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Abstract: The Earth’s continental crust represents the outermost envelope of the solid Earth,
controlling exchanges within the geosphere and reflecting geodynamics processes. One of the
fundamental issues of Earth Science aims to determine crustal thickness in past geodynamic
environments in order to discuss the evolution of certain geodynamic processes through time. Despite
presenting a continuing challenge, the evolution of crustal thickness during the last 3 billion years can
be investigated using indirect clues yielded by the chemical signature of mafic magmas and associated
ferromagnesian minerals (pyroxene, amphibole). Here, we present a new statistical assessment of
a global database of magmatic and mineral chemical information. Analysis reveals the increasing
occurrence of high-temperature pyroxenes and amphiboles growing in Ca-rich, Fe-poor magma since
~1 Ga, which contrasts with lower temperature conditions of minerals crystallization throughout the
Meso- and Palaeoproterozoic times. This is interpreted to reflect temporal changes in the control of
Earth’s crust on mantle-derived magma composition, related to changes in lithospheric thickness
and mantle secular cooling. We propose that thick existing crust is associated with deeper, hotter
magmatic reservoirs, potentially elucidating the mineral chemistry and the contrasting iron content
between primary and derivative mafic magmas. Based on both the chemical and mineral information
of mafic magma, an integrated approach provides qualitative estimates of past crustal thickness
and associated magmatic systems. Our findings indicate that the Proterozoic was characterized by
thicker crustal sections (>40–50 km) relative to the Phanerozoic and Archean (<35 km). This period
of crustal thickening appears at the confluence of major changes on Earth, marked by the onset of
mantle cooling and Plate Tectonics and the assembly of Columbia, the first supercontinent.

Keywords: magma chemistry; crustal thickness; statistical petrology; proterozoic

1. Introduction

The continental crust provides a window into past geodynamic processes. However, its thickness
in the Archean and Proterozoic times remains an unresolved issue. On this knowledge hinges key
parameters for geodynamics models aimed at testing secular changes in tectonics processes and
continental crust formation ([1,2] among many others). For some authors, secular change in crustal
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thickness followed the progressive cooling of the mantle since 2.5 Gyrs [3,4]. The thickest crusts
are therefore expected in the Archean compared to the Proterozoic times, acknowledging that the
melting of hotter mantle should result in thickest crustal sections of mafic composition. For others,
the secular cooling of the mantle predated change in crustal thickness, acknowledging that hotter
thermal gradients in the Archean crusts should limit their thickening ([5,6] and Ref. therein). It was
also argued that crustal thickening in a lithospheric section can be modulated by the presence of water
and increasing differentiation of the continental crust toward felsic composition in the Precambrian,
triggered by the advent of plate tectonic processes, should result in progressively thicker sections with
time [7].

Unfortunately, such controversy surrounding evolutionary models of the continental crust has
not been resolved by geophysical investigations on the Moho. In the most recent compilation of
seismic images, the global average crust is apparently thickest in Proterozoic provinces relative
to Archean ones [8,9]. These comparisons, however, face a number of uncertainties related to
the interpretation of seismic reflectors and their apparent arbitrary selection within individual
provinces [10]. In short, it would mask a more heterogeneous Moho whose depth doesn’t necessarily
follow a secular evolution. Different lines of evidence also suggest that the architecture of the crust
has often been modified by multiple tectono-metamorphic and magmatic events and that, potentially,
the present-day interpretation of the associated Moho depth doesn’t accurately reflect the original
crustal thickness [11,12].

Despite these limitations, a number of geochemical indices are proposed as proxies which
record changes in crustal thickness and may be investigated using data mining techniques on
large geochemical databases [13–18]. Such proxies are based on different correlations established
between the composition of young lava formed in arc-settings and the thickness of the crust through
which lava were likely to evolve. However, the significance of these correlations has been recently
questioned [19]. It was suggested they mostly reflect temperature changes and the degree of melting
in the sub-arc mantle [20] rather than differentiation in the arc lithosphere (including crust) ([21–24]
among many others). Furthermore, it was suggested that changes in lithosphere thickness could
only be a consequence of the evolution of mantle temperature modulated by plate dynamics [25].
It was stressed that high-pressure fractionation at the bottom of the crust, within deep hot zones
(Figure 1), was unlikely to explain the global systematics of mafic magma composition. This conclusion
deeply challenges the idea that estimates of past crustal thickness can be obtained simply from magma
chemistry because temperature in the mantle is a difficult parameter to constrain in both modern and
past geodynamic environments [26–28].

Another problem surrounding these proxies concerns the use of modern calibration for chemistry
versus crustal thickness relative to older lava, given potential differences in primary magma
composition and crustal differentiation. It may be also argued that lava considered for proxies
have been sampled in young arc settings and it is not yet clear how far these proxies can be applied
to unknown tectonic settings in the past. The last and most fundamental problem is that none of
these proxies have hitherto been tested against both the mineral and chemical records of magma that,
together, integrate much of the high-frequency variations and complex details that can exist within
magmatic systems. Such a test is possible through the examination of crystallization conditions of
magmatic minerals, like amphiboles and pyroxenes, which can provide petrological and temperature
constraints to understand the potential control of crustal thickening on magma evolution [29].
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Figure 1. Schematic 3-D model of active margin hosting a “deep hot zone” that formed along the 
crust-mantle boundary. 

In this paper, we propose an investigation of paired chemical and mineral information of mafic 
rocks to extract qualitative estimates of the crustal thickness of past magmatic systems. In order to 
assess the sensitivity of different mineral, chemical and thermal parameters to crustal thickness, we 
first present a multidimensional database of chemical and mineral information of young (<ca. 10 Ma) 
igneous rocks (lava), sampled in continental settings. The empirical correlations are then tested 
against the independently constrained estimates of crustal thickness for the global magmatic record 
[18]. In a broader geodynamic context, this new integrated approach sheds light on the growth of 
thick (>40–50 km) continental crusts in the Proterozoic times, likely forming in lithospheric sections 
thicker than today, and their subsequent destruction in the Phanerozoic. Finally, we show that the 
chemical record of primary magmas and their derivative melts (i.e., mafic magmas) can be used as a 
marker of magmatic differentiation throughout the lithosphere; and that changes in the 
differentiation of these magmas over time reflect the influence of long-term geodynamic drivers such 
as mantle secular cooling and the evolution of plate tectonic regime [27,30]. 

2. Material and Methods 

2.1. Database & Statistical Analysis 

Data from the GEOROC database were compiled with published and unpublished data. Results 
for global mean geochemical and T & P values with time are reported with associated 1-standard-
error uncertainties of the mean at different intervals. These means were generated by Monte Carlo 
analysis, using the standard bootstrap resampling approach detailed in a previous paper [31] 

Figure 1. Schematic 3-D model of active margin hosting a “deep hot zone” that formed along the
crust-mantle boundary.

In this paper, we propose an investigation of paired chemical and mineral information of mafic
rocks to extract qualitative estimates of the crustal thickness of past magmatic systems. In order to
assess the sensitivity of different mineral, chemical and thermal parameters to crustal thickness, we
first present a multidimensional database of chemical and mineral information of young (<ca. 10 Ma)
igneous rocks (lava), sampled in continental settings. The empirical correlations are then tested against
the independently constrained estimates of crustal thickness for the global magmatic record [18].
In a broader geodynamic context, this new integrated approach sheds light on the growth of thick
(>40–50 km) continental crusts in the Proterozoic times, likely forming in lithospheric sections thicker
than today, and their subsequent destruction in the Phanerozoic. Finally, we show that the chemical
record of primary magmas and their derivative melts (i.e., mafic magmas) can be used as a marker
of magmatic differentiation throughout the lithosphere; and that changes in the differentiation of
these magmas over time reflect the influence of long-term geodynamic drivers such as mantle secular
cooling and the evolution of plate tectonic regime [27,30].

2. Material and Methods

2.1. Database & Statistical Analysis

Data from the GEOROC database were compiled with published and unpublished data. Results
for global mean geochemical and T & P values with time are reported with associated 1-standard-error
uncertainties of the mean at different intervals. These means were generated by Monte Carlo analysis,
using the standard bootstrap resampling approach detailed in a previous paper [31].
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Because contrasting trends can reflect different tectono-magmatic systems, we have organized
our data into three groups according to the inferred tectonic environment proposed by the authors
of data referenced in GEOROC. These three groups are (1) continental margins, (2) intra-continental
settings (CFBs, LIPs, rift-related magmatism and intraplate volcanism, including syn- to post-orogenic
magmatism) and (3) oceanic domains. Lavas sampled in the actual oceanic domains have been
discarded from our correlations, largely comprising MORBs or OIBs younger than 200 Ma. In the
rest of the discussion, only magma (lava) sampled in arc or continental domains will be considered.
Such magmas are grouped into the term “continental s.l.”, without further distinction (Figure 2).
We acknowledge that major element contents of primary magmas are affected by melting conditions in
the mantle and that hydrous lava from arcs may be not securely compared directly to intercontinental
basalts. However, there are also some benefits in performing our calculations on a complete dataset
of lava, even though they were sampled in different continental s.l. settings, to obtain qualitative
or semi-quantitative information. We think the benefits of this approach exceed the intrinsic risk to
which we are exposed in discarding or selecting inappropriate arc-type basalts in the Precambrian
record, accounting for supposed discriminant ratio in trace elements [32]. There is also some evidence
that both hydrous & anhydrous melting processes occur below continents and arcs, which are likely
to generate variations in our range of mafic magma composition at any one time but will not affect
the temporal trends of chemical values reported in Figure 3. Basically, if melting conditions in the
Precambrian have been over- or underestimated, it is also the case for the Phanerozoic ones.
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this study took place in arc settings. 

Figure 2. Distribution of Proterozoic (a) and Phanerozoic (b) magmatism on the Earth’s continental
surface. The figure shows that Phanerozoic magmatism mostly occurs in lithosphere rimming Archaean
and Proterozoic cratons and a concentric distribution of Proterozoic magma is also observed at the
boundaries of Archaean nuclei, suggesting that most Precambrian lava considered in this study took
place in arc settings.
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Overall, the robustness of our statistical approach is strengthened by the limited number of
temporal gaps in the database. The most inherent risk of sampling bias concerns the >ca. 3 Gyrs
period for which the “Komatiite” singularity has distorted the discussion of Archaean crust formation,
resulting in an elevated proportion of ultramafic rock samples compared to their relative distribution
within Archaean greenstone belts (<10 to 30% of the volcanic mafic record; [33,34]). For this reason,
we limited our investigation to the last 3 Gyrs of the Earth.
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Figure 3. (a) Chemical evolution of clinopyroxene (Al4+ a.p.f.u. and CaTi end member component)
according to their age (16,683 analyses). The data illustrates an increase in high-Ti and high-Al
clinopyroxene occurrence in magmatic systems, from ca. 1 Gyr to present day, following a ~1 Gyr
period dominated by low-Ti and low-Al clinopyroxenes. (b) Chemical evolution of amphibole (Ti and
Si a.p.f.u.) according to their age (11,218 analyses). The data illustrates an increase in high-Ti and low-Si
amphibole occurrence in magmatic systems, from ca. 1 Gyr to present day, following a ~1 Gyr period
dominated by low-Ti and high-Si amphiboles.

2.2. Composition of Primary Magmas

Retrieving the composition of primary magmas is not an easy task. It relies heavily on
the geochemical record of carefully selected igneous lava that might have formed by melting
ambient mantle (fertile peridotite) and subsequently underwent limited differentiation (fractional
crystallization) before magma emplacement in the crust. Inferences, though limited, already provide
fundamental information about the evolution of the thickness of oceanic crust or the thermal state
of the upper mantle as a function of time [26]. Only lavas ranging in SiO2 composition from 43 to
51 wt% (~22,000 samples) have been considered in the calculation of primary magma composition.
Such a pre-selection of data into different major element ranges will be discussed later in the paper
(see Section 4.2). It is classically used for distinguishing between mantle melting and subsequent
evolution and fractionation processes in the lithosphere or continental crust [35]. Conversely,
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no pre-selection of data into different trace element ranges was applied, in order to minimize the
chance of introducing any unintentional selection bias.

Primary magma (lava) compositions were obtained for our filtered database using the PRIMELT3
MEGA software [36]. PRIMELT is a very selective method for large data populations (successful
solutions of calculations <1–3%; [28]), which is used to identify mafic magma derived from primary
magma composition, having undergone only olivine fractionation. In most cases, there is no
successful solution for the calculation of mafic magma derived from a source other than peridotites,
like metasomatized mantle or pyroxenite, nor for primary magma that have experienced fractionation
of minerals other than olivine, such as plagioclase or clinopyroxene or that have been enriched with
these elements (magma replenishment).

The software is calibrated by anhydrous melting experiments on fertile peridotite, and its
application to lavas assumes a similar fertile and dry peridotite source. Uncertainties in fertile peridotite
composition do not propagate to significant errors in mantle potential temperatures (Tps) [37].
Conversely, melting of wet peridotite is likely to propagate to erroneously high MgO. We excluded
all samples that have undergone clinopyroxene and/or plagioclase fractionation as indicated by
depletion of CaO (Ca) and Al2O3 (Al) or enrichment in FeOt (Fe) (total iron reported as a single
oxide). Such discrepancies can be highlighted in a simple graph [28] by plotting the chemistry of
sample against its “liquid line of descent” (i.e., L.L.D.). In the end, our calculation solutions have
been filtered according to a graphic procedure [37], leading to reduced uncertainties that may arise
from pyroxenite source lithology, source volatile content from metasomatized peridotite, and cpx
fractionation. The remaining samples were assumed to have been affected only by variable amounts
of olivine addition and subtraction.

2.3. Thermometers for Magmatic Systems

A large set of temperature (T) values is included in our database [31]. These values were calculated
using different equations proposed in different excel files (available at http://www.fresnostate.
edu/csm/ees/faculty-staff/putirka.html#downloads), the accuracy and range of applicability of
which is discussed in Putirka [38]. Keeping in mind that T estimates for samples with significant
volatile contents, typical of arc-setting magma, are less accurate, the reported standard error of
the estimate (SEE) for hydrous samples is larger. For instance, the SEE for the clinopyroxene
calibration of Putirka (Equation (32a)) [38] increases from ±58 ◦C for anhydrous samples using
to ±87 ◦C for hydrous samples. Clinopyroxene-liquid calculations reported in Figure 4a,c use Equation
(33) calibrated against experiments at temperatures less than 2400 ◦C to produce a SEE of ±45 ◦C.
Clinoamphibole-liquid calculations reported in Figure 4d,b use Equation (4a) [38] calibrated against
experiments at temperature less than 1200 ◦C to produce a SEE of ±23 ◦C.

http://www.fresnostate.edu/csm/ees/faculty-staff/putirka.html#downloads
http://www.fresnostate.edu/csm/ees/faculty-staff/putirka.html#downloads
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Figure 4. (a,b) Statistical assessment on the temperature conditions of amphibole (amph) and
clinopyroxene (cpx) crystallization in magma (lava, continental s.l. record), using the min-Liq
method [38], plotted against the composition of young Cenozoic magma (ca. 10–0 Myrs) hosting these
minerals. Black and colored dots correspond to the bootstrapped values (1000 draws, threshold value of
3, uncertainty bars corresponding to ±1 σ standard deviation, chemical step of 1 unit). The black dots
concern all magma in equilibrium with amph and cpx whereas the colored ones correspond to mafic
magma, selected by ranges of composition in Si or Mg. It confirms that a positive correlation exists
between Ca content of magma and temperature of crystallization for amph and cpx. Whatever the range
of composition considered for mafic magma (Si43–51; Si45–55 or Mg06), the slope of correlation appear
broadly similar. (c,d) T conditions of cpx and amph crystallization using the min-Liq method [38],
plotted against the age of magma. The data illustrates an increase in low-T (T < 1000 ◦C) cpx and
amph occurrence from ca. 0.3 Gyrs to present day [31], following a ~300 Myrs period dominated
by the apparent absence of high-T cpx. Though, a temporal bias could exist in the Paleozoic times.
Accordingly, an intriguing lack of mineral analysis is clearly observed in the Precambrian record (e),
hampering the use of magmatic thermometers [38] to investigate the thermal evolution of mafic to
felsic magma.
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3. Results

3.1. Composition of Magma and Minerals through Geological Times

Statistical approaches were first applied to the large multidimensional clinoamphibole (amph)
and clinopyroxene (cpx) database. Elaborative diagrams of the results are provided in Figures 3
and 4,d. They detail the chemical changes, linked to T stability ranges, of magmatic amph and cpx
through geological times. The database demonstrates a progressive increase of Ti and Al content in the
crystalline structures of magmatic amph and cpx during the Phanerozoic (Figure 3). The inversion of
these chemical evolution trends to T crystallization conditions [38] reveals an increasing occurrence of
high-T magmatic amph and cpx (Figure 4e) since ~0.6 Gyr, which contrasts with more monotonous
crystallization conditions throughout the Precambrian.

Figures 5 and 6 display the chemical changes of mafic lavas (e.g., ~19,000 samples ranging in
SiO2 (Si) composition from 43 to 51 wt%) and primary magmas (103 samples; data available in [28])
throughout geological time. The database demonstrates elevated MgO (Mg) values of mafic magmas
in the Archaean, then a marked decrease after ca. 2.5 Gyrs (Figure 5a), consistent with the findings
of [35]. This chemical evolution is accompanied by a progressive increase of the Fe content at the end of
the Archaean (Figure 5b). Despite an irregular evolution throughout the Palaeo- and Mesoproterozoic
times, the Fe content of mafic magma reached its maximum at the beginning of the Neoproterozoic,
then decreased in the last billion years. A stabilization of Fe, at around 10–11 wt%, is observed in
the Phanerozoic times (<ca. 600 Myrs). Notably, a progressive increase of alkali contents (Na + K) is
observed throughout the course of the last 2.5 Gyrs (Figure 5c).
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Figure 5. (a–d) Range of compositions (FeOT, CaO, Na2O + K2O and MgO wt%) for mafic magmas
(43 < SiO2 < 51 wt%) sampled around the world (>22,000 samples of lava, continental s.l. record) and
statistical assessment of the averaged-values evolution through time (black drawbars; uncertainty
bars correspond to ±1 σ standard deviation for age step of 100 Myrs). Whatever the range of
composition considered for mafic magma (Si43–51 or Mg06), the temporal trends appear broadly
similar. (b) A divergence in FeOT (wt%) between mafic magmas (43 < SiO2 < 51 wt%) sampled
in recent (<200 Ma) arc-settings (GEOROC information) and the global systematics for continental
s.l. mafic magma is observed. Such discrepancy is consistent with a more marked calc-alkaline
evolution for mafic magma in arc setting, involving Fe depletion through mineral fractionation in the
lithospheric section.
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At the end of the Archean, we observe a slight increase in the Mg content of primary magmas
(red points in Figure 6a), corrected from olivine fractionation (Mg decrease), followed by a decrease in
Proterozoic times. This chemical evolution has been matched with the global record of mafic magmas
(black points). The greatest divergence in Fe and Ca content between mafic and primary magmas
occurs at the end of the Archaean, reaching its maximum in the Palaeo- and Mesoproterozoic times
then progressively decreasing after ca. ~1 Gyr (Figure 6b,d).
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Figure 6. Chemical signature of mafic and primary magma throughout geological time. (a,c) Range
of composition (FeOT, CaO and MgO wt%) for mafic magmas (43 < SiO2 < 51 wt%) sampled around
the world (>22,000 samples) and statistical assessment of the averaged-values evolution through time
(black drawbars; uncertainty bars correspond to ±1 σ standard deviation for age step of 100 Myrs).
Averaged composition of primary magmas (103 samples, light red dots) (i) calculated with PRIMELT3
MEGA software [36], (ii) using reduced (Fe2O3/TiO2 = 0.5) conditions in the source and (iii) filtered for
MgO > 10% [28], was reported on the graphs (red points). A decrease in FeOT, CaO and MgO wt%
of the primary magmas is observed since the end of the Archaean (~2.5 Gyrs). (b,d) The divergence
in MgO (wt%) between mafic and primary magmas can be explained by a fractionation of olivine
(red arrows) ; the divergence in FeOT and CaO (wt%) requires either a subtraction (black arrows) of
clinopyroxene from the primary melt or a melting of residual material (pyroxenite) in the lithosphere.

3.2. Composition of Magma and Minerals as a Proxy for Crustal Thickness

Figure 7a shows that crustal thickness exerts a first-order control on the composition of young
Cenozoic magmas, which become less calcic with increasing crustal thickness. This was achieved
through the compilation of a comprehensive database for the geochemistry of geologically young
magma for which the crustal thickness is known [9]. For each data point, we plotted the corresponding
crustal thickness hosting the magma, thus allowing us to explore relationships between the chemical
and mineral signature of magma and crustal thickness. We minimized errors induced by a possible
thickening of crust subsequent to magma emplacement by discarding data older than ca. 10 Ma.
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Figure 7. (a) Chemical composition of magmas plotted against crustal thickness [9] where young
Cenozoic magmas (ca 10–0 Ma) were emplaced (lava, continental s.l. record). The Ca content of magma
decreases with increasing alkali content (Na + K) and crustal thickness. Ca-rich magmas dominantly
developed in the thinnest crustal sections (<25 km), marked by a strong anti-correlation between Ca
and the alkali elements (Na + K). A less marked anti-correlation is observed in the thickest crustal
sections (>25 Km). Beyond 45 km, less confidence can be given to the bootstrapped values, due to
the lack of data in the geological record. (b) Whatever the range of composition considered for mafic
magma (Si43–51; Si45–55 or Mg06), the slope of correlation (black dotted line) between crustal thickness
and Ca in mafic magma appear broadly similar. R2 corresponds to the coefficient of determination
associated with the line. (c) Statistical assessment of the evolution of mafic magmas (43 < SiO2 < 51 wt%)
in FeOT, CaO and Na2O + K2O wt% through time (black drawbars; uncertainty bars correspond to
±1 σ standard deviation for age step of 50 Myrs). It confirms the anti-correlation between Ca (grey
curve) and alkali-elements (orange curve) in magma and, to some extent with the iron (Fe) content
(mauve curve).
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Figure 7b shows that the Ca content of young mafic magma (e.g., Si43–51: samples ranging in SiO2

composition from 43 to 51 wt%) strongly decreases with increasing crustal thickness, evolving from
Ca values of <12 to 8 wt% for crustal thickness ranging from 10 to 45 km. Beyond this threshold of
45 km, less confidence can be given to these values because they are not supported by high-density
data. The chemical trend in Ca for mafic magma, selected with a different range of composition (Si45–55

or Mg06), does not fundamentally differ. Moreover, two major elemental concentrations can be used
conjointly as crustal thickness proxies and yield consistent results when larger global and regional
datasets are averaged out. Accordingly, Figure 7b shows that mafic magmas become more potassic
and sodic and comparatively less calcic with increasing crustal thickness.

In extension of that conclusion, Figure 4a,b presents correlations between the chemical
composition of mafic magmas in the continental record and the associated composition Ca content
of magmatic ferromagnesian minerals. The data provide evidence for a marked decrease in cpx and
amph Mg content for decreasing bulk rock Ca content.

3.3. Composition of Magma through Geodynamic Environments

The chemical changes of magmatic samples from an oceanic spreading context (e.g., mid-ocean
ridges) or in highly productive mantle upwelling context within oceans (e.g., some hotspots like Hawaii,
La Réunion, Iceland, etc) are displayed in Figure 8d (green dots), with respect to those sampled in
continental s.l. settings (Figure 8a; red dots). A significant increase of the alkali (e.g., Na + K) content of
magma with increasing differentiation (e.g., Si increase) is observed in the oceanic record. Conversely,
only a slight increase in the alkali content in magma is observed when the crustal thickness in the
continental setting increases. Figure 8b,c yield correlations between the gradual increase or decrease of
alkali magma occurrences in the continental record and the crustal thickness at the site of eruption
(black dots). Bootstrapping of the total-alkali content reveals a negative correlation between Na + K
and Si in the less evolved (basaltic) composition of magmas (Si45–52 wt%). The negative correlation is
related to a more important increase of Si with respect to Na and K in thin crust, that persists over a
large range of mafic magma compositions: Si43–51, Si45–55 or Mg06, Figure 9) but correlation becomes
weaker with increasing crustal thickness. For comparison, the average trend of basaltic magma (black
dots) emplaced in the continental crust has been reported on the diagrams (Figure 8b,c). It reveals a
convergence of trends (black versus red dots) with increasing crustal thickness. These findings are
consistent with those reported by Farmer & Lee [39], showing that the most silicic magmas (>70 wt.%
SiO2) are paradoxically found in thin crust settings like the South Chile-Patagonia magmatic systems
(Figure 10), where average compositions are low in silica (basaltic).
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Figure 8. (a,d) Correlation between the gradual occurrence or decrease (statistical assessment) of alkali
magmas in the oceanic (green dots) and continental s.l. (red dots) records. The alkalinity of magma
(grey points) is given by the relative proportion of Na2O + K2O mass percent (wt%) of rocks throughout
their SiO2 evolution (total-alkali content versus silica diagram: TAS diagram). Bootstrapping of the
total-alkali content reveals a positive correlation between [Na2O + K2O] and SiO2 in the more evolved
composition of magmas (SiO2 > 50 wt%). (b,c) The black dots yield correlations between the gradual
increase or decrease of alkali magmas occurrences in the continental record s.l. and the crustal thickness
at the site of eruption. Bootstrapping of the total-alkali content reveals a negative correlation between
[Na2O + K2O] and SiO2 in the less evolved (basaltic) composition of magmas (SiO2 45–52 wt%).
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(<30 km). Four isodepth contours (30, 40, 45 and 50 km) are shown on the map based on the global 
crustal model (2 × 2 degrees) CRUST 2.0 [9]. 

3.4. Probing Crust in the Past through Magma Evolution 

To track changes in crustal thickness through time, we used a new empirical proxy established 
between Ca content and crustal thickness for mafic rocks from modern magmatic systems (<ca. 10 

Figure 9. (a–c) Correlation between the gradual occurrence or decrease (statistical assessment) of Si in
mafic magmas (lava from the continental s.l. record) and the crustal thickness where magma have been
emplaced. Whatever the range of composition considered for mafic magma (Si43–51; Si45–55), the slope
of correlation appears broadly similar, except for the Mg06 mafic record that show a more scattering
evolution. The number of samples considered is given by the colored histograms.
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Figure 10. Chemical record (SiO2 and CaO wt %) of magmatic rocks plotted against the geographic
position of Cenozoic-aged samples (ca. 10–0 Ma) along the eastern parts of the circum-pacific orogenic
belts (>6850 analyses). Mafic rocks (SiO2-poor and CaO-rich) are less abundant in Peru-North Chile
magmatic systems, which were developed on a thick continental crust (60 km in the Altiplano area:
A) and more abundant along the Northern American Cordilleras (Coast Mountains: CM; Sierra Nevada:
SN) and South Chile-Patagonia magmatic systems where the continental crust is thinnest (<30 km).
Four isodepth contours (30, 40, 45 and 50 km) are shown on the map based on the global crustal model
(2 × 2 degrees) CRUST 2.0 [9].

3.4. Probing Crust in the Past through Magma Evolution

To track changes in crustal thickness through time, we used a new empirical proxy established
between Ca content and crustal thickness for mafic rocks from modern magmatic systems (<ca. 10 Myr)
that do not include oceanic-like magmatic settings such as mid-oceanic ridges (Figure 11). This proxy
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is built on Mg values at around 7 to 8 wt% and it cannot account—in theory—for large dispersions
in Mg. Accordingly, magmatic rocks older than 2.2 Gyrs have not been considered in our analysis
because Mg content increases from 8 to 15 wt% between 2.2 and 3 Ga (Figure 5a). Using this approach,
we document the progressive build-up of thick (>50 km) juvenile crust in the Proterozoic and its
destruction in the Phanerozoic times (Figure 12a). The elevated Ca content in mafic magmas shows
that the juvenile crust was still rather thin at the beginning of the Palaeoproterozoic (<35 km). About
2 billion years ago, the Ca content of magma decreased, indicating that the newly formed crust became
thicker. Thickening of the juvenile crust increased until the end of the Mesoproterozoic (>40–50 km).
Subsequent to this, at ca. 1 Ga, the Ca content of magma increased, indicating that the newly formed
crust became thinner (<35 km).
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Red lines are described by Equations (9)–(11) in [37]. They define upper and lower CaO filters of 
primary magmas of fertile peridotite produced by accumulated fractional melting. Primary magma 
with CaO contents lower than those defined by the green line are potential pyroxenite partial melts; 
they can also be peridotite partial melts that had clinopyroxene (cpx) removed. Black broken arrow is 
the typical liquid line of descent for primary magmas that crystallize gabbro in the crust; the drop in 
CaO often occurs at MgO < 7–10%. However, cpx can also crystallize in the mantle and affect magmas 
with MgO > 10%. 

 

Figure 11. CaO and MgO contents of primary magmas (2260 samples) calculated with PRIMELT3
MEGA software [36] using MORB compositions (from [40]) and reduced condition in the source
(Fe2+/∑Fe = 0.9). Successful and unsuccessful solutions of calculation have been reported on the graph.
Red lines are described by Equations (9)–(11) in [37]. They define upper and lower CaO filters of
primary magmas of fertile peridotite produced by accumulated fractional melting. Primary magma
with CaO contents lower than those defined by the green line are potential pyroxenite partial melts;
they can also be peridotite partial melts that had clinopyroxene (cpx) removed. Black broken arrow is
the typical liquid line of descent for primary magmas that crystallize gabbro in the crust; the drop in
CaO often occurs at MgO < 7–10%. However, cpx can also crystallize in the mantle and affect magmas
with MgO > 10%.
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Figure 12. (a) Variation in the thickness of juvenile continental crust through time (light red dots),
calculated from the relationships in Figure 7b (mafic magma proxy). A polynomial curve (N = 6) fitting
the crustal thickness values (step of 100 Myrs) was reported on the graphs. R2 corresponds to the
coefficient of determination associated with the polynomial curve. The thickest sections of crust are
mostly observed in the Proterozoic times (>40–50 km). (b) Comparison with crustal thickness estimates
using a different proxy (Rb/Sr, [18]). Data distribution of anorthosites forming after Fe-rich magma [41]
is given by the histogram (light blue columns). (c) Thermal evolution curve (grey) for ambient mantle
(Tp) [28]. Green circles superimposed on the graph correspond to the plot of thermal gradients versus
age for the three main types of extreme metamorphic belts [42]. They define a trend towards colder
gradients in the Phanerozoic. A similar fanning arrays of Phanerozoic magmatic amphiboles and
pyroxenes, following the Rodinia supercontinent breaking up and encompassing the Pangea cycle
(a: assembly; b: breakup), is observed in Figure 3.

4. Discussion

The first aim of this discussion is to demonstrate, with petrological and modeling arguments, that
high-pressure fractionation of minerals in mafic magma has a geological reality and can significantly
deplete a mafic magma in calcium. Such control of the crust (or lithosphere) on the primary magma
differentiation toward mafic magma composition is the theoretical justification of all proxies for
probing crustal thickness in the past, including our new proxy.

The second aim is to show that remarkable correlations previously observed between chemistry of
mafic magma and crustal thickness [19,20,25] are consistently demonstrated for an even wider range of
magma composition. We also discuss the relevance of using mafic magma from different geodynamic
settings, acknowledging that fluid-induced or fluid-absent melting can profoundly impact the primary
composition of mafic magma and their subsequent chemical evolution through calc-alkaline or tholeiitic
differentiation in the lithosphere, respectively.

Finally, we question how temperature changes in the mantle through time can impact these
correlations and magmatic differentiation (calc-alkaline versus tholeiitic), acknowledging that hotter
temperatures propagate to primary magmas with more elevated magnesium and calcium composition,
and comparatively lower iron contents. This point is important as, over the last 600 Ma, mantle heating
below Pangea interacted with a broader secular cooling of the Earth mantle [31].

4.1. Chemical Differentiation of Primary Magma Controlled by Temperature

A key point for our new proxy is to demonstrate whether or not the variation in Ca and Fe
contents of mafic magma is the result of increased cpx fractionation during differentiation of primary
magma. Figure 11 reveals that prior to cpx fractionation, olivine fractionation will result in an increase
of Ca and a decrease of Fe in the melt [37]. In Figure 6a, the Mg content of primary magma is positioned
at around 15 wt%, in the range of composition where only olivine fractionation is expected (Section A
of the LLD in Figure 11). It means that early crystallization of olivine likely contributed to Ca increase
and Fe decrease in primary melt, until a point on their LLD (8 wt% in MgO) where cpx starts to
crystallize with plagioclase (Section B, Figure 11), stopping the Ca enrichment in primary magma and
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inverting their positive Ca/Fe evolution. Ca and Fe content in mafic magma thus reflects this two-step
but opposite evolution.

Distinguishing which of the two steps (Section A or B) dominantly contributed to the Ca
and Fe content of mafic magma in Figure 6b,c requires us to know the proportion of cpx in the
fractionating assemblage, which is currently impossible. A more simplistic approach in assessing
the effective contribution of cpx fractionation in the differentiation of primary magma, is to consider
their compositions in Ca, which broadly do not change with time (~10 wt% in Figure 6d). If early
fractionation of olivine has been involved (section A of the LLD) (Figure 11), increasing the Ca content
of primary magma, it cannot explain by itself the final composition in Ca of mafic magma which now
plots below 5–10% (Section B of the LLD) (Figure 11). We, therefore, conclude that cpx fractionation is
a necessary step to explain the difference in Ca between mafic and primary magma.

4.2. Chemical Differentiation of Primary Magma Controlled by Pressure and Temperature

Another key point for our new proxy is to demonstrate whether the chemical differentiation of
primary magmas is the result of crustal or lithospheric processes. Accordingly, chemical variations
in mafic magmas could only demonstrate the extent of cpx fractionation in the primary melt with
decreasing temperature and have no relationship to the pressure of crystal fractionation in the crustal
or lithospheric section.

Testing this hypothesis would require the comparison of the composition of primary magma
produced at different depths but similar temperatures. A normalized range of temperatures for
mafic magma is thus necessary. It can be constrained by their Mg content that linearly increases
with increasing temperature of melting in the mantle [37]. The Mg06 was proposed by Plank &
Langmuir [20] as a reference value because, within such range of composition (5.5–6.5 wt% in MgO),
primary magma will experience limited cpx or plagioclase fractionation along their LLD (Section
B in Figure 11). Using this value, some remarkable correlations have been established between the
composition of mafic magma and the thickness of the crust hosting the lava. Notably, it was shown
that Ca content negatively correlates with the increase of alkali elements in magma (Na and K) and the
crustal thickness.

Such evolution was likely controlled by the rate of melting (F) in the sub-lithospheric mantle [19].
It is known that low melting rates promote concentration of alkali elements in primary magma.
Furthermore, F proportionally decreases with the depth of melting in the sub-lithospheric mantle.
The logical conclusion is that increasing the depth of initial melting of the mantle at constant
temperature will lead to more alkali magmatic signature. It was thus proposed that the alkali magma
signature in arc setting was the hallmark of thick lithosphere hosting a thick crustal section and
that lithosphere and crustal thicken together, controlled by tectonic processes operating at plate
boundaries [25].

An important aspect of the authors’ demonstration is that mafic magma forming in arc setting
cannot derive from a single (unique) parental magma (primary magma) but rather reflect different
sources and degrees of melting in the ambient mantle, as controlled by plate dynamics. It was also
stressed that mafic magmas acquire their main chemical characteristic early in the chain of igneous
processes, at the time of mantle melting. Subsequent differentiation in the lithospheric or crustal
section is unlikely to modify such peculiarity and will only strengthen it, as demonstrated by their
alkalinity in the TAS diagram (Figure 9).

Turner & Langmuir [25] build their demonstration on the fact that little evidence exists for
high-pressure fractionation of magmatic minerals within deep hot zones [23]. Global systematics of
magma chemistry would better suggest the evolution of mafic magma is controlled by the fractionation
of olivine, not pyroxene at pressures up to 12 Kb [22]. However, taken at face value, the LLD of
individual arc magma selected by authors (Figure 9 in [19]) could also mimic the experimental
fractionation trend of Nandedkar et al. [43] obtained at middle-pressure (7 Kb) conditions reflecting
intra-crustal differentiation.
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Accordingly, there is growing evidence that magma storage and evolution can proceed at different
levels in the crust within mush columns [44]. In a mush context, the middle crust likely constitutes an
important zone of transfer and mingling for magma, marking a physical threshold between mafic and
felsic reservoirs present in the lower and upper crust, respectively. A marked decrease of Fe in magma
at the middle-crust boundary was recently highlighted by Ganne et al. [45], which can potentially be
explained by the crystallization of pyroxene or amphibole trapping Fe. Likewise, different lines of
evidence exist in the literature that indicate that pyroxene can crystallize in the crust or down to the
sub-Moho lithospheric section of arcs (Figure 1 in Putrika [46]) and oceans (Figure 4 in Herzberg [47]).

The question is whether the pressure of mineral fractionation in the lithosphere is a sufficiently
reproducible function of lithospheric thickness—at some definable set of parameters—to provide
insights into the latter?

4.3. Chemical Differentiation of Primary Magma Controlled by Geodynamic Settings?

Figures 4, 5 and 7 show that comparable trends for elements and similar correlations with
the crustal thickness can be observed when considering (1) different categories of mafic magma
(Si43–51; Si45–55 or Mg06) and (2) different geodynamic settings (e.g., continental record s.l. versus arc
settings). The only exception concerns the Fe content of mafic magma which is lower in arc settings
compared to the undifferentiated continental record (Figure 5b). Such a discrepancy brings us to
discuss the relevance of using mafic magma formed in different continental settings (s.l.) as proposed
in Figure 5, acknowledging that fluid-induced or fluid-absent melting can profoundly impact the
primary composition of mafic magma and its subsequent chemical evolution through calc-alkaline or
tholeiitic differentiation, respectively. This is an important point as a tholeiitic evolution will increase
the Fe content of magma, especially in the range of mafic magma composition (Mg06) for which
previous correlations have been established between crustal thickness and magma chemistry [20].

Considering these correlations, sodium content (wt%) linearly increases with the decreases of
calcium (R2 = 0.77) and the thickening of the crust (R2 = 0.74) whereas a weak correlation (R2 = 0.51) is
observed between iron (Fe06) and sodium (Na06). A loss of correlation between iron and sodium is
at odds with petrological experiments predicting that iron, calcium and magnesium proportionally
decrease with decreasing melting conditions in the mantle, accompanied by a gradual increase in alkali
elements in the primary magma. A possible explanation is that iron content in primary magma reflects
the heterogeneous composition and redox conditions of the mantle source, not only the temperature or
pressure at which the mantle crossed its solidus. However, we suppose that a heterogeneous mantle
source should propagate to less clear correlations in the global systematics, which is obviously not the
case. The discrepancy between experimental results and global analysis of data instead suggests that
mafic magmas are not directly connected to primary magma composition along an LDD controlled
by olivine fractionation. Rather, it is likely that the mafic magma underwent chemical differentiation,
altering the Fe content.

We suggest that iron fluctuations in the mafic magma record reflect a duality between two types
of primary magma evolution, that is a tholeiitic differentiation proceeding in thin arc sections and
a calc-alkaline one occurring in thick sections [14,15]. The dependence on fluid-induced melting
is likely of second order. This hypothesis differs from previous conclusions [19,25], which argue
that high-pressure fractionation within deep hot zones exists but was unlikely to explain the global
chemical characteristics of young arc-derived mafic magma.

4.4. Chemical Differentiation of Primary Magma in the Past

Finally, we assess the impact of mantle temperature changes through time on these correlations,
acknowledging that hotter temperatures produce primary magmas with elevated Mg and Ca
composition, and lower Fe contents. This point is important as, over the last 600 Myrs, mantle heating
below supercontinents has interacted with a broader secular cooling of the Earth’s mantle [28,48].
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The Phanerozoic chemical evolution of mafic magma reveals a peak in temperature (T) recorded
by cpx at around ~300 Myrs (Figure 4). This appears to be consistent with the presence of Ca-rich
and comparatively less alkaline mafic magma at that time (Figure 7c). On either side of the T peak,
there is an increase in the alkalinity of mafic magmas, which indicates a drop in magma temperature
likely related to lower ambient mantle temperatures (Tps) below continents [31]. However, there
are some deviations on the temporal trends, suggesting that changes in Tps through times cannot
fully explain the change in Ca and Fe for mafic magmas. A lithospheric (pressure-related) control
on primary magma differentiation is logically expected. We suggest that both the temperature of
melting in the mantle and the pressure of mineral fractionation in the lithosphere control the chemical
characteristics of mafic magma and that the thicker the lithospheric (and crustal) section in the past,
the more pressure-dependent (first order control) the evolution of primary magma toward mafic
composition. The dependence on Tps is likely a second order control.

The sub-lithospheric mantle below active arcs appears rather thin compared to cratonic regions
and, along the Circum-Pacific Orogenic Belts (CPOB), it does not exceed 100 km in thickness
on average [49], excluding localized sections of very thin lithosphere that have experienced
delamination [50]. Lithospheric thickness is primarily controlled by temperature in the ambient
mantle and elevated Tps below arcs often result in thin lithospheric sections [51]. This results in
limited fractionation of minerals in a primary magma within thin lithospheric sections relative to thick
lithospheric sections formed in association with cooler mantle temperatures. A hotter mantle in the
past would, therefore, likely result in a thinner sub-arc lithosphere, limited mineral fractionation and
Ca depletion in mafic magma. However, this is not what we observe in Figure 6. Ca depletion for mafic
magmas reaches a maximum in the Mesoproterozoic when the ambient mantle is hotter, suggesting a
parameter other than Tps controlled the sub-arc lithospheric thickness in the past.

Isotopic signatures of Phanerozoic lavas formed in arc settings reveal that the lithosphere
below the CPOB has been fully reworked and rejuvenated by abundant magma production [52,53].
Subduction-related magmatism operated continuously since >550 Myrs on the external margins of Pangea
(e.g., external accretionary orogens) whereas internal orogens (e.g., Variscan, Alpine-Himalayan, etc.),
occurring in the core of Pangea, are predominantly characterized by collisional orogenesis and minor
episodic subduction. These major differences resulted in the production of lower volumes of magma
and limited transfer of material from the mantle to the lithosphere within slightly thicker lithospheric
sections (100–150 km) relative to thinner lithosphere underlying the external orogens (<100 km) [54].

Given the lack of clear evidence of correlations between lithospheric thickness and magma
composition, we can only speculate that crust thickened or thinned with the lithosphere. As discussed
in this paper, however, thickened lithosphere is a prerequisite for models of deep fractionation,
as well as models relying upon different degrees of mantle melting are modulated by lithospheric
thickness [19,20,25].

A test site was proposed by Turner et al. [25] for mafic magma emplaced in individual
stratovolcanoes along the western coast of South America. It confirms that Ca correlates negatively with
crustal thickness and similar results can be obtained using a different set of data from our database.
Igneous samples considered in Figure 10 crop out along the western margin of North and South
America, covering the compositional range of basalts to rhyolites (40–75 wt% SiO2). As illustrated by
Figure 7a, the Ca content of magma increases with decreasing crustal thickness although there is no
clear evidence of lithospheric increase along the strike of the belt [49,55].

How can we explain such an apparent difference between crust and lithosphere thickening along
the strike of the belts? First, the determination of the lithosphere-asthenosphere boundary (LAB)
below arcs and continents is surrounded by some uncertainties [56], blurring correlations of magma
composition with LAB, at the difference with Moho probed at the kilometer scale [9]. Secondly, it may
be argued that changes in lithospheric thickness due to tectonic and magma processes occur more
rapidly (or preferentially operated) in the crustal section than in the lithospheric mantle. Finally, it is
possible that that the crust and lithospheric mantle do not thicken proportionally. If this is the case,
effective changes in crustal thickness would be modulated by limited change of the mantellic section of
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lithosphere. Accordingly, Lee et al. [57] demonstrated that mountain elevation directly correlates with
the Moho depth, indicating that high elevations are isostatically compensated by crustal thickness,
with second order mantle contributions.

The corollary of our conceptual petrogenetic model (aimed at explaining what is behind our
new proxy) is that the thicker the existing crust and lithosphere, the deeper the potential reservoirs
(e.g., “deep hot zones”, Figure 1) and the higher the difference in iron and calcium between primary
and derived mafic magmas. The causes and consequences of such a deep fractionation of magma in
Proterozoic crusts can be now addressed.

4.5. Geodynamic Perspectives

Our new proxy using Ca content (wt%) in mafic lava (Figure 12a) suggests that the Archaean crust
(<35 km) thickened during the Proterozoic (>50 km) and thinned in the Phanerozoic, which is consistent
with results of Dhuime et al. [18]. If correct, this change in global crustal thickness likely resulted from
the interplay of several factors evolving throughout time and space, such as the secular cooling of
mantle and its continental crust, as well as changes in geodynamic processes with the development
of the plate tectonic regime we know today [30,42,58–60]. Such interplay potentially resulted in the
formation of the first supercontinent (Columbia) on Earth, toward ca. 1.8 Gyrs (Figure 12c).

Geological and palaeomagnetic evidence reveals that the supercontinent, Columbia, was formed
and stabilized between 1.8 and 1.3 Gyrs, undergoing limited reworking during its transformation
to Rodinia between 1.1 and 0.9 Gyrs [61]. Ernst [62] proposed that Columbia represents a period of
“lid tectonics,” with active subduction-related accretionary orogens focused along its margins during
the Earth’s middle age [63,64]. We suggest that the prolonged existence (~1 Gyrs) of Columbia either
contributed to or was the product of thick crustal sections within the supercontinent. One of the
characteristic features of the Proterozoic magmatic record is the temporally limited appearance of
massif-type anorthosites, largely between 1.8 and 1.0 Gyrs (Figure 12b), coincident with the existence
of Columbia. The genesis of anorthosite magmas is attributed the deep-seated emplacement and
partial crystallization of Fe-rich basalts, with the accumulation of buoyant plagioclase mush in magma
chambers at pressures of (11–13 kbar), whereby gravitational instabilities drive the subsequent diapiric
emplacement of the low density, plagioclase-rich mush at mid-crustal levels [41,65–69]. We propose
that the lower crust accumulation of Fe-rich magma was facilitated by thickened crustal sections
during the Proterozoic, potentially explaining the temporal distribution of anorthosite massifs in
Earth’s history [63]. The reasons why continental crusts thinned in the Phanerozoic, closing the
anorthosite factory, remain a challenge for future research. We posit that parts of the solution lie in the
increasing reworking of the lithospheric mantle at active plate margin during supercontinent drifts
([70] and Ref. therein) as subduction zones became more prominent and Plate Tectonics more efficient.
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