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Abstract: It is suggested that several compounds, including G-quadruplex ligands, can target
telomeres, inducing their uncapping and, ultimately, cell death. However, it has never been
demonstrated whether such ligands can bind directly and quantitatively to telomeres. Here,
we employed the property of platinum and platinum-G-quadruplex complexes to target G-rich
sequences to investigate and quantify their covalent binding to telomeres. Using inductively coupled
plasma mass spectrometry, surprisingly, we found that, in cellulo, in the presence of cisplatin,
a di-functional platinum complex, telomeric DNA was platinated 13-times less than genomic DNA
in cellulo, as compared to in vitro data. On the contrary, the amount of mono-functional platinum
complexes (Pt-ttpy and Pt-tpy) bound either to telomeric or to genomic DNA was similar and occurred
in a G-quadruplex independent-manner. Importantly, the quantification revealed that the low level of
cisplatin bound to telomeric DNA could not be the direct physical cause of TRF2 displacement from
telomeres. Altogether, our data suggest that platinum complexes can affect telomeres both directly
and indirectly.

Keywords: telomeres; platinum complexes; cisplatin; G-quadruplex; TRF2

1. Introduction

Telomeres are specialized nucleoprotein structures that protect chromosome ends from being
recognized as double strand breaks. In humans, telomeres are formed by a complex six proteins,
TRF1, TRF2, TIN2, POT1, RAP1, and TPP1, named the shelterin, which prevents activation of
the DNA damage response (DDR), protects against Non-Homologous End Joining (NHEJ) or
Homologous Recombination (HR) repair pathways, and assists telomere replication [1]. Among
the shelterin components, two proteins that bind directly to the double strand telomeric DNA,
telomeric repeat-binding factors 1 and 2 (TRF1 and TRF2), are important components for telomere
maintenance [2,3]. TRF2 has a critical role in the inhibition of ATM (ataxia telangiectasia mutated)
kinase DDR pathways, as well as in the NHEJ and HR mechanisms [4–6]. Thus, TRF2 gene inactivation
is embryonically lethal because of ATM activation and telomere fusions. While TRF1 plays a distinct
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role on telomeres, it prevents replication fork stalling and ATR (Ataxia telangiectasia- and Rad3-
related) activation.

Since telomeric DNA consists of repeated G-rich sequences (TTAGGG)n, it can adopt
G-quadruplex structures (G4), resulting from the stacking of consecutive guanine tetrads [7].
Many studies have provided evidence for the formation of such structures in vivo, including their
visualization by G-quadruplex antibodies [8] and next-generation sequencing [9]. Computational
analyses of the human genome [10,11] strengthens additional evidence. However, these studies have
not only highlighted enriched G4 potential forming sequences in telomeres (5–20 kbp), but also in gene
promoters and at the border between introns and exons [12]. These non-canonical secondary structures
have been associated with a number of key biological processes, such as telomere maintenance,
replication, transcription, splicing, and translation [13]. Since the G4 have been proposed to be
a druggable target [14], many small synthetic molecules (G4-ligands) able to stabilize G4 have
been designed and synthesized [7,15]. It has been reported that G4-ligands can affect telomere
replication [16,17] and transcription and the stability of telomeric protein complexes. G4-ligands were
first shown to inhibit telomerase activity. By blocking the 3’ single stranded extremity of telomeres
structured in G4, G4-ligands prevent telomere extension by telomerase, leading to a progressive
shortening of the telomeres and cell death [18]. Indeed, telomerase is a ribonucleoprotein, which is
reactivated in 80% of cancerous cells and provide them with an unlimited proliferation due to its ability
to maintain telomere length [19]. Besides this role, G4 ligands can also induce the displacement of TRF2
from telomeres to the nucleoplasm, without any apparent degradation of the TRF2 protein. This leads
to telomere uncapping, cell cycle arrest, or apoptosis [20–23]. Metallic complexes are particularly
suitable as G4-ligands [24,25] that can disturb telomere functions [26–31]. Among them, some PtII

complexes bearing a labile halogen ligand (Cl− or I−) are capable of interacting with the G4 by direct
coordination to the nucleobase (adenines or guanines) and trap them irreversibly [29,32–36] after
stacking to the structure [37]. In cellulo, we have shown that hybrid platinum complexes combining
a platinum complex to a G4-ligand within the same molecule, MPQ (mono-para-quinacridine) [38],
or PDC (pyridodicarboxamide) [35] induce a significant loss of TRF2 from the telomeres associated
with telomere dysfunctions. The displacement of TRF2 caused by the hybrid platinum complexes
was higher than the one seen with its individual components, demonstrating a synergistic effect
between the coordinating PtII moiety and the G4-ligand to trigger telomere dysfunctions. All together,
these results suggest that the binding of platinum complexes to telomeric DNA can prevent TRF2
binding to telomeres, and, thus, induce its delocalization from telomeres. The following data from
the literature support this hypothesis. Unquestionably, in vitro studies have shown that cisplatin,
a well-known chemotherapeutic agent that cross-links adjacent guanines [GG] in duplex DNA [39],
binds efficiently to telomeric DNA with a two to three fold preference relative to genomic DNA,
in accordance with the higher probability of finding adjacent guanines in telomeric DNA [40–43],
and prevents TRF2 binding to telomeric DNA in vitro [44]. Moreover, a few studies have investigated
the cellular effects of cisplatin [45] on telomeres, pointing out a possible interaction of this drug with
telomeric DNA. We have shown that cisplatin induces TRF2 displacement from telomeres in HT1080
cells [38]. Telomere shortening has been observed after a short-term cisplatin treatment (HeLa and
hepatoma cells) [46,47], suggesting an uncapping of telomeres. A gradual shortening of telomeres has
also been observed in NER (nucleotide excision repair) deficient yeast cells [48], implying that the NER
pathway involved in the reparation of cisplatin adducts [49] may play a critical role in the repair and
maintenance of damaged telomeres [43]. This may be related to a recent study that has shown that
NER is active at telomeres since it removes the photoproducts cyclobutane pyrimidine dimers faster
than the bulk genome [50]. In contrast, other studies performed in three cell lines (neuroblastoma,
HeLa, acute lymphoblastic T cell) showed no telomere length modifications independently from their
initial length (4–80 kbp) [51].

Herein, we quantified the amount of platinum adducts bound to telomeres following cell
treatments with either cisplatin or two terpyridin platinum complexes, Pt-ttpy (tolyl terpyridin
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platinum complex), a G4-ligand shown to preferentially coordinate G4 structures [34], and its
derivative, Pt-tpy (terpyridin platinum complex), a non-selective G4-ligand [34] (Figure 1). We showed
that all platinum complexes employed bind to telomeric DNA, in cellulo. In detail, terpyridin
platinum complexes showed an equal distribution on both telomeric and genomic DNA, while,
conversely, cisplatin showed a slight preferential binding towards genomic DNA compared to
telomeres. These results suggest a specific protection of telomeres from platination by cisplatin.
We propose that this protection may result from a more efficient removal of cisplatin adducts by NER
at telomere loci than at genomic loci. Importantly, we demonstrated that the amount of cisplatin bound
to telomeres was not sufficient to explain TRF2 displacement by binding impairment.
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Figure 1. Chemical structures of cisplatin (cis-Pt), toly-terpyridin-platin, Pt-ttpy, and terpyridin-
platin, Pt-tpy.

2. Results

2.1. Validating Cellular Model and Telomere Purification Conditions

To study the association of platinum complexes to telomeres, we chose the ovarian cancerous
cell line, A2780, and its cisplatin resistant counterpart, A2780cis. It has been previously reported that,
in A2780cis cell lines, cisplatin resistance was mainly due to a reduced cellular cisplatin uptake and an
increase of or more efficient repair mechanisms [52].

Since telomeres represent less than 0.026% of the human genome, a large amount of genomic DNA
was required to obtain enough telomeres to quantify a potential binding of platinum. Starting from
200 million cells (corresponding to 1.5 to 2 mg of genomic DNA), we obtained about 150 ng of telomeres
following a purification method previously described and adapted [53]. To be noted, after digestion
of genomic DNA by endonucleases, telomeres were purified by hybridization with a biotinylated
telomeric C-rich strand oligonucleotide. The success of this procedure relies on the presence and full
accessibility of the 3’G-rich overhang sequence located on the telomeres. Consequently, the integrity of
the 3’G overhang after DNA extraction from treated and untreated cells was verified using the native
hybridisation of the 3’G-overhang protocol by the C-rich telomeric radioactive probe [21]. Our results
showed that our DNA extraction conditions preserved the 3’overhang intact and that the procedure
did not modify the capacity of hybridization of the probe to the 3’G-rich overhang (Figure S1a).
Moreover, we confirmed this result by UV melting temperature experiments. Since cisplatin GG
adducts were known to affect the melting temperature of duplex oligonucleotides [54], we purified
the cisplatin-GG adducts formed on the telomeric sequence (TTAGGG)4 by gel electrophoresis,
as previously described [44], and determined the UV melting temperature of its duplex form compared
to the one of the non-modified duplex (Figure S1b). As expected, the presence of a cisplatin
DNA-adduct reduces the melting temperature from 56 to 42 ◦C and, importantly, these conditions
remain fully compatible with the telomere purification procedure. The integrity of the purified
telomeres was assayed by teloblot (Southern blotting and hybridization with a luminescent telomere
specific probe) (Figure 2a,b). Of note, both cell lines displayed a slight difference in telomere length
(3.5 kb for A2780 cells compared to 2.5 kb for A2780cis cells).
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Figure 2. Telomere purification assay. Digested genomic DNA (4 µg) (lane 1) and isolated telomeres
(2 ng) (lane 2) from A2780 cells (a) and A2780cis cells (b) were electrophoresed on a 0.6% agarose gel.
Telomere restriction fragments were visualized using a luminescent telomeric probe. Size markers are
shown on the left of each figure. (c) Relative enrichment in telomeres in the telomere purified fraction
measured by qPCR compared to a range of non-digested genomic DNA.

The enrichment in telomeric sequences in the telomere fraction compared to genomic DNA was
evaluated by two methods, namely teloblot and real-time telomere PCR [55,56]. By employing the
first method, we found that the signal intensity corresponding to 2 ng of telomeres loaded on the
gel was similar to that of 4 µg of genomic DNA. By employing the second method, the standard
real-time telomere PCR assay [55,56], we verified that the SYBR green amplification signal was
proportional to the genomic DNA amount (Figure 2c) and, consequently, to its telomere content.
Moreover, the telomeric signal of A2780cis cells represents 85% of the telomeric signal of A2780 cells,
which is consistent with the slightly shorter length of telomeres in the A2780cis cell line compared to
the parental A2780 cells. Therefore, the relative amount of telomeric DNA in each purified telomere
fraction could be evaluated: The signal intensity of 0.015 ng purified telomeres corresponds to that of
65–70 ng genomic DNA, indicating significant telomere purification (factor 5000) (Figure 1c).

2.2. Platinum Complexes Bind Covalently to Telomeres in Cellulo

The amount of cisplatin bound to genomic DNA after 96h cell treatments (0.6 µM and 6 µM
for A2780 and A2780cis cells, respectively) was quantified in one of our previous study, giving
0.2 pg Pt/µg DNA for A2780 and 0.6 pg Pt/µg DNA for A2780cis [57]. This level of platinum could
be easily detected because of the large amount of genomic DNA used for the quantification (20 µg).
However, the telomeric DNA (150 ng) that can be purified was not sufficient to allow detectable levels
of platinum bound. Indeed, after 96 h treatment by cisplatin in the above conditions, no platinum was
detected in the purified telomeres from both cells lines, suggesting either an absence of platinum bound
to them or rather the total amount of platinum was too low to be detected. To increase the amount
of platinum complexes bound to DNA, we modified the conditions of the treatment by improving
the time and the concentrations of platinum complexes. Cell treatments with 50 µM cisplatin for
8 h increased considerably the amount of cisplatin bound to genomic DNA: 62 pg Pt/µg DNA and
55 pg Pt/µg for A2780 and A2780cis cells, respectively (Figure 3b,e). The differences in cellular
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uptake and Pt binding to DNA in favor of A2780cis cells were consistent with the expected resistance
phenotype [52,57–59], since it is known that cisplatin resistance in A2780cis cells is related to the lower
uptake of the drug due to a mutation in the copper transporter, CTRl1. The fraction of living cells after
24 h of cisplatin treatment was 60 and 80% for A2780cis and A2780, respectively, whereas it was 100%
after treatment by both terpyridin platinum complexes in both cell lines.
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Figure 3. Quantification of the intracellular levels (left panel), of cisplatin, Pt-ttpy and Pt-tpy after 8 h
treatment with 50 µM platinum complexes of A2780 cells (a–c) or A2780cis cells (d–f); of platinum
bound to genomic DNA (middle panel) and bound to telomeric DNA (right panel).

Since the 50 µM treatment allowed an increase by a factor 300 of the amount of cisplatin bound
to genomic DNA, this condition was selected for platinum bound to telomere quantification for the
three platinum complexes. While both terpyridin platinum complexes accumulated in treated cells
at a higher level than cisplatin (in A2780, 3- and 10-fold accumulation and in A2780cis and 3- and
21-fold accumulation for Pt-ttpy and Pt-tpy, respectively) (Figure 3a,d), the amount of Pt-ttpy and
Pt-tpy bound to genomic DNA was less important than that of cisplatin (in A2780, 18–27 fold less and
A2780cis and 32–50 for Pt-ttpy and Pt-tpy, respectively) (Figure 3b,e).

Of note, the higher accumulation of Pt-ttpy and Pt-tpy concomitantly with a lower DNA binding,
as compared to cisplatin, seems to be a general trend since it has already been reported for many other
platinum complexes [35,38,57,60,61]. These results suggest that either the adducts are more efficiently
repaired than those generated by cisplatin and/or their covalent binding to DNA is less efficient [62].
Interestingly, in contrast to cisplatin, the amount of Pt-ttpy and Pt-tpy uptake was the same in both
cell lines, but the amount of complexes bound to DNA was reduced in A2780cis cells, suggesting a
more efficient repair mechanism in A2780cis cell lines as already reported [63].

Interestingly, we demonstrated for the first time that all three platinum complexes bind to
telomeric DNA (Figure 3c,f). Independently from the cell line, a similar amount of Pt-ttpy and Pt-tpy
was found at telomeric DNA and at genomic DNA; in contrast, the amount of cisplatin bound to
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telomeric DNA is 5-fold lower than to genomic DNA (Figure 3c,f). The preference of telomeric versus
genomic DNA was thus dependent on the nature of the platinum complex.

2.3. Platination of Telomeres by Cisplatin is not the Direct Cause of TRF2 Removal

Cisplatin has been shown to induce a 20-fold reduction of the capacity of TRF2 to bind telomeric
DNA in vitro; [44] by interfering with the protein recognition sites and inducing a partial concentration
and time dependent displacement of TRF2 from telomeres in cellulo [38]. Therefore, we wonder
whether cisplatin adducts may also affect TRF2 binding to telomeres in living cells. Chromatin
immunoprecipitation (ChIP) followed by dot-blot experiments were performed to quantify the amount
of TRF2 associated with telomeres after cell treatments with 50 µM for 8 h. In these conditions, cisplatin
treatment only induced a significant decrease in the binding of TRF2 to telomeres (30%) (Figure 4).
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Pt-ttpy, or Pt-tpy for 8 h at 50 µM using anti-H3 and anti-TRF2 antibodies. The telomeric sequences
immunoprecipitated by the anti-TRF2 or the anti-H3 antibodies were visualized after incubation of
the dot blot membrane with a α 32P radiolabelled 800 pb telomeric probe (a); signal normalization
was performed after hybridization of the same membrane with α 32P radiolabelled Alu sequences
(b); two hundred nanograms of DNA were blotted for each ChIP sample. For the INPUT, 200, 100,
and 50 µg of total DNA were blotted; (c) quantification of three ChIP experiments performed as in
(a). Data were expressed as a percentage of the telomeric DNA signals in treated vs untreated cells.
Quantitative values of the telomeric DNA signals are calculated as the ratio between the telomeric
DNA signal precipitation and telomeric DNA signals in the INPUT for the same amount of blotted
DNA. These values have been normalized to the amount of blotted DNA for each sample quantified
by the non-specific Alu probe, following the formula: (telomere IP/telomere INPUT)/(Alu IP/Alu
INPUT). (Means of at least three experiments) * Indicates a Mann and Withney test p-value p < 0.05
(GraphPad PRISM software, RITME, Paris, France).

These results were confirmed by immunofluorescence experiments showing a significant TRF2
foci decrease in cisplatin-treated cells only (Figure 5).

10 pg Pt was bound per µg of telomeric DNA (corresponding to 5 × 10−14 mole of
Pt/3 × 10−9 mole of base), which gives a ratio of 0.00016 Pt bound per 100 bases. Considering
that the amount of TRF2 bound to telomeres already estimated between 1.8 and 21 TRF2 molecules
bound per 100 bases depending on the telomere length [64], our quantification implies that the amount
of cisplatin bound to telomeres is too low to explain the removal of 30% of TRF2 from telomeres by a
direct physical impairment of protein binding.
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Figure 5. TRF2 foci quantification detected by immunofluorescence on A2780 and A2780cis cells
treated with cisplatin, Pt-ttpy, and Pt-tpy for 8 h at 50 µM; (a) A2780 cells were processed for
immunofluorescence using antibodies against TRF2; (b) % of TRF2 foci after A2780 cell treatments with
cisplatin, Pt-ttpy, and Pt-tpy (c) % of TRF2 foci after A2780cis cell treatments with cisplatin, Pt-ttpy,
and Pt-tpy (mean of at least three experiments). * Indicates a Mann and Withney test p-value p < 0.05
(GraphPad PRISM software, RITME, Paris, France).

3. Discussion

That telomeres have been proposed as targets of G4-ligands was demonstrated primarily by
indirect experiments, including the induction of telomere dysfunctions [20–23,26–30,35,38]. Direct
evidence of telomere targeting has been obtained using a radiolabeled G4-ligand, 3H 360A [65]. Twenty
five percent of 3H 360A was localized at the chromosomes ends. This G4 structure repartition has
been confirmed by cellular immunofluorescence experiments using anti-G4 antibodies [8]. Platinum
complexes, which were easily detected by ICP-mass, are alternative chemical tools of choice to study
telomere targeting by drugs. Here, we showed that telomeres are directly targeted by platinum
complexes. Surprisingly, the repartition of covalent platinum adducts between telomeric and genomic
DNA did not depend on the capacity of platinum complexes to recognize G4, but rather depended
on the platinum complex reactivity (mono- or di-functional). Pt-ttpy and Pt-tpy, as mono-functional
platinum complexes, can coordinate only one guanine whereas cisplatin mainly crosslinks two adjacent
guanines, GG [66]. A purely random genomic DNA would be expected to consist of 25% as guanine
sites, a ratio that is the same than in the double stranded telomeric DNA repeat, TTAGGG/CCCATT.
Therefore, since the level of Pt-ttpy and Pt-tpy bound to telomeric is similar to that bound to genomic
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DNA, it suggests that the binding of these drugs is dictated by the guanines’ densities. In contrast,
the lower amount of cisplatin bound to telomeric DNA, as compared to genomic DNA, is unexpected
given the previous in vitro results. Indeed, in vitro, platination of telomeric DNA by cisplatin is
2.6 times more efficient than genomic DNA data that have been correlated to the enrichment in GG
sites in telomeric DNA as compared to genomic DNA (2.6-fold) [40,42,43,67]. Therefore, considering
the in vitro data, the in cellulo telomeric platination is 13-fold less efficient than expected.

The unexpected low ability of cisplatin to bind telomeric DNA compared to genomic DNA in vivo
may be related to NER, the main pathway used to repair cisplatin adducts. Indeed, it was shown
that NER participate actively in telomere integrity since the removal of photo-adducts at telomeres
is dependent on the NER pathway, which operates at 1.5-fold faster than in the bulk genome [50].
Consequently, this suggests that terpyridin platinum complexes may be less efficiently repaired by
NER at telomeres. One might also consider that the shelterin complex bound to telomeric sequences
prevents the platination reaction, as compared to the histone environment in genomic DNA. However,
this latter possibility is not supported by our data, with Pt-ttpy and Pt-tpy showing a similar platination
of telomeric and genomic DNA. Since Pt-ttpy is a G4-ligand, it would have been expected that it would
bind more efficiently to telomeres that are prone to form G4 [8] and to be bound by G4-ligands [65].
Our results show that Pt-ttpy covalently associates to telomeres as efficiently as Pt-tpy, indicating that
this binding is independent of G4 recognition. Nevertheless, we cannot exclude the hypothesis that
Pt-ttpy recognizes and stabilizes telomeric G4, but without trapping covalently this structure in a
cellular context. This result highlights the fact that the covalent DNA trapping in vitro and in cellulo
can also depend on the accessibility of the cross-linking sites. We have shown that the combination
of a G4-ligand and a platinum complex within the same molecule improves TRF2 removal from
telomeres, as compared to the individual components [35,38], and that cisplatin DNA-adducts prevent
the binding of this protein in vitro [44]. Therefore, we analyzed if the amount of platinum complexes
covalently bound to telomeric DNA was sufficient to provoke TRF2 removal from telomeres. However,
only cisplatin, was able to induce a TRF2 delocalization in the conditions optimized for quantifying
platinum complexes bound to telomeres. Interestingly, we showed that the amount of cisplatin bound
to telomeric DNA is not sufficient to explain the displacement of TRF2 by a physical hindrance,
suggesting that the delocalization of TRF2 observed is more likely due to alternative mechanisms as a
biological regulation associated with the DNA damage response. These new observations, therefore,
question the mechanism of telomeric protein delocalization by non-covalent G4-ligands [20,68,69].
Moreover, even if G4 ligands could potentially target other potential genomic G4 structures, the recent
advances suggest that G4 ligands could be considered as promising therapeutic agents for tumors
that are deficient in DNA damage repair. Therefore, the development of such ligands with improved
selectivity for therapeutic purposes remains an actuality [12].

In conclusion, we demonstrated that, first, mono-functional platinum complexes are more prone
to target telomeres than di-functional platinum complexes as compared to genomic DNA, and, second,
that TRF2 delocalization from telomeres by DNA-targeting drugs could better be explained by an
indirect mechanism involving a cellular signaling pathway triggered by the drug rather than a steric
blockage due to the presence of many adducts generated at telomeres.

4. Materials and Methods

4.1. Cell Lines and Culture Conditions

A2780 and A2780cis cell lines (ATCC) were grown in RPMI medium supplemented with
10% fetal bovine serum and 3% of MIX (glutamine (2 mM), streptomycin (100 UI/mL), sodium
bicarbonate (750 mg/mL)) and treated with 50 µM of platinum complexes, Pt-ttpy, Pt-tpy, or cisplatin,
and incubated for 8 h or 0.6 and 6 µM cisplatin for 96 hin A2780 and A2780cis cells, respectively,
at 37 ◦C under 5% CO2.
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4.2. Platinum Complexes

Cisplatin was provided from Sigma. Pt-ttpy and Pt-tpy were synthesized following the procedure
already described [34,70]. Aqueous solutions of cisplatin (1 mM) and Pt-tpy (5 mM) and DMSO solution
of Pt-ttpy (6 mM) were prepared and conserved at −20 ◦C. Diluted solutions of each compound were
freshly prepared. These conditions avoided an extensive exchange of the labile chloride against DMSO
(less than 20%).

4.3. Platination of Double Stranded Telomeric DNA for Melting Temperature Analysis

(TTAGGG)4 was annealed with its complementary strand (CCCTAA)4 at 100 µM concentration
in 0.1 M NaClO4., then incubated 18 h at 37 ◦C with 3 equivalents of cisplatin. An aliquot was
used for 5’ 32P post-labelling using 32P γ-ATP. The platination products were isolated by denaturing
gel electrophoresis. Radiolabelled platinated and non-platinated products were visualized after
separation by gel electrophoresis using a Storm 960 Phosphorimager (Molecular Dynamics, Amersham
Bioscience, Marolles-en-Hurepoix, France) together with Imagequant software for data processing.
The non-radioactive products were revealed by UV shadowing.

4.4. DNA Extraction

Genomic DNA was isolated from cells using the Kit DNAeasy® blood and tissue (Qiagen,
Courtaboeuf, France).

4.5. Platinum Quantification

The amount of platinum present in whole cell extracts from 5 × 106 cells, DNA (20 µg)
and purified telomere (150 ng) fractions were quantified by ICP-MS (Inductively Coupled Plasma
Mass Spectrometry).

4.6. 3′ Overhang Assays

The non-denaturing hybridization assay to detect the telomere overhang was performed using the
telomere repeat (CCCTAA)3CCC 32P-labelled probe. Briefly, 2.5 µg of extracted DNA was incubated
overnight at 25 ◦C with the 32P-labelled probe, then electrophoresed in 0.7% agarose gel pre-stained
with SYBR Green, as described [71]. The procedure allows detection of the amount of single-strand
overhang available for hybridisation and the amount of loaded DNA. Both were quantified using the
Storm 960 Phosphorimager (Molecular Dynamics, Amersham Bioscience, Marolles-en-Hurepoix,
France) and the ImageQuant software program (Molecular Dynamics, Amersham Bioscience,
Marolles-en-Hurepoix, France). The amount of radioactivity was normalised by the amount of
corresponding DNA.

4.7. Purification of Human Telomeres

Cells were grown in RPMI medium for 72 h (12 × 106 cells for A2780 and 17 × 106 cells for
A2780cis cells) and treated by 50 µM of Pt-ttpy, Pt-tpy for 8 h. The protocol was adapted from [53].
Cells were recovered and DNA was extracted as above. The purified genomic DNA was subsequently
digested overnight at 37 ◦C by HinfI and RsaI restriction enzymes. Each sample containing the
digested DNA was incubated for hybridization with 150 pmole of biotinylated (CCCTTA)4 probe
at 70 ◦C in 0.5× Saline Sodium Chloride-Sodium Citrate buffer (SSC) then allowed to cool to room
temperature. Then, the streptavidin beads (Magnesphere, Promega, Charbonnières-les-Bains, France)
in Denhardt’s solution were added to the samples and incubated on a rotating wheel at 4 ◦C with
the annealed samples. The supernatant S1 containing genomic fragments and telomeric DNA not
yet hybridized were recovered. Telomeric DNA was eluted twice with 150 µL water at 70 ◦C. The S1
fraction was re-hybridized with the probe attached to the beads, and the same steps as above were
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repeated. The DNA concentration was determined by measuring the absorbance at 260 nm using the
Nano-Drop (1000 V) (Thermofisher, Villebon sur Yvette, France).

4.8. PCR Telomere Enrichment Quantification

The relative telomere amount of the purified telomere fraction was determined by real-time PCR
using the method described by Cawthon [55], and adapted for a LightCycler instrument [56]. It was
not possible to normalize our telomeric signals with the reference. The genomic reporter gene, 36B4u,
was not amplified in the purified telomeric fraction, suggesting an efficient purification even if this
cannot exclude the remaining other genomic DNA regions.

4.9. Telomere Detection

Aliquots of extracted DNA (4 µg) were digested overnight at 37 ◦C with RsaI and HinfI restriction
enzymes (New England Biolabs, Evry, France). Digested DNA and purified telomeres were separated
by agarose gel electrophoresis, and then transferred under denaturing condition to a nylon membrane
by Southern blotting. Telomere length was then estimated using the “Telo TAGGG Telomere Length
Assay” kit (Roche, Basel, Switzerland).

4.10. Immunofluorescence

After a 8 h treatment with platinum complexes, cells were fixed with 4% paraformaldehyde,
permeabilized in a buffer containing 20 mM Tris-HCl pH = 8, 50 mM NaCl, 3 mM MgCl2, 300 mM
Sucrose, 0.5% TritonX-100, and incubated in a blocking solution containing 5% BSA/PBS for 1h at
room temperature before incubation with a mouse telomeric protein TRF2 antibody (4A794, Upstate,
NY, USA) for 2 h at room temperature. The samples were then washed in PBS and incubated with a
goat anti-mouse IgG secondary antibody TRITC (tetramethylrhodamine)-conjugated (Thermofischer)).
Nuclei were counterstained with 4’,6-diamidino-2-phenylindole, Vectashield (DAPI). Three-dimension
images (composed of 40 to 80 planes of 0.3 µm) were acquired using an inverted microscope with
Epi-fluorescence attachment (Nikon Eclipse TE-2000 E) (Nikon, Champigny sur Marne, France).
The number of TRF2 foci in each nucleus was counted using the Image J software program after a
two-dimensional projection of three-dimension images.

4.11. ChIP (Chromatin Immunoprecipitation)

Cells were collected after fixation with formaldehyde, and lysed already as described [38].
The DNA of the nucleus was sonicated to obtain fragments of 1 kbp. Thirty µL were conserved
in order to quantify the number of telomeric sequences before immuno-precipitation (INPUT).
Immunoprecipitation was then performed with an anti-TRF2 polyclonal antibody (IMG-148A,
IMGENEX). Two hundred ng of the immunoprecipitated DNA and INPUT were blotted onto
a Hybond-XL membrane (Ge HealthCare, Amersham Bioscience, Marolles-en-Hurepoix, France).
The telomere sequences were detected using an 800 bp telomere repeat (TTAGGG) 32P labelled probe
obtained after digestion of the pUC Telo2 plasmid [72] by EcoRI and BamHI and radiolabelling
by random priming using dCTP [α32P], TAGGGTTA/TAACCCTA (Eurogentec, Liege, Belgium)
as primers and Klenow polymerase (Fermentas, Thermofisher, Villebon sur Yvette, France)).
The Alu sequences were detected using a 32P labelled Alu probe that was obtained after the
digestion of the pTopo Alu-AII plasmid (obtained after amplification of human genomic DNA with
tgaaaccccgtctctactaaaaa and gtctcgctctgtcgccca primers, then cloned in pGEM-T vector (Promega,
Charbonnières-les-Bains, France)) by EcoRI and radiolabelled by random priming using dCTP [α32P],
the hexanucleotide mix (Roche, Boulogne Billancourt, France) as primers, and Klenow polymerase
(Fermentas). The membranes were first hybridized with the telomere probe, and the amount of
radioactivity was quantified using the Phosphorimager and ImageQuant software. The membranes
were then dehybridized in boiling water containing 1% SDS, and were then hybridized with the Alu
probe; the amount of radioactivity was quantified using the Phosphorimager and ImageQuant software.
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Fold enrichment of the immunoprecipitated fraction was calculated as the ratio between telomeric DNA
signals after precipitation and telomeric DNA signals in the total INPUT DNA for the same amount of
blotted DNA (200 ng). The values were normalized to the Alu signal in the immunoprecipitated and
INPUT fractions for each condition using the (telomere IP/telomere INPUT)/(Alu IP/Alu INPUT)
formula. The % of TRF2 bound to telomeres was given as a function of TRF2 bound in treated
cells/TRF2 bound in untreated cells.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/7/
1951/s1.
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