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Mean curvature rigidity of horospheres,
hyperspheres and hyperplanes

Rabah Souam

Abstract We prove that horospheres, hyperspheres and hyperplanes in a
hyperbolic space Hn, n ≥ 3, admit no perturbations with compact support which
increase their mean curvature. �is is an extension of the analogous result in the
Euclidean spaces, due to M. Gromov, which states that a hyperplane in a Euclidean
space Rn admits no compactly supported perturbations having mean curvature
≥ 0.

Keywords mean curvature, mean convexity, tangency principle.
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�e content of the present note is motivated by the following nice result of M. Gromov
[1]

�eorem 1. A hyperplane in a Euclidean space Rn cannot be perturbed on a compact set so
that its mean curvature satis�es H ≥ 0.

Gromov [1] showed that �eorem 1 can be derived from the non existence of Zn-
invariant metrics with positive scalar curvature on Rn. He also gave another direct
argument to prove it using a symmetrization process.

In what follows, we give another proof of �eorem 1 and an extension to the hyperbolic
spaces using a simple argument. More precisely, we prove the following:

�eorem 2. Let M denote a horosphere, a hypersphere or a hyperplane in a hyperbolic
space Hn, n ≥ 3 and HM ≥ 0 its (constant) mean curvature. Let Σ be a connected properly
embedded C2-hypersurface inHn which coincides withM outside a compact subset ofHn. If
the mean curvature of Σ is ≥ HM , then Σ = M.

We recall that a hyperplane in Hn is a complete totally geodesic hypersurface and a
hypersphere is a connected component of a set equidistant from a hyperplane.

�e proof uses the tangency principle which goes back to E. Hopf. We recall it with
some details in what follows. We �rst �x some notations and conventions.

Let Σ be an embedded C2-hypersurface, with a global unit normal ν, in a smooth com-
plete n−dimensional Riemannian manifold M. We denote by σ the second fundamental
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form of Σ, which is de�ned as follows

σp(u, v) = − < ∇uν, v > for p ∈ Σ, u, v ∈ TpΣ.

�e shape operator S of Σ is de�ned as follows

Spu = −∇uν for p ∈ Σ, u ∈ TpΣ,

and the (normalized) mean curvature of Σ is the function

H =
1

n− 1
traceS.

Note that these de�nitions depend on the choice of the unit normal �eld ν. �e mean
curvature vector �eld ~H := Hν is, instead, independent of the choice of the unit normal
�eld. With our conventions, the mean curvature of a unit sphere in the Euclidean space
with respect to its interior unit normal is equal to 1.

Let p ∈ Σ and consider local coordinates (x1, . . . , xn) around p in M so that TpΣ =

Rn−1 × {0} and ∂
∂xn

(0) = ν(p). An open neighborhood U of p in Σ is the graph, in the
these coordinates, of a C2-function u de�ned on an open neighborhood Ω of the origin in
Rn−1 × {0}. �e mean curvature of U , computed with respect to the unit normal �eld ν,
is given by a nonlinear elliptic operator

M(u) = F(x, u,Du,D2u)

with F : (x, z, ξ, s) ∈ Ω × V → F(x, z, ξ, s) a smooth function de�ned in Ω × V where
V is an open subset of R× Rn × Rn×n.

De�nition. Let Σ1 and Σ2 be two embedded hypersurfaces in the Riemannian manifold
M oriented by global unit normals ν1 and ν2 respectively and let p an interior point of both
Σ1 and Σ2. We say that Σ1 ≥ Σ2 near p if the following conditions are satis�ed:

(i) ν1(p) = ν2(p),

(ii) there are local coordinates (x1, . . . , xn) around p in M with TpΣ1 = TpΣ2 =

Rn−1 × {0} and ∂
∂xn

(0) = ν1(p) = ν2(p), in which Σ1 and Σ2 are graphs over an open
domain in Rn−1 × {0} of functions u1 and u2 respectively, satisfying u1 ≥ u2.

Suppose that Σ1 ≥ Σ2 near p and that their mean curvature functions (computed with
respect to the given normals), in local coordinates as above, verifyM(u1) ≤M(u2). �e
tangency principle asserts that Σ1 coincides with Σ2 in a neighborhood of p.�e argument
goes as follows. Consider the di�erence function u = u2−u1 and set ut = u1 +t(u2−u1)
for t ∈ [0, 1]. We can write the following :

M(u2)−M(u1) =

(∫ 1

0

∂F
∂z

(ut)dt

)
u+

(∫ 1

0

∂F
∂ξ

(ut)dt

)
. Du

+

(∫ 1

0

∂F
∂s

(ut)dt

)
. D2u.

Here
(∫ 1

0
∂F
∂ξ (ut)dt

)
. Du =

∑
i bi(x)uxi(x) with bi(x) :=

∫ 1
0
∂F
∂ξi

(ut)dt, and(∫ 1
0
∂F
∂s (ut)dt

)
. D2u =

∑
i,j aij(x)uxixj (x) with aij(x) :=

∫ 1
0

∂F
∂si,j

(ut)dt.
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�is shows that the C2-function u = u2 − u1 satis�es the inequality Lu ≥ 0 where L
is the linear elliptic operator with continuous coe�cients de�ned by

Lv =

(∫ 1

0

∂F
∂z

(ut)dt

)
v +

(∫ 1

0

∂F
∂ξ

(ut)dt

)
. Dv +

(∫ 1

0

∂F
∂s

(ut)dt

)
. D2v.

By assumption, u ≤ 0 and u vanishes at the origin. �e strong maximum principle (see,
for instance, Chapter 10, Addendum 2, Corollary 19 in [2] ) then shows that u ≡ 0
in a neighborhood of the origin, that is, the hypersurfaces Σ1 and Σ2 coincide in a
neighborhood of p. We can thus state the tangency principle in the following form:

Tangency Principle. Let Σ1 and Σ2 be two embedded C2-hypersurfaces in a smooth
Riemannian manifold M, oriented by global unit normals. Suppose the mean curvature
functions H1 and H2 of respectively Σ1 and Σ2 verify H2 ≥ a ≥ H1 for some real number
a. Let p be an interior point of both Σ1 and Σ2. If Σ1 ≥ Σ2 near p, then Σ1 coincides with
Σ2 in a neighborhood of p.

We can now prove �eorem 2. We will work with the halfspace model of Hn, that is,
Hn = {(x1, . . . , xn) ∈ Rn, xn > 0}

endowed with the metric

ds2 =
dx2

1 + · · ·+ dx2
n

x2
n

.

Let P0 be a hyperplane in Hn. Without loss of generality, we may assume P0 is the
hyperplane {x1 = 0, xn > 0}. For t ∈ R, we let Pt denote the hyperplane {x1 = t, xn >
0}.

Let Σ be a properly embedded C2-hypersurface in Hn which coincides with P0 outside
a compact subset of Hn. Suppose its mean curvature veri�esHΣ ≥ 0.Σ separates Hn into
2 connected components, a mean convex one V+ and a mean concave one V−. We may
assume V+ coincides with the domain {x1 > 0, xn > 0} outside a compact set; the other
case being similar. �ere is a largest T ≥ 0 verifying Σ∩PT 6= ∅.We orient PT by its unit
normal �eld pointing in the direction x1 > 0.�e hypersurfaces Σ and PT are both closed
subsets of Hn, so their intersection Σ∩PT is closed in Σ. Let us show it is also open in Σ.
Take a point p ∈ Σ ∩ PT . �en the normal to Σ at p points in the direction x1 > 0 (since
we assumed V+ coincides with the domain {x1 > 0, xn > 0} outside a compact set) and
Σ ≤ PT near p. As HΣ ≥ 0, the tangency principle shows that Σ coincides with PT in
a neighborhood of p. �is shows that Σ ∩ PT is open in Σ and since it is also closed, we
conclude that Σ = PT and T = 0.

Consider now the case of a horosphere which we may suppose, without loss of
generality, is the horosphereH1 = {xn = 1}. We also consider the family of horospheres
Ht = {xn = t}, t > 0, having the same asymptotic boundary as H1. We orient the
horospheresHt by their upward pointing unit normal. For this choice of orientation their
mean curvature is equal to one.

Let Σ be a properly embedded C2-hypersurface in Hn which coincides withH1 outside
a compact subset of Hn and having mean curvature≥ 1. Σ divides Hn into 2 components.
�e mean convex one coincides with the domain {xn > 1} outside a compact set since Σ
asymptotically coincides with H1. �ere is a largest T ≥ 1 such that Σ ∩ HT 6= ∅. At a
point p ∈ Σ∩HT , the unit normals to Σ and the horopshereHT coincide and Σ ≤ HT near
p. AsHΣ ≥ 1 , the tangency principle shows that Σ coincides withHT in a neighborhood
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of p. So the set Σ∩HT is open in Σ and since it is also closed, we conclude that Σ coincides
with the horosphereHT and that T = 1.

We consider now the case of hyperspheres. Let us denote, this time, the hyperplane
{x1 = 0, xn > 0} by S0. For β ∈ (−π

2 ,
π
2 ), we let Sβ be the intersection with Hn of the

hyperplane Pβ in Rn of equation cosβ x1 = sinβ xn. Note that β is the oriented angle
between Pβ and P0. Sβ is equidistant from S0, the distance between them being equal
to log 1+| sinβ|

cosβ . We orient Sβ by the normals pointing in the same direction as the vector
− cosβ ~e1 + sinβ ~en, where ~e1, . . . , ~en is the canonical basis in Rn. For this choice of
orientation the mean curvature of Sβ is given by Hβ = sinβ.

Sβ

β

ν

Hn

S0

~en

~e1

Given a hypersphere in Hn, it is congruent to Sβ0 for some β0 ∈ (0, π2 ). Let Σ be a
properly embedded C2-hypersurface in Hn which coincides with Sβ0 outside a compact
set and having mean curvature HΣ ≥ sinβ0. Σ separates Hn in 2 components and the
mean convex one coincides, outside a compact set, with the mean convex domain bounded
by Sβ0 . �ere is a smallest β ∈ (−π

2 , β0] so that Σ ∩ Sβ 6= ∅. At a point p ∈ Σ ∩ Sβ, the
unit normals to Sβ and Σ coincide, Σ ≤ Sβ near p andHΣ ≥ sinβ0 ≥ sinβ = Hβ. By the
tangency principle, we know that Σ and Sβ coincide in a neighborhood of p. �is shows
that the intersection Σ ∩ Sβ is open in Σ. As it is also closed, we conclude that Σ = Sβ
and also that β = β0.

Remarks.

1. To prove �eorem 1, one uses, as in the case of a hyperplane in Hn, the family of
hyperplanes parallel to the given deformed hyperplane.

2. �e case of a hyperplane in Hn can also be treated using the family of hyperspheres
equidistant to it.

3. �e argument above can also be utilized to obtain analogous rigidity results for
hypersurfaces in other ambient manifolds. Consider, for instance, a product manifold
M × R where M is a connected non compact orientable manifold without boundary.
SupposeM×R is equipped with a Riemannian metric so thatMt = M×{t} has constant
mean curvature for each t ≥ 0. �is happens, for instance, for a warped product metric,
that is, a metric of the form f(t)ds2

M + dt2, where ds2
M is a complete metric on M and

f a smooth positive function on [0,+∞). Call Ht the mean curvature of Mt computed
with respect to the unit normal �eld pointing into the domain M × [t,+∞) and suppose
the function t ∈ [0,+∞) → Ht is non increasing. �en proceeding as above one shows
that, for each t0 ≥ 0, if Σ is a connected properly embedded hypersurface which coincides
with Mt0 outside a compact subset of M × R and has mean curvature HΣ ≥ Ht0 , then
Σ = Mt0 .
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