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ZOOLOGICAL RESEARCH

High egg rejection rate in a Chinese population of grey-
backed thrush (Turdus hortulorum)

DEAR EDITOR,

Several previous studies have indicated that nest sanitation
behavior is a general adaptation in altricial birds, with egg
recognition capacity evolving as a specific response to
interspecific brood parasitism (IBP). However, a recent study
suggested an alternative hypothesis, concluding that conspecific
brood parasitism (CBP) selects for egg rejection in thrushes,
with IBP as a by-product. In the present study, we used a
spectrophotometer to quantify egg coloration and egg mimicry
and performed artificial parasitism experiments in the grey-
backed thrush (Turdus hortulorum). We showed that individuals
of this species rejected 100% of 12 foreign eggs, without IBP
or CBP detected. In a review of previous studies, we also
discuss possible explanations for the high egg rejection rate in
the grey-backed thrush and suggest areas for future study.
Altricial birds have evolved advanced reproductive behavior
to increase the fitness of their offspring by building elaborate
structures (i.e., nests), in which they lay eggs and rear their
nestlings (Hansell, 2000). Bird nests not only provide a
suitable place for nestling development, but also act as a
concealed location for safety from predators. Furthermore,
bird parents have evolved nest sanitation behavior to clean
foreign objects from their nests, including feces, eggshells,
branches, and leaves, because they induce predation, facilitate
microorganism growth, damage eggs, or hurt nestlings during
brooding (Guigueno & Sealy, 2012). Therefore, nest sanitation
has evolved as a general behavior in altricial birds for
distinguishing between egg-shaped and non-egg-shaped
objects. This recognition capacity has further improved in
some species to facilitate detection of differences within eggs
(i.e., egg recognition) as a specific adaptation to avian brood
parasitism, where other birds lay parasitic eggs in nests that
are not their own, thereby reducing reproductive output of the
hosts (Davies, 2011; Yang et al.,, 2015a). Avian brood
parasitism can be classified as either interspecific brood (IBP)
or conspecific brood parasitism (CBP). Numerous empirical
studies have shown that IBP selects for the capacity of hosts
to recognize and reject foreign eggs (Davies, 2000; Liang et
al., 2016; Moksnes et al., 1991; Rothstein & Robinson, 1998;
Yang et al., 2010). Alternatively, the “collateral damage”
hypothesis states that CBP is responsible for egg rejection in
birds, with rejection due to IBP constituting a by-product of
host adaptations against CBP (Jackson, 1998). However, this
hypothesis failed to explain egg recognition by hosts because
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it was tested and supported in a single non-passerine bird
species (Lyon & Eadie, 2004, 2008). Recently, new research
re-examined this hypothesis and drew supportive conclusions
by testing it in two passerine species of thrush, that is, the
song thrush (Turdus philomelos) and European blackbird
(Turdus merula) (Samas et al.,, 2014a). However, Soler
(2014a) stated that, to date, there is no evidence of CBP
causing egg rejection in thrushes per se, though Samas et al.
(2014b) subsequently supported their conclusion with
empirical evidence. Similarly, Ruiz-Raya et al. (2016)
investigated recognition of conspecific or heterospecific eggs
in European blackbirds by manipulating the risk of CBP and
IBP, respectively. They found that blackbirds presented low
recognition of conspecific eggs even under high risk of CBP,
and thus their results supported the IBP hypothesis that egg
recognition has evolved and is maintained in blackbirds as a
response to previous cuckoo parasitism.

Here we performed an empirical study to test egg recognition
capacity in the grey-backed thrush. The main purpose of this
study was to provide initial information on egg recognition in
this species, which may facilitate further study. According to
previous studies on Turdus spp., we predicted that the grey-
backed thrush would not show egg recognition capacity
because no CBP or IBP has been found in this population. An
alternate prediction was also considered, that the grey-backed
thrush may also display egg recognition due to previous IBP
by cuckoos, which still affects host behavior.

This study was performed in Fusong County, Jilin Province,
China (N42° 19' 382", E127° 15" 107"), an area of secondary
forest fragmented by corn (Zea mays) crop farmland and
scattered plantations (dominated by larch Larix spp.), from
May to June 2013. This region is in the temperate zone at an
elevation of 481 m, with a continental monsoon climate
characterized by cold and snowy winters with an average
annual temperature of 4 °C. The grey-backed thrush belongs
to the Turdidae family and is mainly distributed in East Asia
(MacKinnon & Phillipps, 1999), where it chooses nest sites
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with short ground cover and a high density of small trees and
shrubs (Zhou et al., 2011). In our study site, open-cup nests
were built in trees (Figure 1A), and pale green eggs with
reddish markings were laid in these nests. (Figure 1B), with an
average clutch size of 4.42 eggs+0.51 (range 4-5 eggs, n=12).

Figure 1 Nest site, nest, incubating female, and eggs of the grey-
backed thrush (Photos by Long-Wu Wang)

All experiments complied with the current laws of China.
Experimental procedures were in accordance with the Animal
Research Ethics Committee of Hainan Provincial Education
Centre for Ecology and Environment, Hainan Normal University
(permit No. HNECEE-2012-004).

The appearances of the thrush and model eggs were
quantified with a spectrophotometer (Avantes-2048, Avantes,
Apeldoorn, The Netherlands). Six reflectance spectra were
measured in each egg and averaged to represent the color of
the egg. Model eggs were immaculate blue, a common coloration
of cuckoo eggs in China (Yang et al., 2010, 2012). Thrush
eggs are pale green with reddish markings and thus their egg
ground color and markings were measured, respectively.
Subsequently, egg spectra were loaded into AvaSoft 7.3, at
which the wavelength range of spectra varied from 300 to
700 nm. The spectral range of 300—400 nm and 400-700 nm
refers to ultraviolet (UV) light and visible light (VIS),
respectively (for details, see Yang et al., 2010, 2013).

Nests of the grey-backed thrush were found by searching
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potential nest sites and monitoring the activity of reproductive
adults. Nests were then randomly sorted into two groups: (1)
manipulated group into which one immaculate blue model egg
was introduced just after clutch completion (n=12) (Figure 2);
and (2) control group in which nests were visited by the same
procedure to control for human disturbance, but no manipulation
was made (n=10). Manipulation was performed in these
circumstances without observing hosts to avoid potential
effects of host observations on recognition (Hanley et al.,
2015). Observed nests were monitored for 6 d after manipulation
and the responses of thrushes to foreign eggs were classified
as rejection, if foreign eggs were ejected, pecked, or deserted,
or accepted if foreign eggs were intact and incubated (Yang et
al., 2010, 2014b). Model eggs were made by polymer clay
and their sizes were standardized to 25 mmx19.5 mm, similar
to thrush eggs (25.07+0.42 mmx19.74+0.71 mm, n=10).

Figure 2 Experimental nest of the grey-backed thrush with a blue
model egg (Photo by Long-Wu Wang)

The grey-backed thrushes laid pale green eggs with dense
reddish markings (Figure 1B). Egg reflectance analysis
illustrated that egg ground color was consistent with human
eye assessment, with a reflectance peak in the range of green
light (475-550 nm) (Figure 3). Similarly, the reddish markings
had a reflectance peak in the range 550-620 to 620-700 nm,
which represents yellow and red light, respectively (Figure 3).
The blue model egg had a reflectance peak in the range of
blue light (400—-475 nm) (Figure 3). The reflectance contrast
between trough and peak reflects chroma (or color saturation).
Therefore, blue model eggs were more saturated in color than
the thrush egg. In brief, the model egg was very different from
thrush eggs according to vision based on human eyes and
spectral reflectance. Experimental parasitism indicated that
the grey-backed thrush rejected all non-mimetic model eggs,
with a rejection rate of 100% (n=12). All rejections occurred
within a day (i.e., 24 h) and were all performed by ejection
without any recognition error. No rejection was found in the
control group (n=10).

This Chinese population of grey-backed thrush possessed
high recognition capacity, rapidly rejecting 100% of non-
mimetic foreign eggs. This contradicted our expectation that
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Figure 3 Egg reflectance of the grey-backed thrush and model eggs
Reflectance of thrush eggs was averaged from three eggs from the
nest in Figure 2.

grey-backed thrush should have no or low-level egg
recognition capacity because no CBP or IBP was detected in
our study population. Thus, this egg rejection ability of the
grey-backed thrush needs further investigation.

A recent study on artificial parasitism in song thrushes and
European blackbirds found unusually high rejection rates of
CBP (up to 60%) and positive co-variance with conspecific
population densities without risk of IBP (Samas et al., 2014).
Because IBP rejection rates did not covary geographically with
IBP risk (Grim & Stokke, 2016) and thus contradicted the IBP
hypothesis that egg recognition has evolved as a response to
IBP, Samas et al. (2014) concluded that egg recognition in
Turdus spp. has evolved as a response to CBP, not to IBP.
However, if egg rejection abilities can be maintained in the
absence of IBP, high egg rejection rates can still be retained
without geographic co-variation. Therefore, Soler (2014a)
criticized the conclusion of Samas et al. (2014) and argued
they made an invalid conclusion due to an out-of-date
theoretical background and a biased selection of references.
However, Samas et al. (2014b) argued that a theory is never
out of date and addressed the theoretical objections by
empirical evidence. Recently, Ruiz-Raya et al. (2016) further
tested egg recognition in blackbirds by manipulating the risk of
CBP and IBP and concluded that selection from IBP likely
accounts for egg recognition in blackbirds.

In our study population, grey-backed thrushes displayed
high recognition capacity of foreign eggs. It is generally
accepted that IBP rather than CBP contributes to egg
recognition in hosts. Firstly, egg recognition capacity is much
more unlikely to evolve in response to CBP than IBP because
IBP gives rise to dramatic fithess costs, which are much lower
than those from CBP (Petrie & Mgller, 1991). Parasites and
hosts with CBP are conspecific and share the same gene pool
and thus constitute much weaker selection than IBP (Ruiz-
Raya et al., 2016; Soler, 2014b). Furthermore, conspecific egg
phenotypes in CBP are too similar to initiate evolution of egg
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recognition (Soler et al., 2011). However, intraspecific variation
in egg coloration is high for some host species, and CBP may
account for the evolution of egg recognition (Cassey et al.,
2008a, 2008b; Hanley et al., 2017; Samas et al., 2014a).
Secondly, in order to select for conspecific egg rejection, the
level of CBP must be high. However, in our study population,
no CBP was detected. Similarly, Samas et al. (2014) described
that the rates of CBP were only 0%—-2.2% and 0%—3.1% for
the song thrush and blackbird, respectively. However, current
parasitism rates may not represent actual selection pressure
from IBP and CBP without considering other factors, such as
recognition error and rejection cost. Furthermore, because
egg rejection capacity has evolved in response to IBP, and it
can be maintained in the absence of IBP, this may also occur
in response to CBP but in its absence. Many currently
unparasitized potential host species exhibit a rejection rate of
nearly 100% (Lahti, 2006; Peer & Sealy, 2004; Yang et al.,
2014a, 2015b). For example, blackbirds were introduced in
the nineteenth century to New Zealand, where a high rejection
rate of non-mimetic eggs has been reported (62%, Samas et
al., 2014; 83.9%, Hale & Briskie, 2007), similar to the rejection
rate of 90% in Europe (Grim et al., 2014; Martin-Vivaldi et al.,
2012; Moskat et al.,, 2003). Moreover, a recent review
concluded that it is not correct to formulate predictions that
assume that rejection behavior of hosts must be lost in the
absence of obligate brood parasites (Soler, 2014b). Finally,
aggressive behavior towards adult cuckoos and reluctance to
feed cuckoo chicks has been empirically shown in thrushes
(Grim et al., 2011), providing evidence for contact with IBP in
the past, resulting in successful resistance against interspecific
brood parasitism (Ruiz-Raya et al., 2016). However, Samas et
al. (2014b) argued that aggression in blackbirds did not
specifically evolve in response to IBP because they are
aggressive not only to cuckoo dummies but also to any
intruders near their nests, including harmless pigeons (Columba
livia). Thus, switching to new types of food is an unlikely
defense against brood parasite chicks because such changes
would not prevent most costs from IBP (Grim et al., 2011;
Samas et al., 2014b). However, Ruiz-Raya et al. (2016) found
that blackbirds were able to recognize and eject heterospecific
eggs at high rates, whereas most conspecifics eggs were not
recognized. Moreover, ejection rates of conspecific eggs did
not exceed 13%, even in the presence of a high risk of CBP,
whereas ejection rates of experimental eggs simulating IBP
were much higher (80%—-100%). Female blackbirds were also
found to be more aggressive towards cuckoos than towards
blackbird dummies (Ruiz-Raya et al., 2016). Additionally, Ruiz-
Raya et al. (2016) estimated that the level of CBP necessary
to select for evolution of host response against conspecific
eggs would range from 55% to 65%. Because the grey-
backed thrush has retained a high level of egg recognition, the
rejection costs, which would contradict such maintenance,
should be negligible. According to our results, no rejection
cost was detected. Like blackbirds, the grey-backed thrush
also has a large bill to grasp foreign eggs for rejection.
Therefore, rejection costs should not prevent grey-backed
thrushes from retaining egg rejection capacity.



In summary, previous studies on thrush hosts have provided
inconsistent conclusions. This situation is complicated by the
explanation for one species not being suitable for another. Our
study provides preliminary information, and thus cannot offer
sufficient evidence to support either the IBP or CBP
hypothesis. However, considering that previous studies have
provided strong evidence that hosts affected by IBP can retain
egg recognition capacities after long-term escape from cuckoo
parasitism (Lahti, 2006), egg rejection capacity in grey-backed
thrushes may be maintained because parasitic cuckoos have
exploited this potential host in the past. Although theoretically
hosts may also retain egg recognition due to previous CBP,
like IBP, empirical studies are currently insufficient to clarify
this assumption. Furthermore, recent studies have revealed
that egg accepters can become rejecters after stimulation, in
all cases switching from acceptance to rejection, implying that
historical cases of IBP or CBP are considerably underestimated
in currently non-parasitized potential host species (Molina-
Morales et al., 2014; Yang et al., 2015b). Further studies
referring to egg color variation and recognition with different
degrees of egg mimicry are necessary in the grey-backed thrush
and even other species of Turdus. Such studies will help us
better understand the origin of egg recognition in thrushes.
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