.

Given n ∈ N+, a set U ⊆ Q× Nd is n-upward-closed if q(v) ∈ U entails that q(v+nw) ∈ U for
every w ∈ Nd. (Hence if in q(v) ∈ U we change the counter values by adding nonnegative multiples
of n, then the resulting configuration is in U as well.) We say that U is ?-upward-closed if U is n-
upward-closed for some n ∈ N+. The following lemma gives necessary and sufficient conditions for
co-emptiness and co-finiteness of the reachability set; these conditions hold for arbitrary sets of initial
configurations.

Lemma 3.8. For each set C ⊆ Q× Nd and each n ∈ N+ the following assertions hold:

1.
[
C
〉

is co-empty if, and only if,
[
C
〉

is 1-upward-closed and q(0) ∈
[
C
〉

for every q ∈ Q.

2. If
[
C
〉

is co-finite, then
[
C
〉

is ?-upward-closed.

3. If
[
C
〉

is n-upward-closed, then
[
C
〉

is co-finite if, and only if, for every q ∈ Q, u ∈ [0, n−1]d,
and i ∈ [1, d] there exists x ∈ N such that q(u+xnei) ∈

[
C
〉
.

Proof:
The first assertion is obvious, when we recall that the co-emptiness of

[
C
〉

means that
[
C
〉

= Q×Nd.
To prove the second assertion, we assume that

[
C
〉

is co-finite. Let m = 1 + ‖(Q× Nd) \
[
C
〉
‖.

By definition of the norm, we have v ∈
[
C
〉

for every v ∈ Nd such that ‖v‖ ≥ m. It follows that
[
C
〉

is m-upward-closed.
To prove the third assertion, we assume that

[
C
〉

is n-upward-closed. If
[
C
〉

is co-finite then for
every q ∈ Q, u ∈ [0, n−1]d and i ∈ [1, d], the set

[
C
〉

intersects {q(u+xnei) | x ∈ N} as otherwise[
C
〉

would be co-infinite. Conversely, suppose that for every q ∈ Q, u ∈ [0, n−1]d and i ∈ [1, d],
there exists xq,u,i ∈ N such that q(u+xq,u,inei) ∈

[
C
〉
. Let x denote the maximum of the numbers

xq,u,i. We show that q(v) ∈
[
C
〉

for every configuration q(v) such that ‖v‖ ≥ xn. Let us fix an
arbitrary q(v) and i ∈ [1, d] such that v(i) ≥ xn. We write v = u + nw where u(j) = v(j) mod n
and w(j) = v(j) ÷ n, for each j ∈ [1, d]; hence u ∈ [0, n−1]d, and w(i) ≥ x ≥ xq,u,i. So the
vector w′ = w − xq,u,iei is in Nd. We get q(v) = q(u+xq,u,inei+nw

′), hence q(v) ∈
[
C
〉

since
q(u+xq,u,inei) ∈

[
C
〉

and
[
C
〉

is n-upward-closed. ut
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Now we give characterizations of {n, ?}-upward-closedness of
[
C
〉

that will be used in the sequel.
These characterizations reduce {n, ?}-upward-closedness of

[
C
〉

to reachability conditions over a
“neighbourhood” of C.

Lemma 3.9. For every set C ⊆ Q× Nd and each n ∈ N+, the following assertions hold:

1.
[
C
〉

is n-upward-closed if, and only if, q(v+nei) ∈
[
C
〉

for every q(v) ∈ C and i ∈ [1, d].

2.
[
C
〉

is ?-upward closed if, and only if, for every i ∈ [1, d] there exists x ∈ N+ such that
q(v+xei) ∈

[
C
〉

for every q(v) ∈ C.

Proof:
We prove the “if” direction of the first assertion; the “only if” direction is trivial. Hence we assume
that q(v+nei) ∈

[
C
〉

for every q(v) ∈ C and i ∈ [1, d]. We show that

q(v) ∈
[
C
〉

implies q(v+nei) ∈
[
C
〉

(1)

for all q ∈ Q, v ∈ Nd, and i ∈ [1, d]. Indeed, if q0(v0)
∗−→ q(v) for some q0(v0) ∈ C, then

q0(v0+nei) ∈
[
C
〉

by assumption, and q0(v0+nei)
∗−→ q(v+nei) by monotonicity. Hence (1) holds,

and this entails that
[
C
〉

is n-upward-closed.
Now we prove the “if” direction of the second assertion; the “only if” direction is trivial. Hence

we assume that for every i ∈ [1, d], there is xi ∈ N+ such that
[
C
〉

contains q(v+xiei) for every
q(v) ∈ C. Let n be a positive common multiple of x1, . . . , xd. With the same arguments as in the
proof of the first assertion, we show that

q(v) ∈
[
C
〉

implies q(v+xiei) ∈
[
C
〉

(2)

for all q ∈ Q, v ∈ Nd, and i ∈ [1, d]. It follows that q(v) ∈
[
C
〉

entails q(v+nei) ∈
[
C
〉
; hence

[
C
〉

is n-upward-closed (and thus ?-upward closed). ut

For the rest of this section, we restrict our attention to the case where the set C of initial configu-
rations is finite. Recall that, by Lemma 3.8,

[
C
〉

is co-empty if, and only if,
[
C
〉

is 1-upward-closed
and q(0) ∈

[
C
〉

for every q ∈ Q. It follows from Lemma 3.9 that co-emptiness of
[
C
〉

reduces to
finitely many reachability queries, and we thus obtain the following theorem.

Theorem 3.10. The FMIC co-emptiness problem is logspace reducible to the reachability problem.

Proof:
By Lemmas 3.8 and 3.9, given a VASS V = (d,Q,A, T ) and a finite set C ⊆ Q × Nd, deciding if[
C
〉

= Q× Nd boils down to verifying if each configuration in the finite set

D = {q(v+ei) | q(v) ∈ C, i ∈ [1, d]} ∪ {q(0) | q ∈ Q}

is reachable from (a configuration in) C. For C = {q1(v1), . . . , qk(vk)} we can verify this condition
as follows: we create V ′ from V by adding a fresh state q0 and transitions q0

vi−→ qi for all i ∈ [1, k],
and verify that q0(0)

∗−→V ′ q(v) for each q(v) ∈ D. This demonstrates that the FMIC co-emptiness
problem is logspace reducible to the multi-reachability problem. As the latter is logspace reducible to
the reachability problem by Lemma 2.3, we obtain the claimed logspace reduction. ut



P. Jančar, J. Leroux, G. Sutre / Co-Finiteness and Co-Emptiness of Reachability Sets in VASS 13

Now we aim to show the decidability of the FMIC co-finiteness problem, recalling the characteri-
zation from Lemma 3.8. We start with the following lemma.

Lemma 3.11. The question whether
[
C
〉

is ?-upward-closed, given a VASS V = (d,Q,A, T ) and a
finite set C ⊆ Q× Nd, is logspace reducible to the reachability problem.

Proof:
We assume a given VASS V = (d,Q,A, T ), and a nonempty setC = {q1(v1), . . . , qk(vk)} ⊆ Q×Nd.
We say that a vectorw ∈ Nd is an invariant of (V, C) if there is n ∈ N+ such that for every qj(vj) ∈ C
we have qj(vj+nw) ∈

[
C
〉
. We will show that, given V , C, and w, the question if w is an invariant

of (V, C) is logspace reducible to the reachability problem. This will be sufficient, since Lemma 3.9
shows that

[
C
〉

is ?-upward-closed if, and only if, ei is an invariant of (V, C) for every i ∈ [1, d];
the problem to decide if

[
C
〉

is ?-upward-closed is thus logspace reducible to the multi-reachability
problem, and thus also to the reachability problem by Lemma 2.3.

Hence now we assume V and C as above, and a given vector w ∈ Nd. We aim to check if there is
n ∈ N+ such that for each j ∈ [1, k] we have that qj(vj+nw) is reachable from (some configuration
q`(v`) in) C. We first introduce a VASS V ′ of dimension dk that comprises k disjoint copies of V
(each copy works on its own counters); let q|j denote the jth copy of the state q (for j ∈ [1, k]), and let
v|j , for v ∈ Zd and j ∈ [1, k], denote the vector in Zdk where v|j(d(j−1) + i) = v(i) for all i ∈ [1, d]
and v|j(m) = 0 for all m ∈ [1, dk] r [d(j−1)+1, dj].

Now we create V0 from V ′ by adding a fresh state denoted as q0|0, and the following transitions:

• qj−1|j−1
v`|j−−→ q`|j for all j, ` ∈ [1, k] (enabling a move into C in the next copy of V);

• qk|k
(−w,...,−w)−−−−−−−→ qk|k (this final loop enables to remove multiples of w in all k copies of V

synchronously).

We finish the proof by showing that q0|0(0)
∗−→V0 qk|k(v1+w, . . . , vk+w) if, and only if, w is an

invariant of (V, C) (which yields the announced logspace reduction to the reachability problem).
First we assume that w is an invariant of (V, C), i.e., there is n ∈ N+ such that qj(vj+nw) ∈[

C
〉
V for all j ∈ [1, k]. Hence, for each j ∈ [1, k] there are `j ∈ [1, k] and αj ∈ A∗ such that

q`j (v`j )
αj−→V qj(vj+nw). By βj we denote the word of actions obtained from αj by working in the

jth copy of V; we thus have q`j |j(v`j |j)
βj−→V0 qj |j(vj |j+nwj |j). This entails

q0|0(0)
(v`1 |1)β1...(v`k |k)βk(−w,...,−w)

n−1

−−−−−−−−−−−−−−−−−−−−−−→V0 qk|k(v1+w, . . . , vk+w).

Conversely, we assume q0|0(0)
α−→V0 qk|k(v1+w, . . . , vk+w) for a sequence α of actions of V0. If

α contains the action (−w, . . . ,−w) corresponding to the loop on qk|k, we can push the corresponding
transition to the end (by monotonicity, since this loop is non-positive on all components). Hence α
can be supposed to be in the form (v`1 |1)β1 . . . (v`k |k)βk(−w, . . . ,−w)n−1 where n ≥ 1, and where
βj is a word of actions in the jth copy of V . It follows that q`j (v`j )

αj−→V qj(vj +nw) where αj is the
word of actions of V corresponding to βj ; hence w is an invariant of (V, C). ut
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We now present a decision procedure for the FMIC co-finiteness problem. Assume that we are
given a VASS V = (d,Q,A, T ) and a finite set C ⊆ Q × Nd of initial configurations. First, we
determine, using Lemma 3.11, whether

[
C
〉

is ?-upward-closed. If
[
C
〉

is not ?-upward-closed, then[
C
〉

is not co-finite by Lemma 3.8. Otherwise, we compute a positive integer n such that
[
C
〉

is
n-upward-closed. Such an n necessarily exists as

[
C
〉

is ?-upward-closed, and we can find one as n-
upward-closedness of

[
C
〉

is decidable by Lemma 3.9. Since
[
C
〉

is n-upward-closed, we derive from
Lemma 3.8 that co-finiteness of

[
C
〉

reduces to finitely many reachability queries. We have shown
the following theorem. As the enumeration of the positive integer n is not bounded, this decision
procedure does not provide any complexity upper bound for the FMIC co-finiteness problem.

Theorem 3.12. The FMIC co-finiteness problem is decidable.

Remark 3.13. IfC is semilinear and
[
C
〉

is known to be n-upward-closed for a given n > 0, then
[
C
〉

is computable using standard techniques [15, 16] as the limit of a growing sequence U0 ⊆ U1 ⊆ · · ·
of n-upward-closed subsets of Q× Nd, defined as follows:

U0 = {q(v′) | q(v) ∈ C ∧ q(v) ≤n q(v′)}

Uk+1 = Uk ∪ {q′(v′) | ∃q(v) ∈ Uk, ∃a ∈ A, q(v)
a−→ q′(v′)}

where ≤n denotes the well-partial-order on Q × Nd defined by q1(v1) ≤n q2(v2) if q1 = q2 and
v2 = v1+nw for somew ∈ Nd. Each set Uk in the sequence can be finitely represented by its minimal
elements (w.r.t. ≤n), and using this representation, Uk+1 is computable from Uk. The sequence is
ultimately stationary because ≤n is a well-partial-order, and Uk =

[
C
〉

as soon as Uk = Uk+1.

We leave open the question if the FMIC co-finiteness problem is logspace reducible to the reach-
ability problem. Another open question is if reachability can be reduced to FMIC co-finiteness or
FMIC co-emptiness. In the next section, we characterize the complexity of both problems for the case
of single initial configurations.

4. Single Initial Configurations

In this section we restrict our attention to the SIC co-emptiness problem and the SIC co-finiteness
problem where SIC refers to “Single Initial Configuration”; the problem instances are thus restricted
so that the given sets C are singletons (C = {q0(v0)}). In the rest of this section we prove the
following theorem.

Theorem 4.1. Both the SIC co-finiteness problem and the SIC co-emptiness problem are EXPSPACE-
complete.

We recall that the integers in the problem instances are presented in binary. Nevertheless the lower
bound will be shown already for unary VASs (hence with no control states and with a unary presenta-
tion of integers).

We first recall two well-known EXPSPACE-complete problems for VASSs where the lower bound
also holds for unary VASs, namely the coverability problem and the boundedness problem.
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Coverability
Instance: a VASS V = (d,Q,A, T ), q0, q1 ∈ Q, v0, v1 ∈ Nd.
Question: is q0(v0)

∗−→ q1(v̄1) for some v̄1 ≥ v1 ?

Boundedness
Instance: a VASS V = (d,Q,A, T ), q0 ∈ Q, v0 ∈ Nd.
Question: is

[
q0(v0)

〉
finite ?

The EXPSPACE-hardness results follow from [11] (see also, e.g. [17]), the upper bounds follow
from [6]. A generalization of [6], extending a class of problems known to be in EXPSPACE, was
given in [18], which was later corrected in [19].

4.1. EXPSPACE-hardness

Showing the hardness part of Theorem 4.1 is relatively straightforward; we reduce coverability in
unary VASs (which we recalled as an EXPSPACE-complete problem) to both SIC co-finiteness and
SIC co-emptiness by the following lemma.

Lemma 4.2. Given a unary VAS U = (d,A) and v0, v1 ∈ Nd, there is a logspace construction
yielding a unary VAS U ′ = (d+1,A′) and v′0 ∈ Nd+1 such that:

a) if v0
∗−→U v̄1 for some v̄1 ≥ v1, then

[
v′0
〉
U ′ = Nd+1;

b) otherwise (when v0
∗−→U w implies w 6≥ v1) the set Nd+1 r

[
v′0
〉
U ′ is infinite.

Proof:
Let us assume a unary VAS U = (d,A) and vectors v0, v1 ∈ Nd. We consider U ′ = (d+1,A′) and
v′0 = (v0, 0) where

A′ = {(a, 0) | a ∈ A} ∪ {b1,b2} ∪ {cj | j ∈ [1, d]} ∪ {−ej | j ∈ [1, d]}

for b1 = (−v1, 2), b2 = (v0,−1), cj = ej−ed+1.

It suffices to verify that the points a) and b) are satisfied (for U ′ and v′0):

a) Suppose v0
α−→U v̄1 for some v̄1 ≥ v1 and α = a1a2 · · ·am.

For α′ = (a1, 0)(a2, 0) · · · (am, 0), in U ′ we then have

(v0, 0)
α′−→ (v̄1, 0)

b1−→ (v̄1−v1, 2)
b2−→ (v0+v̄1−v1, 1).

By monotonicity, for any k ∈ N we have

v′0 = (v0, 0)
(α′b1b2)k−−−−−−→ wk = (v0+k(v̄1−v1), k);

hence wk(d+1) = k. For any w ∈ Nd+1 and the sum k =
∑

j∈[1,d+1]w(j) we have wk
∗−→ w;

indeed, in wk we can first empty (i.e., set to zero) all components j ∈ [1, d] by using actions −ej
(j ∈ [1, d]), and then distribute the k tokens from component d+1 by the actions cj so that w is
reached. Hence

[
v′0
〉
U ′ = Nd+1.
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b) Suppose there is no v̄1 ≥ v1 such that v0
∗−→U v̄1. Then for any w ∈

[
v′0
〉
U ′ we have w 6≥ (v1, 0)

and w(d+1) = 0, since the actions b1, b2, cj are dead (they cannot get enabled from v′0); indeed,
by monotonicity the actions−ej cannot help to cover (v1, 0) from v′0. Hence the set Nd+1r

[
v′0
〉
U ′

is infinite.

This concludes the proof of the lemma. ut

4.2. EXPSPACE-membership.

We now prove the EXPSPACE-membership claimed by Theorem 4.1. This is more involved; besides
a closer look at the results in [6], we will also use the following result from [7], from which we derive
Lemma 4.4.

Theorem 4.3. ([7])
Given a VASS V = (d,Q,A, T ) and two configurations q0(v0) and q1(v1) reachable one from the
other (i.e., q0(v0)

∗−→ q1(v1)
∗−→ q0(v0)), there is a word α ∈ A∗ such that

a) q0(v0)
α−→ q1(v1), and

b) |α| ≤ 6 · (d+ 3)2 · x45(d+3)d+5
where x = 1 + 2|Q|+ 2‖A‖+ 2‖v0‖+ ‖v1‖.

Proof:
Theorem 10.1 of [7] states that for every pair (v′0, v

′
1) of configurations of a VAS (p,A′) that are

reachable one from the other there is a word α′ ∈ (A′)∗ such that:

v′0
α′−→ v′1 and |α′| ≤ 17p2y15p

p+2

where y = (1 + 2‖A′‖)(1 + ‖v′0‖ + ‖v′1 − v′0‖). We extend this result to a VASS (d,Q,A, T )
by encoding it as a VAS (p,A′) using [9, Lemma 2.1]. With this encoding, p = d + 3, ‖A′‖ ≤
max{‖A‖, |Q| · (|Q| − 1)} and the encodings of q0(v0) and q1(v1) provide vectors v′0, v

′
1 satisfying

‖v′0‖ ≤ ‖v0‖ + |Q| and ‖v′1 − v′0‖ = ‖v1 − v0‖ ≤ ‖v1‖ + ‖v0‖. It follows that (1 + 2‖A′‖) ≤ x2

and (1 + ‖v′0‖ + ‖v′1 − v′0‖) ≤ x. Thus y is bounded by x3. Finally, since the effect of an action
of the VASS is simulated by three actions of the simulating VAS, we deduce that there exists a word
α ∈ A∗ such that q0(v0)

α−→ q1(v1) and such that |α| ≤ 1
3 |α
′|. We derive the desired bound on |α| by

observing that 17
3 ≤ 6. ut

Pumpability of components.

Given a VASS V = (d,Q,A, T ), we say that component i ∈ [1, d] is pumpable in q(v) if q(v)
∗−→

q(v+kei) for some k ≥ 1.

Lemma 4.4. For any VASS V = (d,Q,A, T ) and any q ∈ Q, v ∈ Nd, i ∈ [1, d] where component i
is pumpable in q(v) there is α ∈ A∗ such that

a) q(v)
α−→ q(v+kei) for some k ≥ 1, and
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b) |α| ≤ 6 · (d+ 3)2 · x45(d+3)d+5
where x = 2 + 2|Q|+ 2‖A‖+ 3‖v‖.

The trivial fact k ≤ |α| · ‖A‖ thus also yields a double-exponential bound on k.

Proof:
We consider a VASS V = (d,Q,A, T ) and assume q(v)

∗−→V q(v+kei) where k ≥ 1. For the VASS
V ′ arising from V by adding (action −ei and) the transition q −ei−−→ q we get

q(v)
∗−→ q(v+kei)

−ei−−→ · · · −ei−−→ q(v+ei)
−ei−−→ q(v);

hence q(v) and q(v+ei) are reachable one from the other (they are in the reversible-reachability rela-
tion) in V ′. Using Theorem 4.3, we derive that

q(v)
α−→V ′ q(v+ei) (3)

for some α ∈ (A ∪ {−ei})∗ that is bounded as in the point b) of the claim.
If α in (3) is a1a2 · · ·am, then there are states q1, q2, . . . , qm−1 such that

q(v)
a1−→ q1(v1)

a2−→ q2(v2)
a3−→ · · · qm−1(vm−1)

am−−→ q(v+ei) (4)

for the corresponding vj (j ∈ [1,m−1]). We can view (4) as a sequence of transitions; let ` ≥ 0 be

the number of occurrences of the transition q −ei−−→ q in (4). Due to monotonicity, we can omit these
occurrences and keep performability: we get

q(v)
ai1

ai2
···aim−`−−−−−−−−−→V q(v+(`+1)ei) (5)

for the sequence ai1ai2 · · ·aim−`
arising from a1a2 · · ·am by omitting the respective ` occurrences of

−ei. The proof is thus finished. ut

We derive the following important corollary:

Corollary 4.5. There is an exponential-space algorithm that, given a VASS V = (d,Q,A, T ) and
q(v), decides if all components i ∈ [1, d] are pumpable in q(v), and in the positive case provides an
(at most double-exponential) number n ≥ 1 such that q(v)

∗−→ q(v+nei) for each i ∈ [1, d].

Proof:
It suffices to consider a nondeterministic algorithm trying to find, for each i ∈ [1, d] separately, αi
with length bounded as in Lemma 4.4 such that q(v)

αi−→ q(v+kiei) for some ki ≥ 1. The algorithm
just traverses along (a guessed bounded) αi, keeping only the current configuration in memory; hence
exponential space is sufficient.

By monotonicity, q(v)
∗−→ q(v+kiei) implies that q(v)

∗−→ q(v+xkiei) for all x ≥ 1. Hence if
ki ≥ 1 for all i ∈ [1, d] are found, then the least common multiple (or even simply the product) of all
ki, i ∈ [1, d], can be taken as the claimed number n. ut

Before giving the algorithm deciding SIC co-emptiness we introduce some useful natural notions,
namely a notion of “reversing a VASS” (letting its computations run backwards), and a notion of
“transforming a VASS modulo n” (where the component-values are divided by nwhile the remainders
are kept in the control states).
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Reversed VASS.

To a VASS V = (d,Q,A, T ) we associate its reversed VASS

V← = (d,Q,−A, T←)

where −A = {−a | a ∈ A} and T← = {q′ −a−−→ q | q a−→ q′ is in T}. We note that (V←)← = V .
(Figure 1 shows an example of a VASS and its reversed VASS.)

The next proposition can be easily verified by induction on m.

Proposition 4.6. For any VASS V and m ≥ 1, we have

q0(v0)
a1−→ q1(v1)

a2−→ q2(v2)
a3−→ · · · qm−1(vm−1)

am−−→ qm(vm) in V
if, and only if,

qm(vm)
−am−−−→ qm−1(vm−1)

−am−1−−−−→ · · · q1(v1)
−a1−−→ q0(v0) in V←.

Modulo-n VASS.

Given a VASS V = (d,Q,A, T ) and n ≥ 1, we put

V(n) = (d,Q× {0, 1, . . . , n−1}d,A′, T(n))

where T(n) arises as follows:
each transition q a−→ q′ in T and each u ∈ {0, 1, . . . , n−1}d determines

the transition (q, u)
a′−→ (q′, u′) in T(n)

where u′ and a′ are the unique vectors such that u + a = u′ + na′ and u′ ∈ {0, 1, . . . , n−1}d. The

set A′ is simply {a′ | ((q, u)
a′−→ (q′, u′)) ∈ T(n)}.

The next proposition is again easily verifiable by induction on m.

Proposition 4.7. For any VASS V , n ≥ 1, and m ≥ 1, we have

q0(v0)
a1−→ q1(v1)

a2−→ q2(v2)
a3−→ · · · qm−1(vm−1)

am−−→ qm(vm) in V
if, and only if,

(q0, u0)(v
′
0)

a′1−→ (q1, u1)(v
′
1)

a′2−→ · · · a′m−−→ (qm, um)(v′m) in V(n)

where uj + nv′j = vj for every j ∈ [0,m] (and uj−1 + aj = uj + na′j for every j ∈ [1,m]).
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Algorithm deciding SIC co-emptiness.

We define the following algorithm.
Algorithm ALG-CO-EMPT

Input: a VASS V = (d,Q,A, T ) and a configuration q0(v0).
Output: YES if

[
q0(v0)

〉
= Q× Nd, and NO otherwise.

1. Check if each component i ∈ [1, d] is pumpable in q0(v0), and in the positive case compute an (at
most double-exponential) number n as described in Corollary 4.5 (hence q0(v0)

∗−→ q0(v0+nei)
for each i ∈ [1, d]).

In the negative case (when some component is not pumpable) return NO.

2. Let V ′ be the VASS V ′ = (V←)(n) = (d,Q × {0, 1, . . . , n−1}d,A′, T ′) {i.e., the reversed
VASS modulo n, where n is computed in the point 1}.
Create the configuration (q0, u0)(v

′
0) of V ′ corresponding to the configuration q0(v0) of V

(hence v0 = u0 + nv′0).

3. For each control state (q, u) of V ′ check if (q, u)(0) covers (q0, u0)(v
′
0) (in V ′), i.e., if (q, u)(0)

∗−→V ′
(q0, u0)(v̄) for some v̄ ≥ v′0.

If the answer is negative for some (q, u), then return NO, otherwise (when all (q, u)(0) cover
(q0, u0)(v

′
0)) return YES.

Correctness and exponential-space complexity of ALG-CO-EMPT.

Lemma 4.8. Algorithm ALG-CO-EMPT satisfies its specification
(i.e., returns YES if

[
q0(v0)

〉
= Q× Nd, and NO otherwise).

Proof:
If ALG-CO-EMPT, when given V = (d,Q,A, T ) and q0(v0), returns NO in the point 1, then for some
i ∈ [1, d] we have q0(v0) 6

∗−→ q0(v0+xei) for all x ≥ 1; therefore the set (Q × Nd) r
[
q0(v0)

〉
V is

nonempty and even infinite.
Suppose now that the test in the point 1 has been positive, and a respective number n has been

computed.
Assume first that

[
q0(v0)

〉
V = Q× Nd and let us show that the algorithm returns YES. Let (q, u)

be a control state of V ′ = (V←)(n). Since
[
q0(v0)

〉
V = Q× Nd, we have q0(v0)

∗−→V q(u). It follows
that (q, u)(0)

∗−→V ′ (q0, u0)(v
′
0), which also entails that (q, u)(0) covers (q0, u0)(v

′
0) in V ′. We have

proved that the algorithm returns YES.
Conversely, we assume that the algorithm returns YES and we prove that

[
q0(v0)

〉
V = Q × Nd.

Let q(v) be a configuration of V and let (q, u)(v′) be the corresponding configuration in V ′, i.e., v =

u+nv′. Since (q, u)(0) covers (q0, u0)(v
′
0), there exists v̄′0 ≥ v′0 such that (q, u)(0)

∗−→V ′ (q0, u0)(v̄
′
0).

It follows that q0(u0 + nv̄′0)
∗−→V q(u). By monotonicity, we derive that

q0(u0 + nv̄′0 + nv′)
∗−→V q(u+ nv′) = q(v).
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By the definition of n, we get

q0(v0)
∗−→V q0(v0 + n(v̄′0 − v′0) + nv′) = q0(u0 + nv̄′0 + nv′).

We have proved that q0(v0)
∗−→V q(v), and thus

[
q0(v0)

〉
V = Q× Nd. ut

We still need to show that ALG-CO-EMPT works in exponential space (Lemma 4.10). We first
give a straightforward extension to VASSs of a result formulated in [6] for VASs.

Proposition 4.9. For any VASS V = (d,Q,A, T ) and any configurations q0(v0) and q1(v1), if
q0(v0)

∗−→ q1(v1) then q0(v0)
α−→ q1(v̄1) for some v̄1 ≥ v1 and α ∈ A∗ such that |α| < x(d+1)!,

where x = |Q| · (1 + ‖A‖+ ‖v1‖).

Proof:
The bounds given in [6] for VASs are easily extended to VASSs. Instead of giving a full proof, we
only explain how to adapt the proof of [6] to deal with control states.

The notions of paths, of i-bounded sequences and of i-covering sequences from [6, pages 224–
225] are extended with control states in the obvious way. For each q ∈ Q and v ∈ Zd, definem(i, q, v)
to be the length of the shortest i-bounded, i-covering path in V starting from q(v), with the convention
that m(i, q, v) = 0 if there is none.

Now define f(i) = max{m(i, q, v) | q ∈ Q, v ∈ Zd}. With the same reasoning as in [6,
Lemma 3.4], we get that

f(0) ≤ |Q| and f(i+1) ≤ |Q| · (max{‖A‖, ‖v1‖} · f(i))i+1 + f(i).

It follows that f(i+1) ≤ (xf(i))i+1. An immediate induction on i yields that f(i) ≤ x(i+1)!. In
particular, we get thatm(d, q0, v0) ≤ f(d) ≤ x(d+1)!. Now, if q0(v0)

∗−→ q1(v1) then 0 < m(d, q0, v0).
This entails that q0(v0)

α−→ q1(v̄1) for some v̄1 ≥ v1 and some α ∈ A∗ whose length satisfies |α| =
m(d, q0, v0)− 1 < x(d+1)!. ut

Lemma 4.10. Algorithm ALG-CO-EMPT works (i.e., can be implemented to work) in exponential
space.

Proof:
The point 1 of ALG-CO-EMPT, including the binary presentation of the computed number n, can be
performed in exponential space, w.r.t. the size of the binary presentation of the input V = (d,Q,A, T )
and q0(v0); this follows by Corollary 4.5.

The VASS V ′ = (V←)(n) in the point 2 is not needed to be constructed explicitly. The algorithm
creates the configuration (q0, u0)(v

′
0) and then stepwise generates the control states (q, u) (q ∈ Q,

u ∈ {0, 1, . . . , n−1}d) of V ′ and checks if (q, u)(0) covers (q0, u0)(v
′
0) in V ′.

It thus suffices to show that checking if (q, u)(0) covers (q0, u0)(v
′
0) (i.e., if (q, u)(0)

∗−→V ′
(q0, u0)(v̄) for some v̄ ≥ v′0) can be done in exponential space (w.r.t. the binary presentation of
V = (d,Q,A, T ) and q0(v0)). By Prop. 4.9, it is enough to search for witnesses of coverability
(q, u)(0)

α−→ (q0, u0)(v̄) of length |α| < x(d+1)!, where x = |Q|nd · (1 + ‖A′‖+ ‖v′0‖). Since n is at
most double-exponential, x(d+1)! is also at most double-exponential. As in the proof of Corollary 4.5,
the algorithm just traverses along (a guessed bounded) α, keeping only the current configuration in
memory; so exponential space is sufficient. ut
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Algorithm deciding SIC co-finiteness.

We will adjust the algorithm ALG-CO-EMPT so that, given V = (d,Q,A, T ) and q0(v0), it answers
YES if, and only if, the set (Q×Nd) r

[
q0(v0)

〉
is finite; this can happen even if some (q, u)(0) does

not cover (q0, u0)(v
′
0) in V ′. Informally speaking, it suffices to check if (q, u)(0) covers (q0, u0)(v

′
0)

whenever we “ignore” one-component of 0, making it “arbitrarily large”.
By ω we denote an “infinite amount”, satisfying z < ω and z+ω = ω+z = ω for all z ∈ Z.

Given V = (d,Q,A, T ), by the set of extended configurations we mean the set Q× (N ∪ {ω})d; the
relations q(v)

a−→ q′(v′), q(v)
α−→ q′(v′) (α ∈ A∗), and q(v)

∗−→ q′(v′) are then naturally extended
to the relations on Q × (N ∪ {ω})d. (Hence, e.g., if q(v)

α−→ q′(v′) then v(i) = ω if, and only if,
v′(i) = ω, for any i ∈ [1, d].)

Let us now consider the following algorithm.
Algorithm ALG-CO-FINIT

Input: a VASS V = (d,Q,A, T ) and a configuration q0(v0).
Output: YES if (Q× Nd) r

[
q0(v0)

〉
is finite, and NO otherwise.

1. As in ALG-CO-EMPT.

2. As in ALG-CO-EMPT.

3. For each control state (q, u) of V ′ and each i ∈ [1, d]

check if (q, u)(ωei) covers (q0, u0)(v
′
0) (in V ′), i.e., if

(q, u)(ωei)
∗−→V ′ (q0, u0)(v̄) for some v̄ ≥ v′0;

by ωei we denote the d-dimensional vector where the i-th component is ω and the other com-
ponents are zero.

If the answer is negative for some (q, u) and i ∈ [1, d], then return NO, otherwise (when all
(q, u)(ωei) cover (q0, u0)(v

′
0)) return YES.

Correctness and exponential-space complexity of ALG-CO-FINIT.

Lemma 4.11. Algorithm ALG-CO-FINIT satisfies its specification
(i.e., returns YES if (Q× Nd) r

[
q0(v0)

〉
is finite, and NO otherwise).

Proof:
We reason analogously as in the proof of Lemma 4.8. We have already noted that if NO is returned in
the point 1, then (Q× Nd) r

[
q0(v0)

〉
is infinite.

Assume first that
[
q0(v0)

〉
V is co-finite and let us show that the algorithm returns YES. Let (q, u)

be a control state of V ′ and let i ∈ [1, d]. Since
[
q0(v0)

〉
V is co-finite, there is a number x ≥ 1 such

that q0(v0)
∗−→V q(u+nxei). It follows that (q, u)(xei)

∗−→V ′ (q0, u0)(v
′
0), which also entails that

(q, u)(ωei) covers (q0, u0)(v
′
0) in V ′. We have proved that the algorithm returns YES.

Assume now that the algorithm returns YES and let us prove that
[
q0(v0)

〉
V is co-finite. Since

(q, u)(ωei) covers (q0, u0)(v
′
0) in V ′ for every control state (q, u) of V ′ and for every i ∈ [1, d], there
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is a (large enough) number x such that (q, u)(xei) covers (q0, u0)(v
′
0) for every control state (q, u) and

every i ∈ [1, d]. Below we prove that every configuration q(v) of V such that ‖v‖ ≥ nx is reachable
from q0(v0); this will entail that

[
q0(v0)

〉
V is co-finite (i.e., (Q× Nd) r

[
q0(v0)

〉
V is finite).

We thus fix an arbitrary q(v) and i ∈ [1, d] such that v(i) ≥ nx. Let (q, u)(v′) be the configuration
of V ′ corresponding to q(v); hence v = u + nv′. Since (q, u)(xei) covers (q0, u0)(v

′
0) in V ′, there is

v̄′0 ≥ v′0 such that

(q, u)(xei)
∗−→V ′ (q0, u0)(v̄

′
0); this entails q0(u0+nv̄′0)

∗−→V q(u+nxei).

Since v(i) ≥ nx, we have v′ − xei ≥ 0. By monotonicity we derive

q0(u0+nv̄
′
0+n(v′−xei))

∗−→V q(u+nxei+n(v′−xei)) = q(v).

By the definition of n, we get

q0(v0)
∗−→V q0(v0+n(v̄′0−v′0)+n(v′−xei)) = q0(u0+nv̄

′
0+n(v′−xei)).

Hence we indeed have q0(v0)
∗−→V q(v). ut

Lemma 4.12. Algorithm ALG-CO-FINIT works (i.e., can be implemented to work) in exponential
space.

Proof:
This is analogous to the proof of Lemma 4.10. We just note that deciding if (q, u)(ωei) covers
(q0, u0)(v

′
0) is even easier than deciding if (q, u)(0) covers (q0, u0)(v

′
0), since the i-th component

can be simply ignored. ut

5. Applications of the Co-Emptiness Problem

A motivation for the study in this paper has been the decidability proof for structural liveness in [1],
which is based on a particular version of the co-emptiness problem. We now give more details (in
the framework of VASSs, which is equivalent to the framework of Petri nets used in [1]), and some
partial complexity results. The main aim is to attract a further research effort on this topic, since the
complexity of various related problems has not been answered. In particular, we have no nontrivial
complexity bounds for the structural liveness problem (besides its decidability).

Assuming a VASS V = (d,Q,A, T ), we are now particularly interested in the co-emptiness of[
D
〉
V for downward closed sets D ⊆ Q× Nd, which constitute a subclass of semilinear sets. We use

the notation

↓ C = {q(v) | v ≤ v′ for some q(v′) ∈ C}

for the downward closure of a set C ⊆ Q× Nd (of configurations of V). We say that C ⊆ Q× Nd is
downward closed if ↓ C = C. We write just ↓ q(v) instead of ↓ {q(v)}.

Downward closed sets are semilinear since each such set can be presented as

↓ q1(v̄1)∪ ↓ q2(v̄2) ∪ · · · ∪ ↓ qm(v̄m)
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for some m ∈ N and v̄i ∈ (N ∪ {ω})d (i ∈ [1,m]), where we put

↓ q(v̄) = {q(v) | v ≤ v̄, v ∈ Nd}.

(Recall that k < ω for each k ∈ N.)
Later we use another natural presentation of downward closed sets: for each q ∈ Q we provide

a constraint in the form of a (finite) conjunction of disjunctions of atomic constraints of the form
v(i) ≤ c where i ∈ [1, d] and c ∈ N (then q(v) ∈ Q × Nd is in the set if, and only if, v satisfies the
constraint associated with q).

The DCIS co-emptiness problem where “DCIS” stands for “Downward Closed Initial Sets of con-
figurations” (i.e., given V = (d,Q,A, T ) and a downward closed set D ⊆ Q × Nd, is

[
D
〉
V =

Q × Nd ?) is decidable by Theorem 3.4 (and the fact that D is semilinear). The complexity is open,
even the reductions to/from the reachability problem are unclear. Now we explain the previously
mentioned motivation for such studies.

Liveness of transitions and configurations.

We recall some standard definitions and facts. Given a VASS V = (d,Q,A, T ),

• a transition t ∈ T is enabled in a configuration q(v) if t is of the form t : q
a−→ q′ and v+a ≥ 0;

• a transition t is live in q(v) if for every q̄(v̄) ∈
[
q(v)

〉
there is q′(v′) ∈

[
q̄(v̄)

〉
such that t is

enabled in q′(v′);

• a transition t is dead in q(v) if there is no q′(v′) ∈
[
q(v)

〉
such that t is enabled in q′(v′).

We note that t is not live in q(v) if, and only if, t is dead in some q′(v′) ∈
[
q(v)

〉
.

The next proposition (which also defines Dt,V and DV ) is obvious, due to monotonicity.

Proposition 5.1. Given a VASS V = (d,Q,A, T ), for each t ∈ T the set

Dt,V = {q(v) | t is dead in q(v)}

is downward closed. Hence also the set

DV = {q(v) | some t ∈ T is dead in q(v)} =
⋃
t∈T Dt,V

is downward closed.

Example 5.2. Consider again the VASS depicted on the left of Figure 1. We have observed in
Example 2.2 that

[
A(1, 0)

〉
= {A(1+2n1, n2) | n1, n2 ∈ N} ∪ {B(2n1, n2) | n1, n2 ∈ N}.

It follows that no transition is dead in A(1, 0). Similarly, no transition is dead in B(0, 0) since[
B(0, 0)

〉
=
[
A(1, 0)

〉
. We derive, by monotonicity, that D ⊆ {A(0, n) | n ∈ N}. Conversely,

for every n ∈ N, the transition A
(−1,0)−−−−→ B is dead in A(0, n) since

[
A(0, n)

〉
= {A(0, n)}. In fact,

all transitions are dead in A(0, n). We have shown that D = {A(0, n) | n ∈ N}.
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Given a VASS V = (d,Q,A, T ), a configuration q(v) is live if each t ∈ T is live in q(v), i.e., if
q(v) 6 ∗−→V DV . A VASS V is structurally live if it has a live configuration, hence if the set

LV = {q(v) | q(v) is a live configuration of V}

is nonempty. While the membership problem for (Dt,V or) DV is essentially a version of (the com-
plement of) the coverability problem, which also allows to construct a natural presentation of the
(downward closed) sets Dt,V and DV , the membership problem for LV is close to the reachability
problem as was already noted by Hack [20] long time ago.

The set LV is indeed more involved than DV ; it is obviously not downward closed but it is not
upward closed either (in general), and it can be even non-semilinear; we can refer to [1] for a concrete
example, as well as for the following idea of decidability.

The structural liveness can be decided as follows. We recall the reversed VASS V←, and note that
V is not structurally live if, and only if,

[
DV
〉
V← is co-empty:

Proposition 5.3. For any VASS V = (d,Q,A, T ) we have[
DV
〉
V← = (Q× Nd) r LV .

Hence V is not structurally live if, and only if,
[
DV
〉
V← = Q× Nd.

Proof:
We recall that q(v) is not live if, and only if,

[
q(v)

〉
V ∩ DV 6= ∅ (i.e., iff q(v)

∗−→V q′(v′) where some
t ∈ T is dead in q′(v′)). Hence q(v) is not live if, and only if, q′(v′) ∗−→V← q(v) for some q′(v′) ∈ DV
(using Proposition 4.6).

Therefore
[
DV
〉
V← = (Q× Nd) r LV . ut

Proposition 5.3 allows us to decide structural liveness of a given VASS V = (d,Q,A, T ) by a
reduction to the co-emptiness problem, using the above-mentioned constructability of DV .

Example 5.4. Let V denote the VASS depicted on the left of Figure 1. We have shown in Example 5.2
that DV = {A(0, n) | n ∈ N}. The reversed VASS V← is depicted on the right of Figure 1. It is
routinely checked that the reachability set

[
DV
〉
V← satisfies[

DV
〉
V← = {A(2n1, n2) | n1, n2 ∈ N} ∪ {B(1+2n1, n2) | n1, n2 ∈ N}.

It follows from Proposition 5.3 that the set LV of live configurations of V satisfies

LV = {A(1 + 2n1, n2) | n1, n2 ∈ N} ∪ {B(2n1, n2) | n1, n2 ∈ N}.

In particular, V is structurally live since
[
DV
〉
V← is not co-empty.
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Structural deadlock-freedom and DCIS co-emptiness.

We have shown that the complementary problem of the structural liveness problem (hence “non struc-
tural liveness”) can be reduced to the DCIS co-emptiness problem (with downward closed sets of
initial configurations). However, we have no reduction from the latter problem to the former.

We now show that a special form of structural liveness, namely structural deadlock-freedom, is
closely related to the DCIS co-emptiness problem. We use the previously mentioned presentation of
downward closed sets by conjunctions of disjunctions of atomic constraints of the form v(i) ≤ c (for
each q ∈ Q).

Given a VASS V = (d,Q,A, T ), a configuration q(v) is deadlock-free if every configuration
in
[
q(v)

〉
enables some transition. A VASS V is structurally deadlock-free if it has a deadlock-free

configuration. The structural deadlock-freedom problem asks, given a VASS V , if V is structurally
deadlock-free. The rest of this section is devoted to the proof of the following theorem.

Theorem 5.5. The complementary problem of the structural deadlock-freedom problem is logspace
interreducible with the DCIS co-emptiness problem. This entails that the structural deadlock-freedom
problem is decidable.

We have already noted that the DCIS co-emptiness problem is decidable. The interreducibility
claimed in Theorem 5.5 is proven in the rest of this section. We first define the set

SV = {q(v) | no t ∈ T is enabled in q(v)}

of “sink configurations” or “deadlocks” (hence SV =
⋂
t∈T Dt,V ). It is obvious that SV is the down-

ward closed set described so that to each q ∈ Q we attach the constraint∧
(q

a−→q′)∈T

∨
i∈[1,d]

a(i)<0

v(i) ≤ −a(i)− 1 .

This presentation of SV can be clearly constructed in logarithmic space, when given a VASS V . Hence
Proposition 5.6 entails the “left-to-right” reduction in Theorem 5.5 (recall that V← denotes the reversed
VASS of V). The other reduction is shown by Proposition 5.7.

Proposition 5.6. A VASS V is not structurally deadlock-free if, and only if,
[
SV
〉
V← is co-empty.

Proof:
We consider a VASS V = (d,Q,A, T ), and observe that q(v) is not deadlock-free if, and only if,[
q(v)

〉
V ∩ SV 6= ∅. Hence q(v) is not deadlock-free if, and only if, q(v) ∈

[
SV
〉
V← (using Proposi-

tion 4.6). It follows that V is not structurally deadlock-free if, and only if,
[
SV
〉
V← = Q× Nd. ut

Proposition 5.7. Given a VASS V and a downward-closed set D of configurations, we can construct,
in logarithmic space, a VASS V ′ such that

[
D
〉
V is co-empty if, and only if, V ′ is not structurally

deadlock-free.
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Proof:
Let us assume a VASS V = (d,Q,A, T ) and a downward-closed set D of configurations given, for
each q ∈ Q, by conjunctions of disjunctions of atomic constraints of the form v(i) ≤ c. By negating
these formulas, we derive, in logarithmic space, a collection (Bq)q∈Q of finite subsets of Nd such that

(Q× Nd) rD = {q(v) | v ≥ b for some b ∈ Bq}.

(Hence (Bq)q∈Q represents the upward closed complement of D.)
We now define the VASS V̂ = (d, Q̂, Â, T̂ ) as follows:

a) Q̂ = Q ∪ {(q, b) | q ∈ Q, b ∈ Bq}.

b) T̂ consists of the following transitions:

i. q −b−→ (q, b) and (q, b)
b−→ q for all q ∈ Q, b ∈ Bq, and

ii. (q, b)
a+b−−→ q′ for all (q

a−→ q′) ∈ T and b ∈ Bq.

c) Â = {â | q â−→ q′ ∈ T̂ for some q, q′ ∈ Q̂}.

It is obvious that for all configurations q(v) and q′(v′) of V we have that

q(v)
∗−→V̂ q

′(v′) implies q(v)
∗−→V q′(v′)

but the converse does not hold in general. We will show that[
D
〉
V← = Q× Nd if, and only if, V̂ is not structurally deadlock-free.

The proof will be finished, by taking V ′ = V̂← (and noting that (V←)← = V).

(⇒) Assume
[
D
〉
V← = Q× Nd. Observe that (q, b)(v)

b−→ q(v+b) in V̂ for every (q, b) ∈ Q̂ and
v ∈ Nd. We now show that no configuration q(v) with q ∈ Q is deadlock-free in V̂ , which clearly
entails that V̂ is not structurally deadlock-free.

We fix some q(v) ∈ Q× Nd. Since q(v) ∈
[
D
〉
V← , in V we have

q(v) = q0(v0)
a1−→ q1(v1)

a2−→ · · · qm−1(vm−1)
am−−→ qm(vm) ∈ D

for some a1, . . . ,am in A and q0(v0), . . . , qm(vm) in Q× Nd (recall Proposition 4.6). Moreover, we
may assume w.l.o.g. that qi(vi) 6∈ D for all i ∈ [0,m−1]. So for each i ∈ [0,m−1] there is bi ∈ Bqi
such that vi ≥ bi. We derive that

qi(vi)
−bi−−→ (qi, bi)(vi−bi)

ai+1+bi−−−−−→ qi+1(vi+1) in V̂

for all i ∈ [0,m−1]. It follows that q(v)
∗−→ qm(vm) in V̂ . Since qm(vm) ∈ D then vm 6≥ b for all

b ∈ Bqm ; hence no transition of V̂ is enabled in qm(vm), and q(v) is thus not deadlock-free in V̂ .
(⇐) Assume that V̂ is not structurally deadlock-free. We fix a configuration q(v) of V and prove

that q(v) ∈
[
D
〉
V← . Since q(v) is also a configuration of V̂ , it is not deadlock-free in V̂ . So there is a
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configuration q′(v′) of V̂ such that q(v)
∗−→V̂ q

′(v′) and no transition t ∈ T̂ is enabled in q′(v′). Since

V̂ contains the transition (q, b)
b−→ q for every q ∈ Q and b ∈ Bq, we get that q′ ∈ Q. No transition

q′
−b−→ (q′, b) of T̂ is enabled in q′(v′), so v′ 6≥ b for every b ∈ Bq′ . It follows that q′(v′) ∈ D. Since

q(v)
∗−→V̂ q

′(v′) implies q(v)
∗−→V q′(v′), we get q(v)

∗−→V D, i.e., q(v) ∈
[
D
〉
V← . ut

6. Conclusion

Motivated by the structural liveness problem for VASS, whose computational complexity is still open,
in this paper we have introduced and studied the co-emptiness problem and the co-finiteness problem
for VASSs. The complexity of the co-emptiness and co-finiteness problems in the case of single initial
configurations has been clarified, but the complexity of general versions has been left open, even w.r.t.
reductions to/from the reachability problem. This requires further work, in particular with an eye to
the applications aiming to clarify structural liveness properties of VASSs, or equivalently of Petri nets.
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