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Amorphous carbon films are widely used for improving the surface mechanical properties of metallic materials,
substantially increasing the wear resistance [1,2]. Traditionally this type of film is obtained by vapor phase
methods, which, in spite of being in a high technical and scientific development level have been associated
with a number of limitations, in particular with regards to the implementation cost and large film production.
In this context, electrodeposition shows itself as an alternative to traditional methods: it has low cost and limits
the use of complex techniques, which generally require high temperatures and vacuumand cannot be applied for
coating on substrate with complex shapes and large dimensions. It is true that the electrodeposition of carbon
films also has experimental limitations, such as the limited deposition rate and, therefore, the aim of this work
is to investigate the influence of the ionic liquid 2 HydroxyEthylAmine Lactate (2HEAL) in obtaining amorphous
carbon films. An improvement in deposition rate by increasing electrolyte conductivity with the addition of ionic
liquid is expected. This work is meant to investigate the changes occurring in the films with the addition of ionic
liquid, especially from the standpoint of surface mechanical properties such as tribological behavior and interfa
cial properties. The results show that the addition of the ionic liquid led to change in the structure of the film,
resulting in an improvement in the mechanical properties, as observed by reduced friction coefficient. An in
crease of abraded area of counterface and an increase of elastic work also indicates that behavior.
Novelty statement: The aim of this study was to obtain carbon films by electrodeposition using 2
HydroxyEthylAmine Lactate doped N,N DiMethylFormamide as electrolyte, in order to increase deposition rate.
It will be the first report about the use of ionic liquids as dopants in the electrodeposition of carbon films.
In addition, mechanical properties of the obtained films were evaluated and their relationship with the amounts
of dopant was explored.
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1. Introduction

Carbon films present excellent tribological properties and they can
be used as coatings of metallic materials in various applications, espe
cially in order to increasewear resistance [1 5]. For this purpose, carbon
coatings show up as an interesting alternative coating of titanium alloys
for biomedical [6 9] and aerospace applications [10,11]. Traditionally
this type of coating is obtained by physical or chemical vapor deposition
[12 15]. However, these techniques are expensive and require complex
experimental apparatus. In this way, to obtain carbon films directly on
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the surface of titanium alloys, in an efficiently and economically viable
manner becomes a challenge.

In this context, the electrodeposition shows enormous potential,
especially for not requiring vacuum systems and high temperature
[16,17]. In addition, this technique allows coating components of
complex geometry and it has several operating parameters that allow
controlling the properties of the films. Typically, the electrodeposition
of carbon films uses organic solvents as electrolyte, and N,N
DiMethylFormamide (DMF) and ACetoNitrile (ACN) are among the
most widely explored in the literature [17,18]. However, the deposition
with these solvents leads to experimental limitations, in particular with
respect to deposition time and to voltage required for polarization, acti
vation and reaction of organic molecules [17].

Some work has been reported on the use of dopants in deposition
solutions, in order to increase the conductivity of the electrolyte.
These dopants are mostly aqueous solutions containing possibly some
kind of salt [19,20]. The problem of this dopant type is inevitable



occurrence of parallel reactions during the deposition and the compati
bility with the original organic solution.

Aiming to improve the characteristics of the electrolyte leading to an
increase in the deposition rate of the films, this research proposes the
use of ionic liquids as dopants, operating as supporting electrolyte and
consequently increasing the conductivity of the deposition solution
[21,22], favoring polarization of organicmolecules. After the deposition,
the differentfilms obtainedwere compared regarding theirmorpholog
ical, structural, tribological and mechanical properties, checking the ef
fect of doping on their characteristics.
Fig. 2. Conductivity of the tested electrolytes.
2. Materials and methods

The substrate used in this work was a titanium alloy, Ti6Al4V disks
that were mechanical polished using #600 #4000 SiC sandpaper and
subsequently polished with 1 μm size diamond paste. The samples
were cleaned with distilled water and ethanol.

Electrodeposition technique was used for the deposition of carbon
films. The cell was a traditional two electrodes: a working and a counter
electrode. The working electrode was the substrate sample itself, in a
Teflon holder, with a constant exposed area of 0.31 cm2, and the counter
electrode was a graphite plate, 10 mm distant from the working elec
trode. Temperature was kept constant at 20 °C using a thermostatic
bath. For the deposition, an electric voltage of 1200 V was applied be
tween the electrodes using a high voltage source, many authors report
ed this magnitude of voltage in order to obtain carbon films with
amorphous characteristics [18,23 25]. In all systems, the deposition
time was 24 h.

One of the most important parameters in the electrodeposition pro
cess is the electrolyte composition. In this work N N;
DiMethylFormamide (DMF) (FMaia 99%) was tested as electrolytes, as
well as mixtures of DMF and 2 HydroxyEthylAmine Lactate (2HEAL),
used as dopant, in order to increase the electrolyte conductivity, it is
common to use ionic liquids as support electrolyte in electrodeposition
process [26 29]. Normally, aprotic ionic liquids are used in this way,
however this kind of ionic liquid have high cost and low stability, for
this reason in this work a protic ionic liquid is used. Themain difference
of protic ionic liquids compared to the traditional aprotic is the presence
of at least a proton, which is/are able to promote extensive hydrogen
bonding [30]. In addition this family of ionic liquids are interesting alter
native due their low cost and simple synthesis rout [31]. Three concen
trations of this ionic liquid in the electrolyte were tested: 0.03 vol%
(DMF30LI), 0.05 vol% (DMF50LI) and 0.1 vol% (DMF100LI).
Fig. 1. AFM image of the polished substrate before deposition.
Morphology of the samples before and after the deposition of the
films was observed by atomic force microscopy (Shimadzu contact
mode, size 2 μm × 2 μm), scanning electron microscopy (Jeol, 6060,
20 kV, Secondary Electron and Backscattered Electron Imaging mode)
and optical microscopy (Keyence 3D optical microscope). The local
roughness was measured using the profiles of AFM. Raman spectrosco
py (Renishaw; laser 514 nm, 5 accumulations, exposure time 20 s
120 s) was used in order to analyze the type and amount of carbon
bonds in the structure of the film, this procedure allows evaluating the
type of amorphous carbon film obtained. The reference used for peak
position was based on the studies of Beeman et al. [32], Dillon et al.
[33] and Ferrari and Robertson [34].

Adhesion of the films was investigated by Scratch tests, with a Nano
Scratch Tester (CSM Instruments)with spherical diamond indenter (di
ameter of 5 μm) applying a progressive loading from 3 to 500 mN. The
facies and the optical critical loads of tracks were analyzed by optical
microscopy, and the elastic recovery of the groove was evaluated by
measuring the penetration depth during the scratch test and after the
test. The mechanical properties (Young's modulus, surface hardness)
were evaluated using nanoindentation test (UltraNanoIndenter, CSM
Instruments) with a normal force of 10 mN, with a modified Berkovich
indenter. The Oliver & Pharr analysis method [35] was used for
calculation.

Friction tests were performed on a linear ball on plate tribometer
(CSM Instruments). To evaluate the tribological behavior of the films,
sliding was conducted with a reciprocal linear motion of an alumina
ball (diameter of 6 mm). Constant normal force of 1 N, corresponding
to an average Hertzian pressure of 400 MPa; sliding speed of 0.63 cm/
s and track length of 2 mm were used. The dimensions and facies of
the tracks were evaluated by optical and electronic microscopy.

3. Results and discussion

The analysis of the substrate indicates that the mechanically
polished surface is characterized by a uniform texturing which could
favor the deposition, providing well distributed sites to anchor the
Table 1
Layer thickness of the films obtained from organic liquids with and
without dopant.

System Layer thickness (μm)

DMF 4.5 ± 0.2
DMF30LI 8.1 ± 0.4
DMF50LI 12.9 ± 1.8
DMF100LI 18.1 ± 0.5



Fig. 3. AFM image of the film surface obtained from: (a) DMF; (b) DMF30LI; (c) DMF50LI; (d) DMF100LI.
film, as shown in the AFM image (Fig. 1). The substrate presents very
low local roughness as showed in Fig. 4. However, after deposition
there was a clear change in the appearance of the surface: globular for
mations of the film onto the substrate lead to an increase in surface
roughness (Fig. 3a). This fact is associated with a phenomenon of pref
erential polarization, wherein the material is favorably deposited on
the substrate inhomogeneities or defects, such as peaks or valleys on
Fig. 4. Average local roughness of the studied systems obtained by AFM measurements.
the surface. As observed by Zhang [36] and Gupta [37,38], after the nu
cleation phase, the carbon nuclei come into a growth phase, and began
to thicken the film. As the deposition rate is low, the carbon globules
formed were coarse.

The insertion of protic ionic liquid in DMF increases the conduc
tivity of the solution as can be seen in Fig. 2, thereby increasing the
Fig. 5. Raman spectra of the films obtained from different electrolytes.



Table 2
Positions of the D and G bands and intensity ID/IG ratio for the films.

System D center (cm 1) G center (cm 1) ID/IG

DMF 1341 ± 0.58 1591 ± 0.6 0.73 ± 0.006
DMF30LI 1341 ± 0.60 1585 ± 2.5 0.67 ± 0.010
DMF50LI 1340 ± 1.53 1586 ± 0.6 0.69 ± 0.015
DMF100LI 1336 ± 1.15 1579 ± 1.5 0.72 ± 0.021

Table 3
Interfacial properties of the films obtained from different solutions.

System Welast/Wtotal Critical load to lateral pile-up formation [mN]

DMF 68% 11
DMF30LI 76% 35
DMF50LI 77% 35
DMF100LI 83% 40
electrodeposition current density and consequently increasing the
deposition rate (Table 1). AFM images of the films obtained from so
lutions containing 0.03 vol%, 0.05 vol% and 0.10 vol% of ionic liquid
Figs. 3b; c; and d, respectively show a globular structure with ag
glomerates constituting the film. The same mechanism of nucleation
and growth in thickness was observed. However, since the deposi
tion rate is higher for systemswith dopant, a larger quantity of nuclei
was formed, followed by growth in thickness. This effect, locally ob
served by AFM, showed a structure with finer agglomerates with in
creasing amounts of dopant, leading to increased local roughness
(Fig. 4), as observed by Zhang [36].

In addition, the presence of dopant caused a progressive increase in
the thickness of the films measured from cross sections by scanning
electron microscopy, as can be seen in Table 1. This increase is related
to the higher conductivity of the electrolyte and the consequent in
crease in current deposition, leading to a higher deposition rate. In
fact, the films obtained without the dopant showed a deposition rate
of 190 nm/h while the addition of 0.1 vol% of 2HEAL led to an increase
to rates around 750 nm/h.

Regardless of presence or absence of ionic liquid in the deposition
solution the films have typical characteristics of amorphous carbon
films, as can be observed in the Raman spectra (Fig. 5). These spectra
show the presence of G band associated with the presence of sp2 type
hybridizations and D band associated with the disorder of sp2 bonds,
this disorder may be associated with the presence of carbon atoms
bonds with sp3 type hybridizations.

The positions of D andG and the ID/IG ratio can be correlatedwith the
percentage of four fold coordinate bonds, characterizing the sp3 type
hybridizations [32] and the number and/or size of graphite crystallites
[33]. The ID/IG intensity ratio was calculated and the valueswere around
0.73 for DMF and between 0.67 and 0.72 for the systems that uses ionic
liquids as dopants in the deposition solution. The crystallite size could
be calculated through the linear model proposed by Dillon et al. [33],
leading to typical crystallite size of 25 nm. These values are consistent
with those proposed in the literature, both for films obtained by electro
deposition, as those obtained by vapor phase techniques. As reported by
Dines [39], a C carbon films obtained by PVD can present ID/IG ranging
between 0.82 and 1.62. Carbon films obtained by electrodeposition
Fig. 6. Scratch tracks of the films obtained from: (a) D
using organic liquid and organic liquids in aqueous solutions showed
ID/IG between 0.4 and 1.4 [38,40 42].

The analysis of D and G bands enables interpreting the influence
of the ionic liquid in amount of sp3 hybridizations and graphite crys
tallites [34,43]. All the films presented a graphitic character with
presence of graphitic clusters. Fig. 5 and Table 2 show the depen
dence of ionic liquids content in the position and intensity of D
and G bands. The position of D band shifted slightly down with in
creased amount of dopant, while the ID/IG ratio shifted slightly
upwards, which could indicate a greater amount of sp3 hybridiza
tions and a reduction in number and/or size of graphite crystallites
when the amount of ionic liquid increases. However, the most no
ticeable effect is the downward displacement of the G band with
the amount of dopant, possibly indicating a reduction in the amount
of sp2 hybridizations.

Changes in the structure of the carbon films influenced their physi
cochemical characteristics and therefore their properties. From the
viewpoint of surface mechanics, scratch tests showed that the films ob
tained from DMF showed no delamination of the coating, only lateral
material displacement was observed, with lateral pile up formation,
which indicates good adhesion between the film and the substrate, as
can be seen in the images of scratch tracks in Fig. 6 but plastic character.
Plastic deformation indeed occurs at the beginning of the test, indicating
that the minimum load is sufficient to permanently deform the films.
The addition of ionic liquid to deposition solution did not affect signifi
cantly the interfacial properties of carbon films, in the same way as for
systems without dopant are observed scratch tracks with plastic defor
mation since the beginning of load application, but induce a shift in the
critical load value for lateral pile up formation

Lateral pile up formation begins for slightly higher loads for the
systems with addition of ionic liquids (Table 3). In the case of pure
DMF, the critical load to lateral displacement was 11 mN and after
addition of dopant, critical loads ranged from 35 mN to 40 mN.
There appears to be no significant influence of the amount of ionic
liquid to the critical load of material displacement because even
low dopant concentrations have increased their value, and the addi
tion of a greater amount does only result in a slight increase in re
sistance to displacement. This increased resistance to lateral pile
MF; (b) DMF30LI; (c) DMF50LI; (d) DMF100LI.



Fig. 9. Long duration friction test for DMF50LI system.

Fig. 7. Influence of the dopant in the hardness and the Young modulus of the film
compared to the uncoated substrate.
up plastic formation can be related to the increase of the elastic
nature of the films obtained with the addition of dopant, as evi
denced by an increase in elastic work ratio during scratch test
shown in Table 3.

Nanoindentation tests performed on the top surface of the studied
films result in dispersed values of surface hardness. Probably this is re
lated to the lack of surface homogeneity of the films in relation to the
low load applied during the tests. Nevertheless, the substrate presents
hardness reliable with titanium alloys, around 4400 MPa [44,45].
Among the films all had the same hardness range of between
3000 MPa and 3500 MPa (Fig. 7). These values are relatively smaller
than those traditionally found by carbon films with high amount of
sp3 hybridizations, between 10 GPa and 30 GPa [43,46 49], however,
were consistent with those observed by Thejaswini et al. in the case of
sp2 rich films [50].

Young modulus of uncoated substrate (125 GPa) and films obtained
with and without addition of ionic liquid are shown in Fig. 7. Substrate
presents values befitting to the literature [44,45,51]. In the case of car
bon films, a reduction in elastic modulus with increasing the amount
of ionic liquidwas observed; this is in good agreementwith the increase
of the elastic nature of the films as evidenced by scratch tests (Fig. 7).
Chung et al. [52] studied the deposition of amorphous carbon films
onto Si by PlasmaAssisted CVD (PACVD) andproposed a direct relation
ship between the reduction of elastic modulus to the shift in G band to
Fig. 8. Influence of the dopant in the Coefficient Of Friction (COF) for the film compared to
the uncoated substrate.
lower wavelengths, the same behavior was observed with the addition
of ionic liquid. Furthermore Jardret et al. have shown that the propor
tion of plastic deformation during scratch test increases with the E/H
ratio [53]. This could explain the increase of the elastic deformation
ratio with the dopant addition.

Observing comparatively the coefficient of friction (COF) curves for
all systems studied (Fig. 8) is quite clear the influence of the type of elec
trolyte in the mechanical characteristics of the surface of the coated
systems.

The coefficient of friction of the uncoated substrate showed an
initial period in which polished substrate sliding against the alumina
ball, followed by a period where COF oscillates around a mean value.
This is due to the presence of a large number of particles (third body)
arising from the worn substrate in the contact with the counterface
[54]. When these particles were removed from the interface during
the test, there was a reduction in the coefficient of friction which in
creased again when new particles are formed and injected into the
contact interface.

For the friction tests on the sample coated with a film obtained from
DMF, the initial profile present very low COF values, between 0.2 and
0.3; this value were in agreement with typical carbon films for similar
sliding conditions [15,20,55] and remains in this range until three me
ters slip. Thereafter, the film began to delaminate and consequently
the COF began to increase and goes to values around 0.7, these values
coincide with those of the uncoated substrate.

Films obtained from DMFwith addition of ionic liquid exhibited low
coefficient of friction in relation to sliding distances tested. The system
that used 0.03 vol% dopant showed a progressive increase in the coeffi
cient of friction did not exceed 0.5. Even though slightly above typical
COF of amorphous carbon films, it was still relatively lower than the un
coated substrate. For the filmswith higher ionic liquid concentration, in
the case of adding 0.05 vol% or 0.10 vol% the coefficient of friction was
lower than 0.25 throughout the sliding distance tested. This behavior
Fig. 10. Appearance of uncoated substrate wear: (a) track; (b) counterface.



Fig. 11. Appearance of film obtained from DMF wear: (a) optical image of track; (b) SEM image of track; (c) counterface.
is associated to the structure of the film, with increased amount of sp3

hybridization giving better surface properties while the presence of cer
tain amount of hybridization sp2 imparts a self lubricating nature to the
films.
Fig. 12. Appearance of wear tracks: (a) DMF30LI; (c) DMF50LI; (e) DMF100LI; and
counterfaces: (b) DMF30LI; (d) DMF50LI; (f) DMF100LI.
The friction coefficient observed for the films obtained from DMF
with addition of ionic liquid, remained low in long term tests, without
showing catastrophic wear of the film even after significant worn dis
tances (Fig. 9).

The analysis of uncoated substrate wear tracks showed typical
scratch marks of abrasive wear both on the track (Fig. 10a) and on the
counterface side (Fig. 10b). Material transferred to the counterface sur
face (Fig. 10b), typical of adhesivewear, was also observed. Considering
these two phenomena thewearmechanism of the substrate was a mix
ture of abrasive and adhesivewear, as expected for wear ofmetallicma
terials [56].

The appearance of the wear tracks and the alumina counterface for
the coated system indicated the same mechanism observed for uncoat
ed substrate, scratch marks of abrasive wear can be viewed in SEM
Fig. 13. Influence of dopant in the track width and counterface abraded area.



Fig. 14. Relationship between wear, Raman and interfacial parameters of the films.
image (Fig. 11b). However, there was a reduced wear evidenced by the
large reduction in trackwidth (Fig. 11a) and the abraded area in the alu
mina ball Fig. 11c). There appears to be less amount of material trans
ferred to the counterface, as shown in Fig. 11c.

The addition of ionic liquid to the electrolyte resulted to a change in
thewear mechanism: without scratchmarks of abrasive wear (Fig. 12a,
c and e), both in the film and in the counterface. While the analysis of
the counterface (Fig. 12b,d and f) shows adhered material, indicating
adhesive wear mechanism, with presence of debris shifted to the ex
tremities of the abraded area. This change of wear mechanism may be
associated with more elastic character of these coatings as shown by
the interfacial behavior analysis (Table 3).

Comparative analysis of wear tracks and counterfaces (Fig. 13)
showed that, regardless the presence and amount of ionic liquid, there
was no significant change in the width of the wear tracks. On the
other hand, an increase in the abraded area of the sphere was observed
with addition of small amounts of dopant, and an even greater increased
with the addition of larger amounts of dopant. This phenomena is in
good agreement with the increase of the contact area due to the reduc
tion of Young modulus predicted by the Hertz contact model. The ex
pected contact diameters for the test configurations are between
0.63 μm and 0.65 μm, in concordance with de values reached for the
track width of the coated systems.

This increase of abraded area could be related with the amount of
sp2 hybridizations in the film, the displacement of G band to lower
wavelengths evoked the reduction of amount and size of graphite
clusters in the film, this reduction limited the lubricating character
istics, increasing counterface wear. Fig. 14 shows that additions of
small amounts of dopant led a significant influence in graphite clus
ters, which means there was an important increase in counterface
wear.

4. Conclusions

The films obtained had typical characteristics of amorphous carbon
structure, formed by sp3 and sp2 bonds and presence of graphite clus
ters. Ionic liquid influenced the structure of thefilm, probably increasing
the amount of sp3 bonds and reducing the amount sp2 hybridizations,
even if a more detailed and in depth Raman analysis, beyond the
scope of this paper, would benecessary to better understand the coating
structure. This amorphous carbon nature gave thefilm interesting prop
erties with regard to wear resistance, reducing the COF for much lower
(0.25) than the uncoated substrate values (0.7). An optimum combina
tion between the amount of sp2 and sp3 hybridization was observed for
the films obtained from DMF with 0.05% of 2HEAL, resulting the lowest
COF value, which was accompanied by intermediate wear against the
face of alumina.

It was observed good adhesion between the film and the substrate,
which showedonly lateral pile up pad formationwithout delamination,
regardless the presence or absence of dopant in the deposition solution.
The ionic liquid addition led to an increased resistance to lateral pile up
pad formation, which was observed to four times higher loads for sys
tems containing dopant. Furthermore, addition of dopant modified
elastoplastic character of the films, being observed an increase in the
percentage of elastic work with the amount of ionic liquid, this influ
enced the wear mechanism, reducing the abrasive nature and leading
to a more adhesive nature for the wear, possibly allowing easier
tribofilm formation. No clear evidence of hardness evolution could be
shown but there was a tendency of reduction of Young modulus with
increasing amount of dopant, in good agreement with the increase of
the elastic recovery obtained by scratch tests.
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