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Abstract. For many modern applications like e.g. contactless payment,
and keyless systems, ensuring physical proximity is a security goal of
paramount importance. Formal methods have proved their usefulness
when analysing standard security protocols. However, existing results
and tools do not apply to e.g. distance bounding that aims to ensure
physical proximity between two entities. This is due in particular to the
fact that existing models do not represent in a faithful way the locations
of the participants, and the fact that transmission of messages takes time.
In this paper, we propose several reduction results: when looking for an
attack, it is actually sufficient to consider a simple scenario involving at
most four participants located at some specific locations. An interest-
ing consequence of our reduction results is that it allows one to reuse
ProVerif, an automated tool developed for analysing standard security
protocols. As an application, we analyse several distance bounding pro-
tocols, as well as a contactless payment protocol.

1 Introduction

The shrinking size of microprocessors as well as the ubiquity of wireless commu-
nication have led to the proliferation of portable computing devices with novel
security requirements. Whereas traditional security protocols achieve their secu-
rity goals relying solely on cryptographic primitives like encryptions and hash
functions, this is not the case anymore for many modern applications like e.g.
contactless payment. Actually, a typical attack against these devices is the so-
called relay attack, as demonstrated for EMV in [16]. Such an attack allows a
malicious participant to relay communication between a victim’s card (possibly
inside a wallet) and a genuine terminal so that the victim’s card, even if it is far
away from the terminal, will pay the transaction. Due to the contactless nature
of most of our communication, obtaining reliable information regarding physical
proximity is of paramount importance and specific protocols, namely distance
bounding protocols, were proposed to achieve this specific goal [12, 24]. They
typically take into account the round trip time of messages and the transmission
velocity to infer an upper bound of the distance between two participants.

In the context of standard security protocols, such as key establishment pro-
tocols, formal methods have proved their usefulness for providing security guar-
antees or detecting attacks. The purpose of formal verification is to provide
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rigorous frameworks and techniques to analyse protocols and find their flaws.
For example, a flaw has been discovered in the Single-Sign-On protocol used
e.g. by Google Apps. It has been shown that a malicious application could very
easily get access to any other application (e.g. Gmail or Google Calendar) of
their users [2]. This flaw has been found when analysing the protocol using for-
mal methods, abstracting messages by a term algebra and using the Avantssar
validation platform [3]. Another example is a flaw on vote-privacy discovered
during the formal and manual analysis of an electronic voting protocol [19]. All
these results have been obtained using formal symbolic models, where most of
the cryptographic details are ignored using abstract structures, and the commu-
nication network is assumed to be entirely controlled by an omniscient attacker.
The techniques used in symbolic models have become mature and several tools
for protocol verification are nowadays available [9, 3, 28].

However, protocols whose security rely on constraints from the physical world
fall outside the scope of traditional symbolic models that are based on the omni-
scient attacker who controls the entire network, and who can for instance relay
messages without introducing any delay. Due to the lack of formal symbolic
models and verification tools, distance bounding protocols are only analysed so
far with respect to some specific attack types known as e.g. distance fraud, mafia
fraud, and terrorist fraud. Recently, another type of attack, namely distance hi-
jacking [20], has been discovered, and many protocols have been shown to be
vulnerable to this new type of attacks. Following [8, 23], and more recently [25],
our aim is to bridge the gap between informal approaches currently used to
analyse these protocols and the formal approaches already used for analysing
traditional security protocols.

Our contributions. We first propose a calculus which allows timed protocols as
well as the notion of physical proximity to be formally described. We model
cryptography as a black box, thus the attacker cannot break cryptography, e.g.
decrypt a message without having the appropriate decryption key. To model
timed protocols in an accurate way, our communication model is subject to
physical restrictions. These constraints apply to honest agents and attackers.
An attacker can only intercept messages at his location, and attackers can not
instantaneously exchange their knowledge: transmitting messages takes time.
This models reality, where the attackers’ ability to observe and communicate
messages depends on their locations.

Our main contribution is to provide reduction results in the spirit of the one
obtained in [17] for traditional protocols: if there is an attack, then there is one
considering only few participants at some specific locations. The results slightly
differ depending on the type of attacks we consider (distance fraud, mafia fraud,
or hijacking attack) but it allows one to focus on topologies involving a small
number of participants (at most 4 including the malicious ones). We therefore
reduce the number of topologies to be considered from infinitely many to only
one (actually one per type of attacks). Our results hold in a rather general
setting. In particular, we consider arbitrary cryptographic primitives as soon as
they can be expressed using rewriting rules modulo an equational theory.
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An interesting consequence of our reduction results is that it allows one to
reuse techniques and tools developed for standard security protocols. Actually,
we show how to encode these simple topologies, as well as the timing constraints,
relying on the phase mechanism available in ProVerif. As an application, we
analyse several distance bounding protocols, and we also consider the contact-
less payment protocol described in [16]. All files related to the case studies are
available here:

http://people.irisa.fr/Alexandre.Debant/proving-physical-

proximity-using-symbolic-methods.html

Related work. Until recently, most distance bounding protocols have been anal-
ysed without a formal approach. Recent efforts have been made on proving
security of distance bounding protocols. For instance, in 2001, Avoine et al. [5]
proposed a framework in which many protocols have been analysed and com-
pared in a unified manner [4]. A rather general model has been proposed by
Boureanu et al. in [11]. This computational model captures all the classical
types of attacks and generalises them enabling attackers to interact with many
provers and verifiers. These models are very different from ours. Indeed, we con-
sider here a formal symbolic model in which messages are no longer bitstrings
but they are abstracted away by terms. Some recent attempts have been made to
design formal symbolic model suitable to analyse distance bounding protocols:
e.g. a model based on multiset rewriting rules has been proposed in [8] and [25],
another one based on strand spaces is available here [30]. Even if our model
shares some similarities with those mentioned above, we choose to design a new
one based on the applied pi calculus [1]. This allows us in particular to connect
our theoretical results with the ProVerif verification tool that we ultimately use
to analyse protocols.

Our main reduction result follows the spirit of [18] where it is shown that it is
sufficient to consider five specific topologies when analysing routing protocols. To
our knowledge, the only work proposing a reduction result suitable for distance
bounding protocols is [30]. In this paper, the authors show that n attackers are
actually sufficient when analysing an initial configuration involving at most n
honest participants. Moreover, due to the way attackers are located (close to each
honest participant), their result can not be applied to analyse some well-known
attack scenarios (e.g. hijacking attack, distance fraud) that typically disallow
the presence of an attacker in the neighbourhood of some honest participants.
In contrast, our result reduces to only one topology, even when considering an
arbitrary number of honest participants, and it applies to the scenarios men-
tioned above. A consequence of this result is that we can leverage the ProVerif
tool to analyse such protocols. To do that we get some inspiration from [16]
and we use the phase mechanism of ProVerif to encode timing constraints. Our
contributions improve upon their work by providing a strong theoretical foun-
dation to their idea. Moreover, in order to consider scenario in which attackers
are far away, and thus unable to produce an answer within the delay, we slightly
modify the tool to discard some attacker behaviours. This was needed to be
able to obtain meaningful results using ProVerif when analysing distance fraud
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and distance hijacking scenarios. Recently, a methodology to analyse distance
bounding protocols within the Tamarin verification tool has been proposed [25].
Their model is not flexible enough to allow one to consider the different class
of attacks, e.g. they cannot prove that a protocol is distance fraud resistant but
vulnerable to mafia fraud. Nevertheless, they are able to analyse many protocols,
confirmed some known vulnerabilities in a number of protocols, and discovered
unreported attacks. All these protocols have been analysed in our framework,
and a comparison is provided in Section 7.

2 Messages

As usual in the symbolic setting, we model messages through a term algebra.
We consider both equational theories and reduction relations to represent the
properties of the cryptographic primitives. This provides a lot of flexibility and
allows one to model various cryptographic primitives.

2.1 Term algebra

We consider two infinite and disjoint sets of names: N is the set of basic names,
which are used to represent keys, nonces, whereas A is the set of agent names,
i.e. names which represent the agents identities. We consider an infinite set Σ0

of constant symbols that are used for instance to represent nonces drawn by the
attacker. We also consider two infinite and disjoint sets of variables, denoted X
and W. Variables in X refer to unknown parts of messages expected by partici-
pants while variables in W are used to store messages learnt by the attacker.

We assume a signature Σ, i.e. a set of function symbols together with their
arity. The elements of Σ are split into constructor and destructor symbols, i.e.
Σ = Σc]Σd. We denote Σ+ = Σ∪Σ0, and Σ+

c = Σc∪Σ0. Given a signature F ,
and a set of atomic data A, we denote by T (F ,A) the set of terms built from
atomic data A by applying function symbols in F . A constructor term is a term in
T (Σ+

c ,N ∪A∪X ). We denote vars(u) the set of variables that occur in a term u.
A message is a constructor term u that is ground, i.e. such that vars(u) = ∅.
The application of a substitution σ to a term u is written uσ. We denote dom(σ)
its domain, and img(σ) its image. The positions of a term are defined as usual.

Example 1. We consider the following signature Σex = Σc ]Σd:

Σc = {commit, sign, sk, vk, ok, 〈〉,⊕, 0}, Σd = {open, getmsg, check, proj1, proj2, eq}.
The symbols open and commit (arity 2) represent a commitment scheme,

whereas the symbols sign, check (arity 2), getmsg, sk, and vk (arity 1) are used
to model a signature scheme. Pairing is modelled using 〈 〉 (arity 2), whereas
projection functions are denoted proj1 and proj2 (arity 1). We also consider the
symbols ⊕ and 0 to model the exclusive-or operator. Finally, we consider the
function symbol eq to model equality test.
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2.2 Equational theory

Following the approach developed in [10], constructor terms are subject to an
equational theory. This allows one to model the algebraic properties of the
primitives. It consists of a finite set of equations of the form u = v where
u, v ∈ T (Σc,X ), and induces an equivalence relation =E over constructor terms.
Formally, =E is the smallest congruence on constructor terms, which contains
u = v in E, and that is closed under substitutions of terms for variables.

Example 2. To reflect the algebraic properties of the exclusive-or operator, we
consider the equational theory Exor generated by the following equations:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x x⊕ 0 = x x⊕ x = 0.

2.3 Rewriting rules

As in [10], we also give a meaning to destructor symbols. This is done through
a set of rewriting rules of the form g(t1, . . . , tn) → t where g ∈ Σd, and
t, t1, . . . , tn ∈ T (Σc,X ). A term u can be rewritten in v if there is a position p in
u, and a rewriting rule g(t1, . . . , tn)→ t such that u|p = g(t1, . . . , tn)θ for some
substitution θ. Moreover, we assume that t1θ, . . . , tnθ as well as tθ are messages.
We only consider sets of rewriting rules that yield a convergent rewriting system,
and we denote u↓ the normal form of a term u.

For modelling purposes, we split the signatureΣ into two parts,Σpub andΣpriv,
and we denote Σ+

pub = Σpub∪Σ0. An attacker builds messages by applying public
symbols to terms he knows and that are available through variables in W. For-
mally, a computation done by the attacker is a recipe, i.e. a term in T (Σ+

pub,W).

Example 3. Among symbols in Σex, only sk is in Σpriv. The properties of the
symbols in Σd are reflected through the following rewriting rules:

check(sign(x, sk(y)), vk(y))→ ok
eq(x, x)→ ok

getmsg(sign(x, sk(y)))→ x
open(commit(x, y), y)→ x

proj1(〈x1, x2〉)→ x1
proj2(〈x1, x2〉)→ x2.

3 Timed security protocols

In this section, we present our model which incorporates node location, time,
and communication distance.

3.1 Process algebra

Protocols are modelled through processes using the following grammar:

P,Q := 0 | in(x).P | in<t(x).P | let x = v in P
| new n.P | out(u).P | reset.P

where x ∈ X , n ∈ N , u ∈ T (Σ+
c ,X ]N ]A), v ∈ T (Σ+,X ]N ]A) and t ∈ R+.

5



Most of these constructions are rather standard. As usual in symbolic models,
0 denotes the empty process that does nothing, and the new instruction is used
to model fresh name generation. Then, we have standard constructions to model
inputs and outputs. We may note the special construction in<t(x) that combines
an input with a constraint on the local clock of the agent executing this action.
This construction is in contrast with the approach proposed in e.g. [25] where
input actions are not subject to any timing constraint, and are therefore always
possible provided that enough time has elapsed. From this point of view, our
model represents the reality more faithfully since an agent will not proceed an
input arriving later than expected. The reset instruction will reset the local
clock of the agent. Finally, the process let x = v in P tries to evaluate v, and
in case of success the process P is executed; otherwise the process is blocked. In
particular, this construction allows us to model the usual conditional operator
relying on the destructor eq.

We write fv(P ) (resp. fn(P )) for the set of free variables (resp. names) oc-
curring in P , i.e. the set of variables (resp. names) that are not in the scope
of an input or a let (resp. a new). We consider parametrised processes, de-
noted P (z0, . . . , zn), where z0, . . . , zn are variables from a special set Z (disjoint
from X andW). Intuitively, these variables will be instantiated by agent names,
and z0 corresponds to the name of the agent that executes the process. A role
R = P (z0, . . . , zn) is a parametrised process that does not contain any agent
name, and such that fv(R) ⊆ {z0, . . . , zn}. A protocol is then simply a set of
roles.

Example 4. As a running example, we consider the signature-based Brands and
Chaum distance bounding protocol [12] that is informally described below:

1. P → V : commit(m, k) 2. V → P : n
3. P → V : n⊕m

4. P → V : k
5. P → V : sign(〈n, n⊕m〉, sk(P ))

The prover P generates a nonce m and a key k, and sends a commitment to the
verifier V . The verifier V generates his own nonce n and initiates the time mea-
surement phase, sometimed called the rapid phase. In this exchange, P answers
with the exclusive-or of these two nonces. This step has to be done as quickly as
possible since V will reject any answer arriving too late (a long response time
does not give him any guarantee regarding its proximity with the prover). After
this phase, P sends a means to open the commitment, as well as a signature on
the values exchanged during the rapid phase. When a verifier ends a session of
this protocol, the prover with whom he is communicating should be located in
his neighbourhood. In our setting, the protocol is defined by the parametrised
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processes given below:

P (zP ) :=
new m.new k.
out(commit(m, k)).
in(xn).
out(xn ⊕m).
out(k).
out(sign(〈xn, xn ⊕m〉, sk(zP ))).0

V (z′V , z
′
P ) :=

in(yc).new n.
reset.out(n).in<2×t0(y0).
in(yk).in(ysign).
let ym = open(yc, yk) in
let ycheck = check(ysign, vk(z′P )) in
let yeq = eq(〈n, n⊕ ym〉, getmsg(ysign)) in 0.

3.2 Configuration and topology

Each process has a location. As in the classical Dolev-Yao model [21], the at-
tackers control the entire network but interacting with agents who are far away
takes time. To formalise this, our execution model is parametrised by a topology.

Definition 1. A topology is a tuple T0 = (A0,M0, Loc0, v0, p0) where:

– A0 ⊆ A is the finite set of agents composing the system;
– M0 ⊆ A0 is the subset of agents that are dishonest;
– Loc0 : A0 → R3 is a mapping defining the position of each agent in space.
– p0 and v0 are two agents in A0 that represent respectively the prover and the

verifier for which we analyse the security of the protocol.

In our model, the distance between two agents is expressed by the time
it takes for a message to travel from one to another. Therefore, we consider
DistT0 : A0×A0 → R, based on Loc0 that will provide the time a message takes
to travel between two agents. It is defined as follows:

DistT0(a, b) = ‖Loc0(a)−Loc0(b)‖
c0

for any a, b ∈ A0

with ‖·‖ : R3 → R the euclidian norm and c0 the transmission speed. We suppose,
from now on, that c0 is a constant for all agents, and thus an agent a can recover,
at time t, any message emitted by any other agent b before t− DistT0(a, b).

Note that our model is not restricted to a single dishonest node. In particular,
our results apply to the case of several compromised nodes that communicate
(and therefore share their knowledge). However, communication is subject to
physical constraints: message transmission takes time determined by the dis-
tance between nodes. All agents, including attackers, are subject to these con-
straints. This result in a distributed attacker with restricted, but more realistic,
communication capabilities than those of the traditional Dolev-Yao attacker.

Our semantics is given by a transition system over configurations that ma-
nipulates extended processes, i.e. expressions of the form bPac taa with a ∈ A,
Pa a process such that fv(Pa) = ∅, and ta ∈ R+. Intuitively, Pa describes the
actions of agent a, and ta his local clock. In order to store the messages that
have been outputted so far, we extend the notion of frame (introduced in [1]) to
keep track of the time at which the message has been outputted and by whom.
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Definition 2. Given a topology T0 = (A0,M0, Loc0, v0, p0), a configuration K
over T0 is a tuple (P;Φ; t), where:

– P is a multiset of extended process bP c ta with a ∈ A0;

– Φ = {w1
a1,t1−−−→ u1, . . . ,wn

an,tn−−−→ un} is an extended frame, i.e. a substitution
such that wi ∈ W, ui ∈ T (Σ+

c ,N ]A), ai ∈ A0 and ti ∈ R+ for 1 ≤ i ≤ n;
– t ∈ R+ is the global time of the system.

We write bΦc ta for the restriction of Φ to the agent a at time t, i.e. :

bΦc ta =
{
wi

ai,ti−−−→ ui | (wi
ai,ti−−−→ ui) ∈ Φ and ai = a and ti ≤ t

}
.

Example 5. Continuing Example 4, a topology
T0 = (A0,M0, Loc0, v0, p0) is depicted on the
right where A0 = {p0, v0, p}, and M0 = {p0}.
The precise location of each agent is not rele-
vant, only the distance between them matters.
Here, we assume that DistT0(p, v0) < t0 whereas
DistT0(p0, v0) ≥ t0. A typical configuration is:

v0

p

p0
t0

K0 = (bP (p)c 0p ] bV (v0, p0)c 0v0 ; {w1
p0,0−−→ sk(p0)}; 0)

where p is playing the role of the prover and v0 the role of the verifier with a
dishonest agent p0. The extended frame only contains the signature key of the
dishonest agent, i.e. sk(p0). A more realistic configuration would include other
instances of these two roles and will give more knowledge to the attacker, but
we will see that this configuration is already sufficient to present an attack.

3.3 Semantics

Given a topology T0 = (A0,M0, Loc0, v0, p0), the operational semantics of pro-
cesses is formally defined by the rules given in Figure 1. The TIM rule allows
time to elapse meaning that the global clock as well as the local clocks will be
shifted by δ as formally defined below:

Shift(P, δ) =
⊎
P∈P Shift(P, δ) and Shift(bP c taa , δ) = bP c ta+δa .

The RST rule allows an agent to reset his local clock. The other rules are
rather standard. The IN rule allows an agent a to evolve when receiving a mes-
sage. Note that, such a message has necessarily been sent at time tb by some
other agent b who has to be in possession of all the necessary information at that

time. We sometimes simply write −→T0 instead of
a,α−−→T0 . The relation→∗T0 is the

reflexive and transitive closure of →T0 , and we often write
tr−→T0 to emphasise

the sequence of labels tr that has been used during this execution.

Example 6. Continuing Example 5, the following sequence of transitions is en-
abled from the configuration K0:

K0
p,τ−−→T0

p,τ−−→T0
p,out(commit(m′,k′))−−−−−−−−−−−−−→T0−→T0

v0,in(commit(m′,k′))−−−−−−−−−−−−−→T0
v0,τ−−−→T0

v0,τ−−−→T0 K1
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TIM (P;Φ; t) −→T0 (Shift(P, δ);Φ; t+ δ) with δ ≥ 0

OUT (bout(u).P c taa ) ] P;Φ; t)
a,out(u)−−−−−→T0 (bP c taa ] P;Φ ] {w a,t−−→ u}; t)

with w ∈ W fresh

LET (blet x = u in P c taa ] P;Φ; t)
a,τ−−→T0 (bP{x 7→ u↓}c taa ] P;Φ; t)

when u↓ ∈ T (Σ+
c ,N ]A)

NEW (bnew n.P c taa ] P;Φ; t)
a,τ−−→T0 (bP{n 7→ n′}c taa ] P;Φ; t) with n′ ∈ N fresh

RST (breset.P c taa ] P;Φ; t)
a,τ−−→T0 (bP c 0a ] P;Φ; t)

IN (bin?(x).P c taa ] P;Φ; t)
a,in?(u)−−−−−→T0 (bP{x 7→ u}c taa ] P;Φ; t)

when there exist b ∈ A0 and tb ∈ R+ such that tb ≤ t− DistT0(b, a) and:

– if b ∈ A0 rM0 then u ∈ img(bΦc tbb );
– if b ∈ M0 then u = RΦ↓ for some recipe R such that for all w ∈ vars(R) there

exists c ∈ A0 such that w ∈ dom(bΦc tb−DistT (c,b)
c ).

Moreover, in case ? is < tg for some tg, we assume in addition that ta < tg.

Fig. 1: Semantics of our calculus

where K1 = (bP1c δ0p ] bV1c
0
v0

; {w1
p0,0−−→ sk(p0), w2

p,0−−→ commit(m′, k′)}; δ0).
The processes located in p and v0 have evolved. We have that:

– P1 = in(xn).out(xn ⊕m′).out(k′).out(sign(〈xn, xn ⊕m′〉, sk(p))); and

– V1 = out(n′).in<2×t0(y0).in(yk).in(ysign).let ym = open(yc, yk) in . . .

This corresponds to the beginning of a normal execution between p and v0. The
two first transitions have been triggered using the NEW rule. The third one is
an instance of the rule OUT. The message outputted at location p is received
at location v0, but an instance of the rule TIM (here with δ0 = DistT0(p, v0)) is
needed to allow the message to reach this location.

4 Security properties

A distance bounding protocol is a protocol in which a party (the verifier) is
assured of the identity of another party (the prover), as well as the fact that this
prover is located in his neighbourhood. Several frauds against distance bounding
protocols are usually considered. We introduce in Section 4.2 the ones that will
be studied in this paper, and we explain how they will be formalised. Before to
do that, we introduce the notion of t0-proximity and the notion of valid initial
configuration that aims to represent all the scenarios that have to be analysed
once the topology has been fixed.
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4.1 Physical proximity on a given topology

For the sake of simplicity, we assume that processes representing instances of
distance bounding protocols contain a process (typically a session of the verifier)
that ends with a special action of the form end(v, p). Checking whether a protocol
ensures physical proximity w.r.t. a given configuration K0 is defined as follows.

Definition 3. Let T0 be a topology and K0 be a configuration over T0. We say
that K0 admits an attack w.r.t. t0-proximity in T0 if

K0 →∗T0 (bend(a1, a2)c taa ] P;Φ; t) with DistT0(a1, a2) ≥ t0.

Of course, when analysing a distance bounding protocol, not all the configu-
rations are interesting. Depending on the type of fraud under consideration, we
explain in Definition 4 the configurations that are initial valid configurations,
and therefore have to be analysed before declaring whether a protocol is secure
or not.

v0 p
(neighbourhood of v0)

p0
(far away)

new m′, k′commit(m′, k′)

new n′ n′

n′ ⊕m′

k′

sign(〈n′, n′ ⊕m′〉, sk(p0))

Fig. 2: Distance hijacking attack on the Brands and Chaum’s protocol

Example 7. Continuing Example 5, we consider the configuration K ′0 below:

K ′0 = (bP (p)c 0p ] bV
′(v0, p0)c 0v0 ; {w1

p0,0−−→ sk(p0)}; 0)

where V ′(z′V , z
′
P ) is V (z′V , z

′
P ) in which the occurrence of the process null has

been replaced by end(z′V , z
′
P ). The sequence of transitions described in Example 6

is still possible ending in

K ′1 = (bP1c δ0p ] bV
′
1c

0
v0

; {w1
p0,0−−→ sk(p0), w2

p,0−−→ commit(m′, k′)}; δ0)

where V ′1 is V1 in which the occurrence of the process null has been replaced by
end(v0, p0). Now, we can pursue this execution as follows:

K ′1
v0,out(n

′)−−−−−−→T0−→T0
p,in(n′)−−−−−→T0

p,out(n′⊕m′)−−−−−−−−→T0
p,out(k′)−−−−−→T0−→T0

v0,in
<2×t0 (n′⊕m′)−−−−−−−−−−−−→T0

v0,in(k
′)−−−−−→

−→T0
v0,in(sign(〈n′,n′⊕m′〉,sk(p0)))−−−−−−−−−−−−−−−−−−−→ (bP2c 3δ0+2δ′0

p ] bend(v0, p0)c 2δ0+2δ′0
v0

;Φ; 3δ0 + 2δ′0)
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The two first lines correspond to a normal execution of the protocol between v0
and p. Note that, on each line, we need an instance of the TIM rule with δ0 =
DistT0(v0, p) = DistT0(p, v0) to allow the sent message to reach its destination.
The last transition does not follow the normal execution of the protocol. Actually,
the dishonest agent p0 is responsible of this input. He built this message from
the messages n′ and n′ ⊕m′ that have been sent on the network, and the key
sk(p0) that is part of his initial knowledge. Note that he has to wait the necessary
amount of time to allow these messages to reach him (e.g. δ′0 = DistT0(v0, p0)),
and some time is needed for the forged message to reach v0 (actually δ′0 =
DistT0(v0, p0)). Therefore, the first rule of the last line is an instance of the TIM
rule during which a delay of 2δ′0 has elapsed.

Note that, according to Definition 5, this corresponds to an attack w.r.t. t0-
proximity on configuration K ′0. Actually, this is the hijacking attack that has
been reported in [20] and described in Figure 2. Here, a dishonest prover p0
exploits an honest prover p (located in the neighbourhood of v0) to provide the
verifier v0 with false information about the distance between p0 and v0.

Once the topology T0 = (A0,M0, Loc0, v0, p0) is fixed, when analysing whether
a protocol is secure or not, we have to consider any configuration that is valid
w.r.t. the given topology. We consider a protocol Pprox, and we assume that the
initial knowledge of dishonest participants is given through a template I0, i.e. a
set of terms in T (Σ+

c ,Z). Using this template I0, and considering a set of agents
A0, we derive the initial knowledge of agent a ∈ A0 as follows:

Knows(I0, a,A0) = {(u0{z0 7→ a})σ ground | u0 ∈ I0 and img(σ) ⊆ A0}.

Definition 4. Let Pprox be a protocol, V0(z0, z1) be a parametrised role contain-
ing the special action end(z0, z1), I0 be a template, and T0 = (A0,M0, Loc0, v0, p0)
be a topology. A configuration K = (P;Φ; t) is a valid initial configuration for
the protocol Pprox and V0 w.r.t. T0 and I0 if:

1. P = bV0(v0, p0)c t
′

v0
] P ′ for some t′ and for each bP ′c t

′

a′ ∈ P ′ there exists
P (z0, . . . , zk) ∈ Pprox, and a1, . . . , ak ∈ A0 such that P ′ = P (a′, a1, . . . , ak).

2. img(bΦc ta) = Knows(I0, a,A0) when a ∈M0, and img(bΦc ta) = ∅ otherwise.

When t = 0 and t′ = 0 for each bP ′c t
′

a′ ∈ P and each {w a′,t′−−−→ u} ∈ Φ, we say
that K is a zero-configuration.

The first condition says that we consider initial configurations made up of
instances of the roles of the protocols, and we only consider roles executed by
agents located at the right place. The second condition allows one to give some
initial knowledge to each malicious node. We may note that we do not give so
much constraints regarding time. It is indeed important that all the possible
initial configurations are analysed before declaring a protocol secure.

Example 8. Going back to Example 7 and considering the template I0 = {sk(z0)},
we have that K ′0 is a valid initial zero-configuration.
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Definition 5. Let Pprox be a protocol, V0(z0, z1) be a parametrised role contain-
ing the special action end(z0, z1), I0 be a template, and T0 = (A0,M0, Loc0, v0, p0)
be a topology. We say that Pprox admits an attack w.r.t. t0-proximity in T0 if there
exists a valid initial configuration K for Pprox and V0 w.r.t. T0 and I0 such that
K admits an attack w.r.t. t0-proximity in T0.

We say that Pprox admits a zero-attack when in addition K is a zero-configuration.

When analysing a protocol, it is generally sufficient to consider valid initial
configurations that are zero-configurations.

Proposition 1. Let Pprox be a protocol, V0(z0, z1) be a parametrised role con-
taining the action end(z0, z1), I0 be a template, and T0 = (A0,M0, Loc0, v0, p0)
be a topology. Moreover, we assume that any guarded input in Pprox and V0 is
preceded by a reset. We have that Pprox admits an attack w.r.t. t0-proximity
in T0 if, and only if, Pprox admits a zero-attack w.r.t. t0-proximity in T0.

4.2 Classification of attacks

We consider different types of attacks as it is usually done in distance bounding
protocols. We do not consider here the notion of terrorist fraud since this notion
relies on the fact that an attacker located in the neighbourhood of the verifier
helps the prover located outside the neighbourhood. This may require the dis-
honest prover to share some knowledge with the attacker but without giving
him any advantage for future attacks (in particular without revealing him all
his credential). This does not fit in our model since here we assume colluding
attackers who share their knowledge (provided that enough time has elapsed).

Distance fraud. A distance fraud is an attack where a dishonest prover who is
far away succeeds in convincing an honest verifier that he is actually close to him.
In general, it is supposed that this dishonest prover cheats without help of other
entities located in the neighbourhood of the verifier. Therefore, when considering
distance fraud, we only have to consider topologies T = (A0,M0, Loc0, v0, p0)
as follows:

p0 ∈M0, v0 ∈ A0 rM0, and DistT0(v0, a) ≥ t0 for any a ∈ A0 r {v0, p0}.

We denote CDF the set of topologies that satisfy these requirements. We may
note that the valid initial configurations corresponding to such a topology will
allow the agent v0 to execute any role of the protocol an arbitrary number of
times. This corresponds to a more complex scenario than those usually analysed
in the context of distance fraud. Therefore, we will also consider the notion of
simple distance fraud for which the agent v0 is only authorised to execute the
parametrised role V0(z0, z1).
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Mafia fraud. A mafia fraud is an attack in which generally three agents are
involved: a verifier, an honest prover located outside the neighbourhood of the
verifier, and an external attacker. This attacker performs a man-in-the-middle
attack between the verifier and the prover with the aim of convincing the verifier
that the honest prover is actually close to it. Therefore, when considering mafia
fraud, we consider topologies T = (A0,M0, Loc0, v0, p0) that are as follows:

both v0 and p0 are honest, i.e. v0, p0 ∈ A0 rM0.

We denote CMF the set of topologies that satisfy these requirements.

Distance hijacking fraud. A distance hijacking fraud is an attack in which a
dishonest prover located far away succeeds in convincing an honest verifier that
he is actually close to him. Contrary to the notion of distance fraud, the dishonest
prover may exploit honest entities located in the neighbourhood of the verifier.
Therefore, we only have to consider topologies T = (A0,M0, Loc0, v0, p0) that
are as follows:

p0 ∈M0, v0 ∈ A0 rM0, and DistT0(v0, a) ≥ t0 for any a ∈M0.

We denote CDH the set of topologies that satisfy these requirements.

Definition 6. Let Pprox be a protocol, V0(z0, z1) be a parametrised role contain-
ing the special event end(z0, z1), and I0 be a template. We say that Pprox admits
a distance fraud attack (resp. mafia fraud attack, distance hijacking attack) w.r.t.
t0-proximity if there exist T ∈ CDF (resp. CMF, CDH), a valid initial configura-
tion K for Pprox and V0 w.r.t. T and I0 such that K admits an attack w.r.t.
t0-proximity in T .

Moreover, in case T ∈ CDF and V0 is the only process located in v0 in the
configuration K, then such an attack is called a simple distance fraud attack.

Our main contribution is to provide reduction results that allow one to anal-
yse the security of a protocol w.r.t. the frauds mentioned above considering only
a specific topology. Then, we will show how to leverage an existing tool ProVerif
to automatically analyse this notion of physical proximity.

5 Reducing the topology

Our reduction results allow one to analyse the security of a protocol considering
only a specific topology. Each result is specific to a particular fraud but their
proofs rely on some common ingredients. In each case, we succeed in providing a
unique topology on which it is actually sufficient to perform the security analysis.
These topologies are rather simple (at most four agents) and are depicted below
for each type of fraud.
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Fig. 3: Topologies T t0DF , T t0MF, and T t0DH

5.1 Distance fraud

Regarding distance fraud w.r.t. t0-proximity, the topology T t0DF is as follows:

T t0DF = ({p0, v0}, {p0}, LocDF, v0, p0) with DistT t0
DF

(p0, v0) = t0.

This topology is not uniquely defined. However, since our semantics only depends
on the distance between agents (and not on their locations), it should be clear
that we can consider an arbitrary one that fulfills the conditions expressed above.

Theorem 1. Let Pprox be a protocol, V0(z0, z1) be a parametrised role containing
the special event end(z0, z1), and I0 be a template. We have that Pprox admits a
distance fraud attack w.r.t. t0-proximity, if and only if, there is an attack against
t0-proximity in the topology T t0DF.

Proof. (Sketch) We consider an attack trace in T = (A0,M0, Loc0, v0, p0) ∈ CDF.

K0 −→∗T (bend(v0, p0)c tvv0 ] P;Φ; t) with DistT (v0, p0) ≥ t0
We proceed in two main steps:

1. We show that the same trace can be done in a topology where all the agents
in A0 are moved into an existing location in T t0DF. More precisely, all the
agents except v0 are moved at LocDF(p0) whereas v0 is moved at LocDF(v0).
We may note that the distance between any two agents has been shorten
(keeping p0 and v0 far away), and thus the trace can still be done.

2. Then, we apply a renaming of agents preserving their location. The trace is
still executable, and we show that the resulting initial configuration (the one
after application of the renaming) is still a valid initial configuration. �

In particular, the renaming used in the second step of the proof will leave v0
unchanged. Therefore, a valid initial configuration built on T w.r.t. the simple
distance fraud scenario will be transformed into a valid initial configuration built
on T t0DF w.r.t. the simple distance fraud scenario, i.e. V0(v0, p0) will be the only
process located in v0.

5.2 Mafia fraud

Regarding mafia fraud, T t0MF is as follows: T t0MF = (AMF,MMF, LocMF, v0, p0) with
AMF = {p0, v0, i1, i2}, MMF = {i1, i2}, LocMF(v0) = LocMF(i1), LocMF(p0) =
LocMF(i2), and DistT t0

MF
(p0, v0) = t0.
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However, we may note that the reduction we did in case of distance fraud
is not possible anymore since it will require to lengthen the distance between
some nodes. Typically a node n in the neighborhood of v0 would be shifted at
the same location as v0 but this would lengthen the distance between n and p0.
Since dishonest participants are allowed in the neighbourhood of v0, getting
some inspiration from [30], we consider a dishonest participant right next to
each honest participant. Such a dishonest participant is ideally located to forge
and send messages that will be received by the honest agent close to him.

However, contrary to the result provided in [30], our goal is not only to re-
duce the number of dishonest agents but also the number of honest agents that
are involved in an attack trace. In order to ensure that moving (and reducing)
the honest agents will not cause any trouble, we need an extra assumption. We
require that each role of the protocol is executable. This is a reasonable assump-
tion that will allow one to discard any role executed by a malicious participant.
Intuitively, all these operations will be done directly by the attacker.

Definition 7. Given a template I0 = {u1, . . . , uk}, we say that a parametrised
role P (z0, ..., zn) is I0-executable if fv(P ) ⊆ {z0, ..., zn}, fn(P ) = ∅ and for
any term u (resp. v) occurring in an output or a let construction, there exists
R ∈ T (Σ+

pub, {w1, . . . ,wk} ] N ] X ) such that u = Rσ↓ (resp. v↓ = Rσ↓) where
σ = {w1 7→ u1, . . . ,wk 7→ uk}.

A protocol P is I0-executable if each role of P is I0-executable.

Example 9. Going back to our running example given in Example 4. We have
that P (z0) is {sk(z0)}-executable whereas V (z0, z1) is {z1}-executable. There-
fore, we have that the protocol made of these two roles is {sk(z0), z1}-executable.

Theorem 2. Let I0 be a template, Pprox be a protocol I0-executable, and V0(z0, z1)
be a parametrised role containing the special event end(z0, z1). We have that Pprox

admits a mafia fraud attack w.r.t. t0-proximity, if and only if, there is an attack
against t0-proximity in the topology T t0MF.

Proof. (Sketch) We consider an attack trace in T = (A0,M0, Loc0, v0, p0) ∈ CMF.

K0 −→∗T (bend(v0, p0)c tvv0 ] P;Φ; t) with DistT (v0, p0) ≥ t0.
We proceed in three main steps:

1. We reduce the number of active agents (those that are actually executing a
process) - we do this for honest and malicious agents. We transform honest
agent (but v0 and p0) into malicious ones. This intuitively gives more power
to the attacker, and malicious agents in the neighborhood of v0 are allowed
in a mafia fraud scenario. Then, relying on our executability condition, we
discard processes executed by malicious agents. These actions can actually
be mimicked by an attacker located at the same place.

2. We reduce the number of attackers by placing them ideally (one close to each
honest agent). Since we have removed all honest agents but two, we obtain
a topology with only two dishonest agents.
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3. To conclude, as in the case of a distance fraud attack, we reduce the knowl-
edge showing that we can project all the dishonest agents that are located
in v0 on i1 and all the dishonest agents that are located in p0 on i2. ut

5.3 Distance hijacking attack

First, we may note that the reduction we did in case of distance fraud or mafia
fraud are not possible anymore. Clearly, we need to consider honest participants
in the neighbourhood of the verifier and moving them on the same location
as v0 will lengthen the distance with p0. Moreover, there is no hope to reduce
the number of attackers by placing them close to each honest participant since
this will introduce a malicious node in the neighbourhood of v0. This is forbidden
when considering a distance hijacking scenario. Actually, adding such a dishonest
node in the neighbourhood of v0 will always introduce a false attack since in our
model dishonest participants share their knowledge. Therefore, this dishonest
participant would be able to play the role of the prover as if he was the dishonest
prover p0 (who is actually far away).

Nevertheless, we will show that under reasonable conditions, we can reduce
towards the topology T t0DH which is made up of 3 agents. More formally, T t0DH =
(ADH,MDH, LocDH, v0, p0) with ADH = {p0, v0, e0}, MDH = {p0}, LocDH(p0) =
LocDH(e0), and DistT t0

DH
(p0, v0) = t0.

Given a process P , we denote P the process obtained from P by removing
reset instructions, and replacing all the occurrences of in<t(x) by in(x).

Theorem 3. Let I0 be a template, Pprox be a protocol, t0 ∈ R+, and V0(z0, z1)
be a parametrised role obtained using the following grammar:

P,Q := end(z0, z1) | in(x).P | let x = v in P
| new n.P | out(u).P | reset.out(u′).in<t(x).P

where x ∈ X , n ∈ N , u, u′ ∈ T (Σ+
c ,X∪N∪{z0, z1}), v ∈ T (Σ+,X∪N∪{z0, z1})

and t ≤ 2 × t0. If Pprox admits a distance hijacking attack w.r.t. t0-proximity,
then Pprox admits an attack against t0-proximity in the topology T t0DH.

In order to establish such a result, the idea is to move honest participants in
the neighbourhood of v0 at the same location as v0. However, this will lengthen
the distance between such an agent and those that are far away from v0, and
thus some messages will be forgeable only after some extra delay. This can be
a problem in case such a message is useful to pass the guarded input. Thus, we
will first transform the initial attack trace into an “attack” trace in an untimed
model. This model (with no timing constraints to fullfill) is more suitable to
reorder some actions in the trace. We will show in a second step how to come
back in the original timed model.

As briefly explained above, we consider the untimed configuration associated
to a configuration K = (P;Φ; t). Formally, we have untimed(K) = (P ′;Φ′) with:

– P ′ = {bP ca | bP c
t
a ∈ P for some t}, and
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– Φ′ = {w a−→ u | w a,t−−→ u ∈ Φ for some t}.

Then, we consider a relaxed semantics over untimed configurations: K
a,α
T K

′

if there exist K0 and K ′0 such that K0
a,α−−→T K ′0 (for some rule other than the

TIM rule), and for which K = untimed(K0) (resp. K ′ = untimed(K ′0)).

Under the same hypotheses as those stated in Theorem 3, we establish a
result that allows one to “clean” an attack trace by pushing instructions (before
or after) outside the rapid phase delimited by a reset and its following guarded
input. In the resulting trace, the only remaining actions in the rapid phase are
those performed by agents who are close to v0.

Proposition 2. Let K0 be a valid initial configuration for Pprox and V0 w.r.t.

a topology T = (A0,M0, Loc, v0, p0) and I0. If K0
tr−→T K1 then there exists an

execution K ′0
tr′

K ′1 such that K ′i = untimed(Ki) for i ∈ {0, 1}.

Moreover, for any sub-execution of K ′0
tr′

K ′1 of the form

(breset.P c v0 ] P;Φreset)
v0,τ

(bP c v0 ] P;Φreset)
tr′0

K−in
v0,in

<t(u)
K ′in

where tr′0 only contains actions (a, α) with α ∈ {τ, out(u), in(u)}, we have that:

– 2DistT (v0, a) < t for any (a, α) ∈ tr′0;

– for any (a, in?(v)) occurring in tr′0.(v0, in
<t(u)), the agent b responsible of

the output and the recipe R (as defined in Figure 1) are such that either
2DistT (v0, b) < t, or vars(R) ⊆ dom(Φreset).

We are now able to prove our result regarding distance hijacking frauds.

Proof. (Sketch)

1. We start by removing reset instructions and by transforming any guarded
input (but those in V0) into simple inputs. The resulting trace is still an
attack trace w.r.t. Pprox.

2. Then, we apply Proposition 2 in order to obtain an attack trace in the relaxed
semantics. We will exploit the extra conditions given by Proposition 2 in
order to lift the trace in the timed model at step 4.

3. We now consider another topology T ′ with two locations (as T t0DH) and such
that agents close to v0 are now located with v0, and those that are far away
from v0 in T are now located with p0. This execution is still a valid trace
in T ′ since we consider the relaxed semantics.

4. Then, to lift this execution trace into our timed model, the basic idea is to
wait enough time before a reset instruction to allow messages to be received
by all the participants before starting the rapid phase.

5. To conclude, as in the previous attack scenarios, we reduce the initial knowl-
edge and the number of agents by applying a renaming on agent names. ut
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In (i : in(x).P ] P;φ; i)
in(u)
===⇒ (i : P{x 7→ u} ] P;φ; i) where R is a recipe such

that Rφ↓ = u is a message.

Out (i : out(u).P ] P;φ; i)
out(u)
===⇒ (i : P ] P;φ ] {w 7→ u}; i) with w ∈ W fresh

Let (i : let x = v in P ] P;φ; i)
τ
=⇒ (i : P{x 7→ v↓} ] P;φ; i) when v↓ ∈ MΣ .

New (i : new n.P ] P;φ; i)
τ
=⇒ (i : P{n 7→ n′} ] P;φ; i) with n′ ∈ N fresh.

Rep (i : !P ] P;φ; i)
τ
=⇒ (i : P ] (i : !P ) ] P;φ; i)

Move (P;φ; i)
phase i′
====⇒ (P;φ; i′) with i′ > i.

Phase (i : i′ : P ] P;φ; i)
τ
=⇒ (i′ : P ] P;φ; i)

Fig. 4: Semantics for processes with phases

6 Getting rid of the topology

We have reduced the topology but we have still to take into account it when
analysing the protocol preventing us to use automatic verification tool dedicated
to traditional security protocol such as ProVerif [9]. In this section, we will
explain how to get rid of the resulting topology and obtain interesting results on
timed protocols relying on the notion of phases that is offered to us in ProVerif.

6.1 ProVerif in a nutshell

We consider a subset of the ProVerif calculus defined as follows:

P,Q := 0 | in(x).P | let x = v in P | new n.P | out(u).P | i : P | !P
where x ∈ X , n ∈ N , u ∈ T (Σ+

c ,X ∪N ∪A), v ∈ T (Σ+,X ∪N ∪A) and i ∈ N.
The semantics is similar to the one introduced earlier, and formally defined

through a relation, denoted =⇒, over configurations. A configuration is a tuple
(P;φ; i) where P is a multiset of processes (as given by the grammar), φ is a
frame as usual (with no decoration on the arrow), and i ∈ N is an integer that
indicates the current phase. Intuitively, the process !P executes P an arbitrary
number of times (in parallel), and only processes in the current phase are allowed
to evolve. We often write P instead of 0 : P .

6.2 Our transformation

Given a topology T (typically one in Figure 3), a protocol Pprox, a role V0, and
a template I0, we build a configuration (P;φ; 0) on which the security analysis
could be done using ProVerif. From now on, we assume that V0(v0, p0) only
contains one block of the form reset.out(m).in<t(x), i.e. it is of the form:

block1 . reset . out(m) . in<t(x) . block2 . end(v0, p0)

where blocki is a sequence of actions (only simple inputs, outputs, let, and new
instructions are allowed).
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The main idea is to use phase 1 to represent the critical phase. Such a phase
starts when V0 performs its reset instruction, and ends when V0 performs its
in<t(x) instruction. During this critical phase, only participants that are close
enough to V0 can manipulate messages outputted in this critical phase. The other
ones are intuitively too far. Therefore, we mainly consider two transformations,
namely F< and F≥, whose purposes are to transform a parametrised role of our
process algebra given in Section 3.1 (with no reset instruction and no guarded
input) into a process in the ProVerif calculus.

– transformation F<: this transformation introduces the phase instructions
with i = 0, 1 and 2 considering all the possible ways of splitting the role
into three phases (0, 1, and 2). Each phase instruction is placed before an
in instruction. Such a slicing is actually sufficient for our purposes.

– transformation F≥: this transformation does the same but we forbid the use
of the instruction phase 1, jumping directly from phase 0 to phase 2.

The configuration, denoted F(T ,Pprox, V0, I0, t0), is the tuple (P;φ; 0) where φ
is such that img(φ) =

⋃
a∈M0

Knows(I0, a,A0), and P is the multiset that con-
tains the following processes (assuming in addition that a0 6= v0 when considering
the simple distance fraud scenario):

- block1 . 1 : out(m) . in<t(x) . 2 : block2 . end(v0, p0);

- !R(a0, .., an) when R(z0, .., zn) ∈ F<(Pprox), a0, .., an ∈ A0, DistT (v0, a0) < t0;

- !R(a0, .., an) when R(z0, .., zn) ∈ F≥(Pprox), a0, .., an ∈ A0, DistT (v0, a0) ≥ t0;

Relying on Proposition 2, we are able to establish the following result that jus-
tifies the transformation presented above.

Proposition 3. Let T = (A0,M0, Loc0, v0, p0) be a topology, Pprox a protocol,
t0 ∈ R+, I0 a template, and V0(z0, z1) a parametrised process of the form:

block1 . reset . out(m) . in<t(x) . block2 . end(z0, z1) with t ≤ 2× t0
Let K0 be a valid initial configuration for the protocol Pprox and V0 w.r.t. T
and I0. If K0 admits an attack w.r.t. t0-proximity in T , then we have that:

F(T0,Pprox, V0, I0, t0)
tr

=⇒ ({2 : end(v0, p0)} ] P;φ; 2).

Moreover, in case there is no a ∈ M0 such that DistT0(a, v0) < t0, we have
that for any in(u) occurring in tr during phase 1, the underlying recipe R is
either of the form w, or only uses handles ouputted in phase 0.

We will see in the following section how this result can be used to turn
any attack scenario corresponding to a distance fraud (resp. mafia fraud) into
a reachability property, namely the reachability of the event end. Regarding
distance hijacking, in order to avoid false attacks, we will exploit the additional
condition stated at the end of Proposition 3. In particular, a slight modification
of the ProVerif code consisting in discarding some attacker behaviours will give
us enough precision to obtain meaningful results.
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7 Case studies using ProVerif

7.1 Methodology

Let Pprox be a protocol for which we want to establish the absence of attacks
w.r.t. t0-proximity. Regardless of the type of the considered attack, thanks to
our reduction results (Section 5), we only need to consider a single topology
(one depicted in Figure 3). Once down to this single topology, we can apply
Proposition 3, and analyse the configuration (P;φ; 0) = F(T t0XX,Pprox, V0, I0, t0)
with XX ∈ {DF,MF,DH} in ProVerif. If the protocol is proved secure, then
Pprox is resistant to the class of attacks we have considered. Otherwise, the trace
returned by ProVerif can be analysed to see if it is executable in our timed
semantics, and thus corresponds to a real attack.

Actually, to obtain meaningful results regarding scenarios that only involved
honest participants in the neighbourhood of v0, we have to go one step further.
Indeed, the attacker model behind ProVerif allows him to interact with any par-
ticipant (even those that are far away) with no delay. To avoid these behaviours
that are not possible in the rapid phase, we slightly modify the ProVerif code
taking advantage of the extra condition stated in Proposition 3. During phase 1,
we consider an attacker who is only able to forward messages previously sent,
and forged new messages using his knowledge obtained in phase 0. We also note
that, due to some optimisations in ProVerif code, we couldn’t prevent the at-
tacker from using native tuples in phase 1, therefore, we model tuples using our
own function symbols.

7.2 Application to distance bounding protocol

In this section, we apply our methodology to a number of well-known distance
bounding protocols. However, they may have been abstracted to be analysed in
the symbolic framework. In particular, in symbolic models, it is not possible to
reason at the bit-level, and therefore we replace the bit-sized exchanges by a
single challenge-response exchange using a fresh nonce (as done in Example 4).
Sometimes, we also abstract the answer from the prover relying on an unin-
terpreted function symbol with relevant arguments. Finally, in order to rely on
ProVerif, the xor operator has been abstracted (even if our theoretical develop-
ment is generic enough to deal with such an operator). In constrast with [25] in
which the xor operator is fully abstracted relying on a non interpreted function
symbol, we actually model it through the following rewriting rules:

(x⊕ y)⊕ x→ y (x⊕ y)⊕ y → x x⊕ (x⊕ y)→ y y ⊕ (x⊕ y)→ x

In Figure 5, we present the protocols we have analysed using our methodology
(plain arrows denote the rapid exchange phase). The Meadows et al. protocol [27]
has been studied with two different functions F (nV , nP , P ) = (nV ⊕ nP , P ) and
F (nV , nP , P ) = (nV , nP ⊕ P ) using the weaken xor operator: the first one has
been proved secure, while the second one is vulnerable to an attack. All the
results are presented in Table 1. We can note that due to the abstractions we
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b
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Munilla et al.
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s, s′

commit(s, s′)
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b

b

f(b, s)

SignskP (V, nV , s)

CRCS

V(k−1, pkP ) P(k, skP )
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s = SignskP (na, nb)

new
m

{na, nb, s}k
m

new b b

f(b,m, na, nb)

TREAD

Fig. 5: Description of our case studies

have performed, some protocols, namely Hanckeand Kuhn, Tree-based, Poulidor,
and Uniform, become equivalent.

The results are consistent with the ones obtained in [25, 20]. Moreover, our
method (with a weakened xor operator) enables us to retrieve automatically the
distance hijacking attacks already known on the Meadows et al. protocol. In
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Protocols sDF DF MF DH

Brands and Chaum [12] X × X ×
MAD (One-Way) [13] X × X ×
Meadows et al. (nV ⊕nP , P ) [27] X X X X
Meadows et al. (nV , nP ⊕P ) [27] X × X ×
Swiss-Knife [24] X X X X
Munilla et al. [29] X X X X
TREAD-Asymmetric [6] X × × ×
TREAD-Symmetric [6] X × X ×
CRCS [31] X × X ×
Hancke and Kuhn [22] X X X X
Tree-based [7] X X X X
Poulidor [32] X X X X
Uniform [26] X X X X

Table 1: Results on our case studies (×: attack found, X: proved secure)
(s)DF = (simple) Distance Fraud, MF = Mafia Fraud, DH = Distance Hijacking

comparison, the methodology proposed by Mauw et al. in [25] requires to use a
specific model of the protocol to retrieve it (e.g. some rules need to be duplicated
to simulate some algebraic properties of the xor operator). Another interesting
point is that we succeed in proving resistance against mafia fraud for the first
version of the Meadows et al. protocol (using our weakened xor) which could not
be proved using the framework proposed in [27].

Our analysis has been performed using a 64-bit MacOs HighSierra computer
with 16 Go of RAM memory and a processor Intel Core i5-7287U CPU 3.30GHz.
ProVerif always answers in less than one seconds, and we may note that all the
traces retuned by ProVerif correspond to real traces (no false positive).

7.3 Application to the Paysafe protocol

In addition to standard distance bounding protocol, we studied an EMV payment
protocol, PaySafe [16], designed to be resistant against mafia fraud attacks. More
generally, contactless payment protocols need to prevent relay attacks where
malicious agents would abuse from an honest agent to perform a payment, which
is the mafia fraud scenario.

The Paysafe protocol is schematised in Figure 6 where plain arrows represents
the rapid exchange phase. During the initialisation phase, the reader and the card
exchange some identifiers, while during the authentication exchange, the reader
ensures that the card is legitimate using signatures and certificates verifications.
The main idea is to send nonces and constants during the rapid exchange phase
(and perform verifications later) since this can always be done in a short amount
of time, therefore, increasing the accuracy on the proximity property needed to
ensure the security of the protocol.
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Card

ATC,PAN

Terminal

amount,GPO

Initialisation

new
nR

GPO, amount, nR

new
nC

ATC,PAN, nC

Authentication

Fig. 6: PaySafe (simplified)

We also considered two other versions of
PaySafe, also described in [16], where nonces
from the Reader and the Card are removed. Our
results, obtained using our methodology with
ProVerif, confirmed those presented in [16]. One
would note that their methodology and ours,
especially when it comes down to the use of
ProVerif, are quite similar but we would like to
emphasise the fact that our use of ProVerif is
a consequence of our formal development. This
protocol has also been verified in [25]. The au-
thors of [25] reported a distance fraud attack which is not relevant in this context.
Their methodology does not allow them to restrict their analysis to the case of
mafia fraud scenario. In contrast, our methodology is flexible enough and thus
more suitable in this context.

8 Conclusion

Regarding physical proximity we have shown several reduction results: if there is
an attack on an arbitrary topology then there is an attack on a simple one having
at most four nodes. Relying on these reduction results, we have shown how to
use ProVerif to analyse several protocols provided they make use of primitives
supported by the tool. Moreover, our methodology is flexible enough to draw
meaningful conclusion on each class of attacks (distance fraud, hijacking attack,
mafia fraud).

Our model suffers from some restrictions that prevents it to be used to analyse
some scenarios. For instance, we do not consider the notion of terrorist fraud
since this would require to consider dishonest participants who only share a
part of their knowledge. Another possible extension would be to take also into
account the fact that computing messages takes time as it was done e.g. in [15],
or to consider channels having different speeds. To go even further, quantitative
analysis relying on probabilistic models such as those developed in [14] would be
beneficial.
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A Proof of Proposition 1

Proposition 1 is a direct consequence of Proposition 4 stated and proved below.
Indeed, it is easy to see that when K is a valid initial configuration then K0 is also
a valid initial configuration, and K0 is actually a zero-configuration. Moreover,
in case the execution K −→∗T K ′ under study is an attack trace, then the resulting
execution K0 = (P0;Φ0; 0) −→∗T K ′0 is also an attack trace.

Proposition 4. Let T = (A0,M0, Loc, v0, p0) be a topology and K = (P;Φ; t)
be a configuration such that any guarded input in P is preceded by a reset. Let

K ′ = (P ′;Φ′; t′) be a configuration such that K
tr−→T K ′.

Let P0 = {bP c 0a | bP c
ta
a ∈ P}, and Φ0 = {w a,0−−→ u | w a,ta−−→ u ∈ Φ}. We

have that K0 = (P0;Φ0; 0)
tr−→T K ′0 for some K ′0 = (P ′0;Φ′0; t′0) such that:

1. {(P, a) | bP ca ∈ P ′} = {(P, a) | bP ca ∈ P ′0};
2. {(w, a, u) | w a,−−→ u ∈ Φ′} = {(w, a, u) | w a,−−→ u ∈ Φ′0}.

Proof. We prove the result together with the additional properties stated below

by induction on the length of the derivation K
tr−→T K ′ = (P ′;Φ ] Ψ ′; t′).

(i) if bP c taa ∈ P ′ and P contains a guarded input that is not preceded by a

reset then bP c taa ∈ P ′0 (with the same value for ta);

(ii) t′0 = t′ − t+ δ where δ = max({DistT (a, b) | a, b ∈ A0} ∪ {t});
(iii) Φ′0 = Φ0 ] Shift(Ψ ′, δ − t).

Base case: In such a case, we have that K ′ = K, and thus t′ = t, P ′ = P, Φ′ = Φ,
and Ψ ′ = ∅. Let K ′0 = (P0;Φ0; δ) where δ = max({DistT (a, b) | a, b ∈ A0}∪ {t}).
We have that K0 −→T K ′0 using the TIM rule. Note that item (i) is satisfied since
by hypothesis in P ′, any guarded input is preceded by a reset. Regarding (ii),
we have that t′0 = δ = t′− t+δ since t′ = t. Since Φ′0 = Φ0, and Ψ ′ = ∅, item (iii)
is also satisfied.

Induction step: In such a case, we have that K
tr−→T K ′′

a,α−−→T K ′ with K ′′ =
(P ′′;Φ′′; t′′) and Φ′′ = Φ ] Ψ ′′. By induction hypothesis, we know that there

exists K ′′0 = (P ′′0 ;Φ′′0 ; t′′0) such that K0
tr−→T K ′′0 with:

1. {(P, a) | bP ca ∈ P ′′} = {(P, a) | bP ca ∈ P ′′0 };
2. {(w, a, u) | w a,−−→ u ∈ Φ′′} = {(w, a, u) | w a,−−→ u ∈ Φ′′0}.

We have also that:

(i) if bP c taa ∈ P ′′ and P contains a guarded input that is not preceded by a

reset then bP c taa ∈ P ′′0 ;

(ii) t′′0 = t′′ − t+ δ where δ = max({DistT (a, b) | a, b ∈ A0} ∪ {t});
(iii) Φ′′0 = Φ0 ] Shift(Ψ ′′, δ − t).
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We have to establish that there exists K ′0 = (P ′0;Φ′0; t′0) that satisfies the

five properties stated above and such that K ′′0
a,α−−→T K ′0. We consider the rule

involved in K ′′
a,α−−→T K ′ and we show that the same rule can be applied on K ′′0 ,

and allows one to get K ′0 with the five properties stated above.

Case TIM rule with δ0. In such a case, we have that K ′ = (P ′′;Φ′′; t′′+ δ0), and
we apply the same rule with the delay δ0 onK ′′0 . We obtainK ′0 = (P ′′0 ;Φ′′0 ; t′′0+δ0),
and we easily check that all the properties are satisfied.

Case OUT rule. In such a case, K ′ = (P ′;Φ′′]{w a,t′′−−→ u}; t′′) (for some P ′, w, a,

and u). We apply the same rule onK ′′0 , and obtainK ′0 = (P ′0;Φ′′0]{w
a,t′′0−−→ u}; t′′0)

(for some P ′0). We have that items 1 and 2 are clearly satisfied as well as item (i).
Now, regarding item (ii), we have that t′0 = t′′0 and t′ = t′′. Therefore, we conclude
that t′0 = t′ − t + δ thanks to our induction hypothesis. Now, to establish that
Φ′0 = Φ0 ] Shift(Ψ ′, δ− t), relying on our iduction hypothesis, it only remains to
show that t′′0 = t′′ + (δ − t) (this is item ii).

Case LET and NEW rules. In such a case, K ′ = (P ′;Φ′′; t′′) (for some P ′), and
we apply that same rule on K ′′0 , and obtain K ′0 = (P ′0;Φ′′0 ; t′′0). We conclude
easily (for each property) relying on our induction hypothesis.

Case RST rule. In such a case, K ′ = (P ′;Φ′′; t′′) (for some P ′), and we know

that P ′′ = {breset.P c t
a

a }∪Q′, and P ′ = {bP c 0a}∪Q′ for some P, a, ta and Q′.
We apply the same rule on K ′′0 , and obtain K ′0 = (P ′0;Φ′′0 ; t′′0), and we know

that P ′′0 = {breset.P c t
a
0
a } ∪ Q′0, and P ′0 = {bP c 0a} ∪ Q′0 for some ta0 and Q′0.

Relying on our induction hypothesis, we easily obtain the fact that items 1 and 2
are satisfied. Regarding item (i), we conclude using our induction hypothesis for

processes in Q′0, and the property is satisfied for bP c 0a. Regarding items (ii)
and (iii), since the global time and the frame have not evolved, we conclude
relying on our induction hypothesis.

Case IN rule. In such a case, K ′ = (P ′;Φ′′; t′′) (for some P ′), and we apply the
same rule on K ′′0 to get K ′0 = (P ′0;Φ′′0 ; t′′0). The difficult part is to show that the

rule can indeed be applied onK ′′0 . By hypothesis, we know thatK ′′
a,in?(u)−−−−−→T K ′,

and thus P ′′ = bin?(x).P c t
a

a ∪Q for some x, a, ta and Q, and we know that there
exists b ∈ A0 and tb ∈ R+ such that tb < t′′ − DistT (b, a) and:

– if b ∈ A0 rM0 then u ∈ img(bΦ′′c t
b

b );
– if b ∈ M0 then u = RΦ↓ for some recipe R such that for all w ∈ vars(R)

there exists c ∈ A0 such that w ∈ dom(bΦ′′c t
b−DistT (c,b)
c ).

Moreover, in case ? is < tg for some tg, we know in addition that ta < tg.
We first assume that in?(u) is a simple input (not a guarded one). We show

that we can apply on K ′′0 the same rule using the same recipe R. The message
will be sent by the same agent b ∈ A0. The time tb0 at which the message is
tb + (δ − t). Note that tb0 ≥ tb since δ − t ≥ 0. We distinguish two cases:

– if b ∈ A0 rM0 then we know that u ∈ img(bΦ′′c t
b

b ) = img(bΦc t
b

b ) ∪
img(bΨ ′′c t

b

b ). Actually, we have that img(bΦc t
b

b ) ⊆ img(bΦ0c
tb0
b ) since tb0 ≥ 0
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and by definition Φ0 = {w a,0−−→ u | w a,−−→ u ∈ Φ}. We have also that

img(bΨ ′′c t
b

b ) ⊆ img(bΨ ′′0 c
tb0
b ) since Ψ ′′0 = Shift(Ψ ′′, δ−t), and tb0 = tb+(δ−t).

– if b ∈ M0 then let w ∈ vars(R). By hypothesis, we know that there ex-

ists c ∈ A0 such that w ∈ dom(bΦ′′c t
b−DistT (c,b)
c ). To conclude, it is suffi-

cient to show that w ∈ dom(bΦ′′0c
tb0−DistT (c,b)
c ). Again, we distinguish two

cases. In case w ∈ dom(bΦc t
b−DistT (c,b)
c ), then w ∈ dom(bΦ0c t

b
0−DistT (c,b)
c )

since tb0 ≥ 0 and by definition Φ0 = {w a,0−−→ u | w a,−−→ u ∈ Φ}. In

case w ∈ dom(bΨ ′′c t
b−DistT (c,b)
c ), then w ∈ dom(bΨ ′′0 c

tb0−DistT (c,b)
c ) since

Ψ ′′0 = Shift(Ψ ′′, δ − t), and tb0 = tb + (δ − t).

In case ? is < tg, by hypothesis we know that ta < tg, and thanks to item (i),

we know that P ′′0 = bin?(x).P c t
a

a ∪Q0. This allows us to conclude. �

B Proof of Theorem 1 (Distance Fraud)

We show this result in two main steps:

1. We move the agents (keeping p0 far away from v0) in a way that will only
shorten the distance between any two of them.

2. We rename agents preserving their location (Lemma 1), and we show that
the resulting initial configuration is still a valid one.

Lemma 1. Let K = (P;Φ; t) be a configuration on T = (A0,M0, Loc0, v0, p0)
and ρ : A → A0 be a renaming such that Loc0(ρ(a)) = Loc0(a) for any a ∈ A0,
and if a ∈M0 then ρ(a) ∈M0. Let K ′ = (P ′;Φ′; t′) be a configuration such that

K
tr−→T K ′. We have that:

Kρ
trρ−−→T K ′ρ

Proof. We show this result by induction on the length of K
tr−→T K ′. The base

case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to show that

K1
a,α−−→T K2 with K1 a configuration built on T implies that:

K2 is a configuration built on T , and K1ρ
ρ(a),ρ(α)−−−−−−→T K2ρ.

K1 only involves processes located at a ∈ A0, and therefore actions along the
derivation are only executed by agents in A0 whose locations remain unchanged
by ρ. We consider each rule of the semantics one by one. The only rules that are
not trivial are the rules LET and IN.

Case of the rule LET. In such a case, we have that K1 = (P1;Φ1; t1) and K2 =

(P2;Φ2; t2) with P1 = blet x = u in P c taa ] P, P2 = bP{x 7→ u↓}c taa ] P,
Φ2 = Φ1, and t2 = t1. We know that u↓ ∈ T (Σ+

c ,N ]A), and therefore we have
that (uρ)↓ ∈ T (Σ+

c ,N ] A) by applying the same rewriting rule at each step.
This allows us to apply the rule LET and to obtain the expected result.

28



Case of the rule IN. In such a case, we have that K1 = (P1;Φ1; t1) and K2 =

(P2;Φ2; t2) with P1 = bin?(x).P c taa ]P, P2 = bP{x 7→ u}c taa ]P, Φ2 = Φ1, and
t2 = t1. We know that there exists b ∈ A0, tb ∈ R+ such that tb ≤ t1−DistT (b, a),
and a recipe R such that u = RΦ1↓, and for all w ∈ vars(R) there exists c ∈ A0

such that w ∈ dom(bΦ1c tb−DistT (c,b)
c ). Moreover, when b ∈ A0 rM0, we know

that R ∈ W. To conclude that the rule IN can be applied, we simply have to show
that R(Φρ)↓ = uρ. Note that the renaming ρ keeps the locations of the agents in
A0 unchanged, and therefore the conditions about distance are still satisfied. We
have that R(Φρ)↓ = (RΦ)ρ↓ since R ∈ T (Σ+

pub,W). We know that (RΦ)↓ = u,
and therefore we have that (RΦ)ρ↓ = uρ by applying the same rewriting rule at
each step. Note that uρ does not contain any destructor symbol and is thus in
normal form. To conclude, it remains to ensure that when ρ(b) ∈ A0rM0, then
R ∈ W. Actually, we know that if ρ(b) 6∈ M0 then b 6∈ M0 by hypothesis, and
this allows us to conclude. ut

Theorem 1. Let Pprox be a protocol, V0(z0, z1) be a parametrised role containing
the special event end(z0, z1), and I0 be a template. We have that Pprox admits a
distance fraud attack w.r.t. t0-proximity, if and only if, there is an attack against
t0-proximity in the topology T t0DF.

Proof. Since T 0
DF ∈ CDF, one direction is trivial. We consider the other one.

Let T = (A0,M0, Loc0, v0, p0) ∈ CDF and K0 = (P0;Φ0; tinit) be a valid initial
configuration for the protocol Pprox and V0 w.r.t. T and I0. We have that:

K0 −→∗T (bend(v0, p0)c tvv0 ] P;Φ; t) with DistT (v0, p0) ≥ t0

We consider T ′ = (A0,M0, Loc
′, v0, p0) such that Loc′(v0) = Loc0(v0), and:

Loc′(a) = Loc′(b) for any a, b ∈ A0 r {v0} with DistT ′(v0, p0) = t0.

Note that, since DistT (v0, a) ≥ t0 for any a ∈ A0 r {v0, p0} by definition of
T ∈ CDF, we have that DistT ′(a, b) ≤ DistT (a, b) for any a, b ∈ A0. Thus:

K0 −→∗T ′ (bend(v0, p0)c tvv0 ] P;Φ; t) with DistT ′(v0, p0) ≥ t0

Then, we consider the renaming ρ : A → A0 such that ρ(v0) = v0, and
ρ(a) = p0 otherwise. We have that Loc′(ρ(a)) = Loc′(a) for any a ∈ A0, and in
case a ∈ M0, we know that a 6= v0, and thus we have that ρ(a) = p0 ∈ M0

(since T ∈ CDF). Thus, we can apply Lemma 1, we obtain that:

K0ρ −→∗T ′ (bend(v0, p0)c tvv0 ] Pρ;Φρ; t) with DistT ′(v0, p0) ≥ t0.

Since T ′ and T 0
DF coincide on img(ρ) = {p0, v0}, we have that:

K0ρ −→∗T 0
DF

(bend(v, p)c tvv ] Pρ;Φρ; t) with DistT 0
DF

(v0, p0) ≥ t0.

To conlude, it remains to show that K0ρ is a valid initial configuration for Pprox,

and V0 w.r.t. T 0
DF and I0. We have to prove that img(bΦρc tinitv0

) = ∅, and img(bΦρc tinitp0
) =
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Knows(I0, p0, {v0, p0}). We have that:

img(bΦ0ρc tinitp0
) =

⋃
{a∈A0 | ρ(a)=p0}(img(bΦ0c tinita )ρ

=
⋃
{a∈A0 | ρ(a)=p0} Knows(I0, a,A0)ρ

=
⋃
{a∈A0 | ρ(a)=p0} Knows(I0, ρ(a), ρ(A0))

=
⋃
{a∈A0 | ρ(a)=p0} Knows(I0, p0, {p0, v0})

Moreover, we have that img(bΦ0ρc tinitv0
) = img(bΦ0c tinitv0

)ρ = ∅. This allows us to
conclude. �

C Proof of Theorem 2 (Mafia Fraud)

We show this result in three main steps:

1. We reduce the number of active agents and show that it is sufficient to
keep only 2 active agents, namely v0 and p0. More precisely we first trans-
form honest agents into dishonest ones (Lemma 2). Then, relying on our
executability hypothesis, we discard processes executed by malicious agents
(Proposition 5).

2. We control the number of attackers by placing them ideally, i.e. right next
each active agent (Proposition 6).

3. We rename agents preserving their location (Lemma 1), and we show that
the resulting initial configuration is still a valid one.

Reducing the number of active agents.

Lemma 2. Let T = (A0,M0, Loc0, v0, p0) be a topology, and K0 be a config-
uration built on T . Let H0 ⊆ A0 rM0. Let K be a configuration such that

K0
tr−→T K. We have that K0

tr−→T ′ K where T ′ = (A0,M0 ∪H0, Loc0, v0, p0).

Proof. We show this result by induction on the length of the derivationK0
tr−→T K.

The base case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to
show that:

K1
a,α−−→T K2 implies K1

a,α−−→T ′ K2.

Let K1 = (P1;Φ1, t1). We consider each rule of the semantics one by one. Actu-
ally, the only rule that depends on the status (honest/dishonest) of the agents of
the underlying topology is the rule IN. In such a case, we have that α = in?(u)
for some u. Moreover, following the notation introduced in Section 3.3, we know
that there exist b ∈ A0 (the agent responsible of the corresponding output) and
tb ∈ R+ (the time at which the output has been triggered). The only interesting
case is when b ∈ H0, and therefore b is now a malicious agent in the topology T ′
whereas b was an honest one in the topology T . Since, the IN rule was triggered
in T , we know that u ∈ img(bΦ1c tbb ), and therefore there exists w ∈ dom(bΦ1c tbb )
such that wΦ1↓ = u. Actually, it is easy to see that choosing the recipe R = w
(and c = b) allows us to conclude. Indeed, we have that tb−DistT ′(b, b) = tb, and
therefore we conclude since we have already shown that w ∈ dom(bΦ1c tbb ). ut
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Definition 8. A closed process P without new construction is executable w.r.t.
a frame Φ if for any term u (resp. v) occurring in an output or a let there exists
a term R ∈ T (Σ+

pub, dom(Φ) ∪ X ) such that u = RΦ↓ (resp. v↓ = RΦ↓).

Proposition 5. Let T = (A0,M0, Loc0, v0, p0) be a topology, K0 = (P0;Φ0; t0)
be a configuration built on T , and D0 ⊆M0. We assume that for any bPac taa ∈
P0 with a ∈ D0, we have that Pa is executable w.r.t. bΦ0c t0a .

Let K be a configuration such that K0
tr−→T K = (P;Φ0]Φ+; t). We have that

(P0;Φ0, t0)
tr−→T (P;Φ0 ] Φ+; t) where P0 (resp. P, Φ+, tr) is obtained from P0

(resp. P, Φ+, tr) by removing processes (resp. frame or trace elements) located
in a ∈ D0.

Proof. We will show this result assuming that D0 contains a unique element a0.
The general result can then easily be obtained by a simple induction on the size
of D0. More precisely, we show the following results by induction on the length

of K0
tr−→T K = (P;Φ0 ] Φ+; t):

1. for all bP c taa0 ∈ P, P is executable w.r.t. Ψ(t);

2. for all w
a0,ta−−−→ u ∈ Φ+, there exists R ∈ T (Σ+

pub, dom(Ψ(ta))) such that
RΨ(ta)↓ = u;

3. (P0;Φ0, t0)
tr−→T (P;Φ0 ] Φ+; t);

where Ψ(t) = Φ0 ] {bΦ+c t−DistT (b,a0)
b | b 6= a0}.

The base case, i.e. when tr is empty, is trivial. Now, we assume that

K0
tr−→T K = (P;Φ0 ] Φ+; t)

a,α−−→ K ′ = (P ′;Φ0 ] Φ′; t′)

and thanks to our induction hypothesis, we know that the three properties above
hold on K. We do a case analysis on the rule involved in the last step.

Rule TIM. In such a case, we have that Φ′ = Φ+ and P ′ = P. Since t′ ≥ t, we
have that Ψ(t) ⊆ Ψ(t′), and this allows us to conclude.

Rule OUT. Items 1 and 3 are quite obvious. Regarding item 2, the only non
trivial case is when a = a0. We have to show that the element added to the

frame, namely w
a0,t−−→ u satisfies the expected property. By hypothesis, we know

that the process out(u).P responsible of this output is executable w.r.t. Ψ(t),
and thus there exists R ∈ T (Σ+

pub, dom(Ψ(t))) such that RΨ(t)↓ = u↓.
Rule LET. The only non trivial point is to establish item 1 when a = a0. We
have that P = blet x = v in P ′c taa0 ]P1, P ′ = bP ′{x 7→ v↓}c taa0 ]P1, Φ′ = Φ+,
and t′ = t. By hypothesis, we know that the process let x = v in P ′ in P
is executable w.r.t. Ψ(t), thus there exists R ∈ T (Σ+

pub, dom(Ψ(t))) such that
RΨ(t)↓ = v↓. To prove item 1, we have to show that P ′{x 7→ v↓} is executable
w.r.t. Ψ(t′) = Ψ(t). Let u be a term occurring in an output (resp. a let) in
P ′{x 7→ v↓}. We have that there exists u0 that occurs in an ouput (resp. a let) in
P ′ such that u0{x 7→ v↓} = u, and by hypothesis, we know that let x = v in P ′
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is executable w.r.t. Ψ(t), i.e. there exists R0 ∈ T (Σ+
pub, dom(Ψ(t))∪X ) such that

u0↓ = R0Ψ(t)↓. Let R′ = R0{x 7→ R}. We have that

R′Ψ(t′)↓ = (R0{x 7→ R})Ψ(t)↓ = (R0Ψ(t){x 7→ v↓})↓ = (u0{x 7→ v↓})↓ = u↓.

Note that u = u0{x 7→ v↓} is in normal form when u0 is is normal form. Thus,
no normalisation is needed in case u is a term occurring in an output.

Rule NEW. We know that a 6= a0, and thus the result trivially holds.

Rule RST. In such a case, the result trivially holds.

Rule IN. In case a = a0, the only non trivial point is to establish item 1, and
this can be done in a similar way as it was done in Rule LET. Otherwise, i.e.
when a 6= a0, the non trivial point is to establish item 3. Let α = in?(u). We
have to establish that the IN rule can still be fired with the same value u despite
the fact that some frame elements have been removed from Φ+.
Following the notations introduced in Section 3.3, we know that there exist
b ∈ A0 and tb ∈ R+ such that tb ≤ t − DistT (b, a) and a recipe R such that
R(Φ0 ] Φ+)↓ = u and for all w ∈ vars(R) there exists c ∈ A0 such that w ∈
dom(bΦ0 ] Φ+c tb−DistT (c,b)

c ).

1. If b /∈ M0 then we know that R = w and we have that bΦ0 ] Φ+c tbb =

bΦ0 ] Φ+c tbb because b 6= a0. Thus, the rule can be applied.
2. If b ∈ M0, then in case c 6= a0, or c = a0 with w ∈ Φ0, then it is straight-

forward. The interesting case is when w ∈ dom(bΦ+c tb−DistT (a0,b)
a0

), and we

have to reconstruct wΦ+ with elements available in Φ0 ] Φ+. To do so, we
apply item 2: we obtain that there exists a time ta ≤ tb −DistT (a0, b) and a
recipe Rw ∈ T (Σpub, dom(Ψ(ta))) such that RwΨ(ta)↓ = wΦ+. By definition

of Ψ(ta), we have that Ψ(ta) = Φ0]{bΦ+c ta−DistT (c,a0)
c | c 6= a0}. Moreover,

we know that

ta − DistT (c, a0) ≤ tb − (DistT (c, a0) + DistT (a0, b)) ≤ tb − DistT (c, b).

Thus, we have that vars(Rw) ⊆ dom(Φ0)]dom({bΦ+c tb−DistT (c,b)
c | c 6= a0}.

We consider the substitution σ with dom(σ) = dom(bΦ+c tb−DistT (a0,b)
a0

) and

such that σ(w) = Rw. We have that Rσ ∈ T (Σ+
pub, dom(Φ0 ] Φ+)) and

Rσ(Φ0 ] Φ+)↓ = R(Φ0 ] {w 7→ Rw(Φ0 ] Φ+) | w ∈ dom(σ)})↓
= R(Φ0 ] {w 7→ wΦ+ | w ∈ dom(σ)})↓
= R(Φ0 ] Φ+)↓
= u.

Therefore the IN rule can be applied. ut

In order to be able to apply Proposition 5, we will have to clean the process
by removing new instructions, and applying a suitable renaming.
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Lemma 3. Let K = (P;Φ; t) be a configuration built on T = (A0,M0, Loc0, v0, p0),

and D ⊆ A0. Let K ′ = (P ′;Φ′; t′) be a configuration such that K
tr−→T K ′, and N

be the set of names that have been freshly generated to trigger all the rules NEW
executed by agents in D. We have that:

(P̃;Φ; t)
trρ−−→T (P̃ ′ρ;Φ′ρ; t′)

where ρ replaces any name from N with c0 ∈ Σ0, and P̃ is the process obtained
from P by removing ”new” instructions of the form new n and replacing the
occurrence of n by c0 in any process located in a ∈ D.

Proof. We show this result by induction on the length of K
tr−→T K ′. The base

case, i.e. when tr is the empty trace, is trivial. To conclude, it is sufficient to

show that (P1;Φ1; t1)
a,α−−→T (P2;Φ2; t2) implies that:

1. either (P̃1ρ;Φ1ρ; t1) = (P̃2ρ;Φ2ρ; t2);

2. or (P̃1ρ;Φ1ρ; t1)
a,αρ−−−→T (P̃2ρ;Φ2ρ; t2)

Note that since ρ has no effect on the initial configuration K, this will allow
us to conclude. We consider each rule of the semantics one by one.

– Rule TIM: In such a case, the same rule applies.
– Rule OUT: In such a case, we have that P1 = bout(u).P c taa ]P ′0 and u↓ will

be added into the frame. Actually the same rule applies on the configuration
(P̃1ρ;Φ1ρ; t1) and uρ↓ = u↓ρ will be added into the frame.

– Rule LET: In such a case, we have that P1 = blet x = u in P c taa ] P ′0
and u↓ is a message. Actually the same rule applies on the configuration
(P̃1ρ;Φ1ρ; t1) since uρ↓ = u↓ρ is also a message.

– Rule NEW: In case a ∈ D, since the freshly generated name n′ will be
in N, we have that (P̃1ρ;Φ1ρ; t1) = (P̃2ρ;Φ2ρ; t2). Otherwise, the same rule
applies.

– Rule RST: The same rule applies.
– Rule IN: In such a case, we have that P1 = bin(x).P c taa ] P ′0, and we have

a recipe R such that RΦ1↓ = u together with some extra conditions. The
same rule applies using the same recipe R. We have that R(Φ1ρ)↓ = uρ.

This allows us to conclude. ut

Controlling the number of intuders.

Given a mapping Loc from a set of agents A0 = {a1, . . . , ap} to R3, we define the
canonical topology TLoc associated to Loc as (A0 ]M0,M0, Loc ] Loc0, v0, p0)
where:

– M0 = {i1, . . . , ip} where i1, . . . , ip ∈ ArA0;
– Loc0(ij) = Loc(aj) for j ∈ {1, . . . , p}.
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Proposition 6. Let T = (A0,M0, Loc0, vo, p0) be a topology, K0 = (P0;Φ0; t0)
be a configuration built on T0, and V be a set of agents such that:

{a | bP c ta ∈ P0 or bΦ0c ta 6= ∅} ⊆ V ⊆ A0.

Let K = (P;Φ; t) be a configuration such that K0
tr−→T K. We have that

(P0;Φ0; t0)
tr−→TLocV (P;Φ; t) where LocV = Loc0|V .

Proof. We show this result by induction on the length of the derivationK0
tr−→T K.

The base case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to
show that:

K1
a,α−−→T K2 implies K1

a,α−−→T ′ K2 where T ′ = (A′,M′, Loc′, v0, p0) = TLocV .

We consider each rule of the semantics one by one. Actually, the only rule that
depends on the underlying topology is the rule IN. In such a case, we have that
α = in?(u) for some u. Moreover, we denote K1 = (P1;Φ1; t1) and following the
notations introduced in Section 3.3, we know that there exist b ∈ A0 (the agent
responsible of the corresponding output) and tb ≤ t1 − DistT (b, a) (the time at
which the output has been triggered) that satisfy the conditions of the rule. We
distinguish two cases:

1. In case b ∈ A0 rM0, then we know that there exists w ∈ img(bΦc tbb )
such that wΦ = u. By definition of V , we have that b ∈ V , and therefore
b ∈ A′ rM′. The same rule applies for the same reason.

2. In case b ∈ M0, then we know that there exists a recipe R such that
RΦ1↓ = u, and for all w ∈ vars(R) there exists c ∈ A0 such that w ∈
dom(bΦ1c tb−DistT (c,b)

c ). We show that the same rule applies using the same
recipe R. However, the agent responsible of the output will be the agent ia
such that Loc′(ia) = Loc′(a) = Loc0(a) (note that a ∈ V ), and this output
will be performed at time t1 (instead of tb). We have that RΦ1↓ = u. Now,

let w ∈ vars(R). Let c ∈ A0 such that w ∈ dom(bΦ1c tb−DistT (c,b)
c ). We have

that c ∈ V . It remains to show that w ∈ dom(bΦ1c t1−DistT ′ (c,ia)
c ). For this,

it is actually sufficient to establish that t1 − DistT ′(c, ia) ≥ tb − DistT (c, b).
We know that:

t1 − DistT (b, a) ≥ tb
⇒ t1 − DistT (b, a)− DistT (c, b) ≥ tb − DistT (c, b)
⇒ t1 − (DistT (b, a) + DistT (c, b)) ≥ tb − DistT (c, b)
⇒ t1 − DistT (c, a) ≥ tb − DistT (c, b)

The last implication comes from the triangle inequality for the distance.
Then, we obtain the expected result since Loc′(ia) = Loc′(a), and DistT (c, a) =
DistT ′(c, a) since a, c ∈ V .

This concludes the proof. ut

We are now able to establish our main result regarding mafia fraud.
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Theorem 2. Let I0 be a template, Pprox be a protocol I0-executable, and V0(z0, z1)
be a parametrised role containing the special event end(z0, z1). We have that Pprox

admits a mafia fraud attack w.r.t. t0-proximity, if and only if, there is an attack
against t0-proximity in the topology T t0MF.

Proof. Consider a topology T0 = (A0,M0, Loc0, v0, p0) such that Pprox admits an
attack. Let K0 = (P0;Φ0; tinit) be an initial configuration that is valid for Pprox,
V0 w.r.t. T0 and I0 such that K0 admits an attack w.r.t. t0-proximity in T0. We
consider the execution witnessing this fact:

K0
tr−→T0 (bend(v0, p0).P c tav0 ] P;Φ0 ∪ Φ; t) with DistT0(v0, p0) ≥ t0.

To establish this result, we combine the previous lemmas to show that there
exists a corresponding trace of execution in T t0MF. As already announced, the
proof is performed in three steps, and the first step is done in two stages.

Step 1-a. Applying Lemma 2 with H = A0 r (M0 ∪ {v0, p0}), we obtain a
topology T1 = (A1,M1, Loc1, v0, p0) where A1 = A0, M1 = A0 r {v0, p0}, and
Loc1 = Loc0. We have that:

K0
tr−→T1 (bend(v0, p0)c tav0 ] P;Φ0 ∪ Φ; t)

with DistT1(v0, p0) = DistT0(v0, p0) ≥ t0.
We now consider the configuration K+

0 = (P0;Φ+
0 ; tinit) where we extend Φ0

into Φ+
0 such that img(bΦ+

0 c
tinit
a ) = Knows(I0, a,A1) when a ∈ M1. Since we

only increase the knowledge, we have that:

K+
0

tr−→T1 (bend(v0, p0)c tav0 ] P;Φ+
0 ∪ Φ; t)

with DistT1(v0, p0) = DistT0(v0, p0) ≥ t0.

Step 1-b. Since the configuration K0 is valid, we know that for all bP c taa0 ∈ P0,
there exists a role Q ∈ Pprox such that P = Qτ with τ = {z0 7→ a0, . . . , zn 7→
an}, z0, . . . , zn ∈ Z, and a0, . . . , an ∈ A0 = A1. Moreover, we know that for
any term u occurring in an output or a let construction in P , there exists a
corresponding term u′ occurring in an output or a let construction in Q and
such that u = u′τ . Let I0 = {v1, . . . , vk}, and σ = {w1 7→ v1, . . . ,wk 7→ vk}.
Since Q is I0-executable, there exists a term R ∈ T (Σ+

pub, {w1, . . . ,wk}∪N ∪X )
such that u′ = Rσ↓. Thus, we know that u↓ = u′τ↓ = Rσ↓τ↓ = Rστ↓. Actually,
we have that img(στ) ⊆ Knows(I0, a0,A1). Therefore, since Knows(I0, a0,A1) ⊆
img(bΦ+

0 c
tinit
a0

), we have that there exists R′ ∈ T (Σ+
pub,W ∪ N ∪ X ) such that

u↓ = R′ bΦ+
0 c

tinit
a0
↓. Now, we can apply Lemma 3 with K+

0 = (P0;Φ+
0 ; tinit) and

D =M1 and conclude that:

– (P̃0;Φ+
0 ; tinit)

trρ2−−→T1 (bend(v0, p0)c tav0 ] P̃ρ2;Φ+
0 ∪ Φρ2; t) where P̃ is the

mutiset of extended processed obtained from P by removing new instruc-
tions of the form new n and replacing the occurrence of n by c0 in processes
located in a ∈ D =M1, and ρ2 replaces any name that has been generated
to trigger a rule NEW executed by an agent in D by c0.
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– any bP c taa0 ∈ P̃0 with a0 ∈ M1 does not contain new construction and

is executable w.r.t. bΦ+
0 c

tinit
a0

because c0 ∈ Σ0 ⊆ Σ+
pub and therefore R′

in which we replace any occcurrence of a name in N by c0 is a recipe in

T (Σ+
pub, bΦ

+
0 c

tinit
a0
∪ X ) that allows one to conclude.

We are now able to apply Proposition 5 with D0 =M1 and we have that:

(P0;Φ+
0 ; tinit)

trρ2−−→T1 (bend(v0, p0)c tav0]Pρ2;Φ+
0 ∪Φρ2; t) with DistT1(v0, p0) ≥ t0.

where Pρ2 (resp. Φρ2, trρ2) is obtained from Pρ2 (resp. Φρ2, trρ2) by removing
processes (frame elements, actions) located in a ∈ D0 = M1. We may note
that the transformation ·̃ has some effect on processes that are removed by the
transformation · , and thus can easily be removed.

Step 2. We now consider Φ++
0 the same as Φ+

0 but frame elements located at
a ∈ M1 are moved to v0. Let δ0 = Max(DistT1(v0, a)) for any a ∈ M1. Clearly,
we have that:

(P0;Φ++
0 ; tinit + δ0)

trρ2−−→T1 (bend(v0, p0)c tav0 ] Pρ2;Φ++
0 ∪ Shift(Φρ2, δ0); t+ δ0)

with DistT1(v0, p0) ≥ t0. Indeed, shifting by +δ0 the initial configuration, all the
messages moved from an agent a ∈M1 to v0 can be used by a at the time tinit of
the initial frame. Then we can apply Proposition 6 on T1 and (P0;Φ++

0 ; tinit +δ0)
with V = {v0, p0}. We deduce that (where T ′1 = ({v0, p0, iP , iV }, {iP , iV }, Loc{v0,p0})):

(P0;Φ++
0 ; tinit + δ0)

trρ2−−→T ′1 (bend(v0, p0)c tav0 ] Pρ2;Φ++
0 ∪ Shift(Φρ2, δ0); t+ δ0)

with DistT ′1 (v0, p0) = DistT1(v0, p0) ≥ t0.

Step 3. To reduce the size of the initial frame, now we apply Lemma 1 on K ′0 =

(P0;Φ++
0 ; tinit + δ0) using ρ3 : A → A′1 = {v0, p0, iP , iV } such that ρ3(a) = iV

for any a 6∈ A′1. We have that:

(P0ρ3;Φ++
0 ρ3; tinit + δ0)

trρ2ρ3−−−−→T ′1
(bend(v0, p0)c tav0 ] Pρ2ρ3;Φ++

0 ρ3 ∪ Shift(Φρ2ρ3, δ0); t+ δ0)

with DistT ′1 (v0, p0) ≥ t0.

Now, we show that (P0ρ3;Φ++
0 ρ3; tinit + δ0) is almost valid. Indeed to turn

this configuration into a valid one, we simply have to move frame elements
(those that we have added during Step 1-a and moved during Step 2) located
in v0 to iV . This will not change the underlying execution since both nodes
are located at the exact same place. Then, we add some frame elements in iP ,
more precisely Knows(I0, iP ,A′1). These additional elements will not alter the
underlying execution.

We may note that P0ρ3 satisfies the first item of Definition 2: since P0 is

valid, there exits t′ such that bV0(v0, p0)c t
′

v0
∈ P0 and by construction P0ρ3
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still contains bV0(v0, p0)c t
′

v0
. Moreover, for all bP ′c t

′

a′ ∈ P0ρ3, by construction,
we know that a′ ∈ {v0, p0} = A′1 \ M′1. Finally, we have that there exists

bP ′′c t
′

a′ ∈ P0 such that P ′′ = P (a′, a1, . . . , an) for P ∈ Pprox and P ′ = P ′′ρ3 =
P (a′, ρ3(a1), . . . , ρ3(an)) with ρ3(a1), . . . , ρ3(an) ∈ A′1.

To conclude, we have to shorten the distance between v0, iV and p0, iP . To
do so, we consider a new topology T = (A′1,M′1, Loc, v0, p0) such that Loc(v0) =
Loc(iv), Loc(p0) = Loc(ip) and DistT (v0, p0) = t0. ut

D Proof of Theorem 3 (Distance hijacking attack)

To establish this result, we will first show that we can transform any attack
trace into an attack trace having a specific format. For this, we need to show
that some actions can be swapped without breaking the underlying action, and
thus preserving the fact that the trace is an attack.

We first introduce annotations in the semantics of our processes, in order to
ease their analysis.

D.1 Annotations

We shall now define an annotated semantics whose transitions are equipped with
more informative actions. The annotated actions will feature labels identifying
which process in the multiset has performed the action (session identifier). This
will allow us to identify which specific agent performed some action. We also put
in the annotation the global time at which the action has been done. In case of an
output, the annotation will indicate the name of the handle w that has been used
to store the output in the frame. In case of an input, the annotation will indicate
by a triple (b, tb, R) the name b of the agent responsible of the corresponding
output, the time at which this output has been performed, as well as the recipe
R used to build this output.

Formally, an action is either empty (for the TIM rule) or of the form a, α
with α ∈ {τ, out(u), in?(u)}, and thus an annotated action is:

– empty for the TIM rule;
– (a, α, s, t,w) when the underlying action a, α is of the form a, out(u). In such

a case, s is the session identifier of the agent responsible of this action, t is
the global time at which this output has been done, and w is the handle
added in the frame.

– (a, α, s, t, (b, tb, R)) when the underlying action a, α is of the form a, in?(u).
In such a case, s is the session identifier of the agent responsible of this
action, t is the global time at which this input has been done, b is the agent
responsible of the corresponding output, tb the time at which this output
has been done (tb ≤ t), and R the recipe that has been used to forge this
output.

– (a, α, s, t, ∅) otherwise.
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In the relaxed semantics, similar annotations can be added. Of course, in
such a case, information about time is not relevant. Thus annotations are either
of the form (a, α, s,w) (case of the output) or of the form (a, α, s, (b, R)) (case of
the input), or (a, α, s, ∅) otherwise. Note that in the relaxed semantics, the TIM
rule does not exist.

Lemma 4. Let T be a topology, and K0
L1

T · · ·
Ln

T Kn be an execution
such that for all Li = (ai, αi, si, ri) we have that αi 6= in<t(x) for some t.
Let K ′0 be a configuration such that untimed(K ′0) = K0. We have that there

exists a configuration K ′n such that untimed(K ′n) = Kn, and K ′0
tr−→T K ′n with

tr = (a1, α1) . . . (an, αn).

Proof. Let T = (A0,M0, Loc, v0, p0) be a topology. This proof is quite straight-
forward and can be formally done by induction on the length of the execution.
Before each application of the rule IN, we apply the TIM rule with a delay
δ = maxa,b∈A0(DistT (a, b)) to be sure that all the messages necessary to build
the inputted term are available. ut

D.2 Permutations of independent actions

Definition 9. Given an execution K0
L1

T · · ·
Ln

T Kn with Li = (ai, αi, si, ri),
Lj = (aj , αj , sj , rj), we say that Lj is dependent of Li, denoted Lj ↪→ Li, if
i < j, and:

– either si = sj (and thus ai = aj), and in that case Lj is sequentially-
dependent of Li, denoted Lj ↪→s Li;

– or αi = out(v), αj = in?(u), and ri ∈ vars(rj), and in that case Lj is
data-dependent of Li, denoted Lj ↪→d Li.

We note Lj 6↪→ Li when Lj is not dependent of Li, i.e. Lj 6↪→s Li and Lj 6↪→d Li.

Lemma 5. Given a topology T , and an execution K0
L1

T K1
L2

T K2 such

that L2 6↪→ L1. We have that K0
L2

T Ki
L1

T K2 for some Ki.

Proof. Let K0 = (P0;Φ0), K1 = (P1;Φ1), and K2 = (P2;Φ2) be three un-

timed configurations such that K0
L1

T K1
L2

T K2 with L2 6↪→ L1. Let
L1 = (a1, α1, s1, r1) and L2 = (a2, α2, s2, r2). By hypothesis, we know that
L2 6↪→ L1, and thus we have that s1 6= s2. Therefore, we have that:

– P0 = bc1.P1ca1 ∪ bc2.P2ca2 ]Q,
– P1 = bP ′1ca1 ∪ bc2.P2ca2 ]Q,
– P2 = bP ′1ca1 ∪ bP

′
2ca2 ]Q

where c1, c2 ∈ {in?(x), new n, out(u), reset, let x = v in }.
First, in case α1 = out(v) and α2 = in?(u), we have that Φ2 = Φ1 =

Φ0 ] {r1
a1−→ v} and since L2 6↪→d L1, we know that r1 /∈ vars(r2). Therefore, we
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deduce that vars(r2) ⊆ dom(Φ0). Now, let Ki = (bc1.P1ca1 ] bP
′
2ca2 ] Q;Φ0).

Relying on the fact that r1 /∈ vars(r2) in case α1 = out(v) and α2 = in?(u), it

is easy to see that K0
L2

T Ki
L1

T K2. ut

Corollary 1. We consider a topology T , an execution K0
L1

T · · ·
Ln

T Kn,
and two sets I and J such that I = {i1, . . . , ip}, J = {j1, . . . , jq}, I ] J =
{0, . . . , n}, i1 < · · · < ip, and j1 < · · · < jq. Moreover, we assume that Li 6↪→ Lj
for any i ∈ I, and j ∈ J . In such a case, we have that:

K0

Li1

T · · ·
Lip

T
Lj1

T · · ·
Ljq

T Kn

Proof. Given a trace K0
L1 · · · Ln

Kn and the two ordered sets I and J ,
we can translate the trace as a two-letters (i and j) word, each transition either
converted into i or j depending on the set in which its index belongs. We consider
the lexicographical order induced by the fact that i < j, e.g. iijjii < ijijii.

Let us suppose that there exists a trace satisfying all the hypotheses but such
that the result does not hold. We consider the minimal one in the sense of the
lexicographical order of the corresponding 2-letters word. This trace is a word w
of the form · · · ji · · · , and the portion of it corresponding to the pattern ji is:

K ′0
Lj

q′
K ′1

Li
p′
K ′2

for some q′ and some p′. Since Lip′ 6↪→ Ljq′ , we can use Lemma 5, and rewrite

this trace as K ′0
Li

p′
K ′i

Lj
q′
K ′2. Inserting such a trace into the whole exection

trace we had at the beginning, we obtain a trace whose corresponding word w′

is smaller than w (according to the lexicographical order), and this would lead
to a contradiction. ut

D.3 Proof of Proposition 2

Given a configuration K, φ(K) denotes its second component.

Proposition 7. Let T = (A0,M0, Loc, v0, p0) be a topology, and consider an
execution trace of the following form:

K0
Lreset−−−→T

tr1−−→T Kout
Lout−−→T

tr2−−→T Kin
Lin−−→T K1

where Lreset = (v0, reset, s0, treset, ∅), Lout = (v0, out(v), s0, tout,w0), and Lin =
(v0, in

<tg (u), s0, tin, (b0, t
0
b , R0)), and these are the only actions executed with the

session identifier s0.
Then, there exists an execution trace:

K ′0
tr′0
T K

′
reset

L′reset
T

tr′1
T K

′
out

L′out
T

tr′2
T K

′
in

L′in
T

tr′3
T K

′
1

where:
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– K ′0 (resp. K ′1) is the untimed counterpart of K0 (resp. K1), i.e. K ′i =
untimed(Ki) with i ∈ {0, 1};

– L′reset, L′out, and L′in are the untimed counterpart of the annotations Lreset,
Lout, and Lin, i.e. L′reset = (v0, reset, s0, ∅), L′out = (v0, out(v), s0,w0), and
L′in = (v0, in

<tg (u), s0, (b0, R0));
– for any L = (a, α, s, r) occurring in tr′1.L

′
out.tr

′
2.L
′
in, 2DistT (v0, a) < tg.

Moreover, when α = in?(u), we have that r = (b′, R′) for some b′ and
some R′ such that 2DistT (v0, b

′) < tg or vars(R′) ⊆ dom(φ(K ′reset)).

Proof. Let T = (A0,M0, Loc, v0, p0) be a topology and

K0
Lreset−−−→T

tr1−−→T Kout
Lout−−→T

tr2<−−−→T K
tr

2≥−−−→T Kin
Lin−−→T K1

be a trace as defined in the proposition such that tr2 = tr2< tr2≥ ; t < tout + tg/2
for any L = (a, α, s, t, r) occurring in tr2< , and t ≥ tout + tg/2 for any L =
(a, α, s, t, r) occurring in tr2≥ .

By Definition of the relaxed semantics, we have that

K ′0
L′reset

T
tr1
T K

′
out

L′out
T

tr2<
T K

′ tr
2≥

T K
′
in

L′in
T K

′
1

where K ′0 (resp. K ′1) is the untimed counterpart of K0 (resp. K1), L′reset, L
′
out,

and L′in are the untimed counterpart of the annotations Lreset, Lout, and Lin

and tr1 (resp. tr2< , tr2≥) is the untimed counterpart of tr1 (resp. tr2< , tr2≥). In
the following, we consider:

– tr = Lreset.tr1.Lout.tr2< .tr2≥ .Lin the timed trace, and
– tr = L′reset.tr1.L

′
out.tr2< .tr2≥ .L

′
in its untimed counterpart.

Finally, we define Close(v0) = {a ∈ A0 | 2DistT (v0, a) < tg}.
In order to obtain an execution trace in the relaxed semantics that satisfies

all the requirements, we proceed in two main steps. We first show that we can
push the actions from tr2< that do not satisfy the requirements before Lreset,
and then we will establish that we can push those from tr2≥ after Lin.

Step 1: cleaning of tr2< . Let S1
a be the set of actions in tr such that their cor-

responding timed action in tr is executed by agents a /∈ Close(v0) and before
tout + tg/2. Formally, we have that:

S1
a = {(a, α, s, r) ∈ tr | a /∈ Close(v0) and (a, α, s, t, r′) ∈ tr and t < tout + tg/2}.

We also define S2
a the set of actions in tr such that their corresponding timed

action in tr is an input for which the inputted message has been forged by an
agent b /∈ Close(v0) at a time tb < tout + tg/2. Formally, we have that:

S2
a =

{
(a, in?(u), s, r) ∈ tr

L = (a, in?(u), s, t, (b, tb, R)) ∈ tr
b /∈ Close(v0), tb < tout + tg/2.

}
Then, we build BD(S1

a, S
2
a) as follows:
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1. S := S1
a.

2. For each γ ∈ S2
a, for all transition β in tr, if γ ↪→d β, then S := S ∪ {β}.

3. For each γ ∈ S, for all transition β in tr if γ ↪→ β, then S := S ∪ {β}.
4. BD(S1

a, S
2
a) := S.

We may note that at step 3, a fix point will be reached since we are working
on a finite trace tr. We may also note that BD(S1

a, S
2
a) only contains actions

from tr2< . Indeed, let L1 = (a1, α1, s1, t1, (b1, t
1
b , R1)) be such that its untimed

counterpart L′1 belongs to S2
a. Let us consider L2 = (a2, α2, s2, t2,w2) such that

its untimed counterpart L′2 satisfies L′1 ↪→d L
′
2 then we can deduce that

t2 ≤ t1b − DistT (a2, b1) ≤ t1b < tout + tg/2.

Therefore, we can deduce that for all action L′ ∈ BD(S1
a, S

2
a), and this allows us

to conclude.
Let BD(S1

a, S
2
a) be the set of transitions β such that β /∈ BD(Sa) and β ∈

L′reset.tr1.L
′
out.tr2< .

Claim. 1. For all α ∈ BD(S1
a, S

2
a) and β ∈ BD(S1

a, S
2
a), we have that α 6↪→ β.

Proof. By construction of BD(S1
a, S

2
a).

Claim. 2. We have that L′reset ∈ BD(S1
a, S

2
a).

Proof. If L′reset ∈ BD(S1
a, S

2
a), then we must have that L′out ∈ BD(S1

a, S
2
a). There-

fore, there exists a sequence of actions such that L′1 ↪→ · · · ↪→ L′n ↪→ L′out with
L′1 ∈ S1

a ∪ S2
a. For i ∈ {1, . . . , n}, we note ai the name of the agent executing L′i

and ti the time at which the timed counterpart of this action occurs in tr. We
distinguish two cases:

– L′1 ∈ S1
a. We have that:

t1 − tout ≥ DistT (v0, an) +

n−1∑
i=1

DistT (ai, ai+1) ≥ DistT (v0, a1) ≥ tg/2

since we know that a1 /∈ Close(v0) by Definition of S1
a. We also have that

t1 < tout + tg/2 by Definition of S1
a, and thus t1 − tout < tg/2, yielding to a

contradiction.
– L′1 = (a1, in

?(u), s1, (b1, R1)) ∈ S2
a. Let L1 = (a1, in

?(u), s1, t1, (b1, t
1
b , R1))

its counterpart action in tr. By construction, we have that L′1 ↪→d L
′
2. Ac-

cording to the semantics of the rule IN, we have that t1b ≥ t2 +DistT (a2, b1).
We also know that t2 − tout ≥ DistT (v0, a2). Thus we have t1b − tout ≥
DistT (v0, a2) + DistT (a2, b1) ≥ DistT (v0, b1) . By Definition of S2

a, we know
that b1 /∈ Close(v0) and thus DistT (v0, b1) ≥ tg/2, and thus t1b − tout ≥ tg/2.
However, by definition of S2

a, we know that t1b < tout + tg/2, yielding to a
contradiction.

This allows us to conclude the proof of this claim. ut

41



With Claim 1 and Claim 2, we can apply Corollary 1, and thus, we can move
all transitions in BD(S1

a, S
2
a) right before L′reset, leading us to a partially-cleaned

trace t̃r:

K ′0
t̃r0
T K̃ ′reset

L′reset
T

t̃r1
T K̃ ′out

L′out
T

t̃r2<
T K

′ tr
2≥

T K
′
in

L′in
T K

′
1

Step 2: cleaning of tr2≥ . We proceed in a similar way to clean the other part of

the trace. Let S1
b be the set of actions in the relaxed trace tr such that their

corresponding action in the initial trace is executed by agents who are not in
Close(v0) between Lreset and Lin and after tout + tg/2. Formally, we have that:

S1
b = {(a, α, s, r) ∈ tr | a /∈ Close(v0) and (a, α, s, t, r′) ∈ tr and t ≥ tout + tg/2}.

We also define S2
b the set of actions in tr such that their corresponding timed

action in tr is an input in which the inputted message has been forged by an
agent b /∈ Close(v0) at a time tb ≥ tout + tg/2. Formally, we have that:

S2
b =

{
(a, in?(u), s, r) ∈ tr

L = (a, in?(u), s, t, (b, tb, R)) ∈ tr
b /∈ Close(v0), tb ≥ tout + tg/2.

}
Let Sb = S1

b ∪ S2
b , and we consider the set FD(Sb) built as follows:

1. S := Sb.
2. For each γ ∈ S, for all transition β in tr, if β ↪→ γ, then S := S ∪ {β}.
3. FD(Sb) := S.

Let FD(Sb) be the set of transitions β such that β /∈ FD(Sb) and β ∈ tr2≥ .Lin.
We can note that for all action in L ∈ FD(Sb), its counterpart timed action L is
executed at time t such that t ≥ tout + tg/2.

Claim. 3. For all α ∈ FD(Sb) and β ∈ FD(Sb), we have that β 6↪→ α.

Proof. By construction of FD(Sb).

Claim. 4. We have that Lin ∈ FD(Sb).

Proof. If L′in ∈ FD(Sb), then there exists a sequence of actions L′in ↪→ L′1 ↪→
· · · ↪→ L′n with L′n ∈ Sb. For i ∈ {1, . . . , n}, we not ai the name of the agent
executing L′i and ti the time at which this action occurs in tr. We distinguish
two cases:

– L′n ∈ S1
b . In such a case, we have that

tin − tn ≥ DistT (v0, a1) +

n−1∑
i=1

DistT (ai, ai+1) ≥ DistT (v0, an) ≥ tg/2

since we know that an /∈ Close(v0). By definition of S1
b , we know that tn ≥

tout + tg/2. Thus, we have that tin ≥ tout + tg. However, the semantics gives
us tin − tout < tg yielding a contradiction.
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– L′n = (an, in
?(u), sn, (bn, Rn)) ∈ S2

b . Let Ln = (an, in
?(u), sn, tn, (bn, t

n
b , Rn))

its counterpart action in tr. We have that

tin − tn ≥ DistT (v0, a1) +

n−1∑
i=1

DistT (ai, ai+1) ≥ DistT (v0, an).

We also have that tn ≥ tnb + DistT (bn, an) ≥ tout + tg/2 + DistT (bn, an).
Therefore, we have that:

tin ≥ tout + tg/2 +DistT (bn, an) +DistT (v0, an) ≥ tout + tg/2 +DistT (v0, bn).

Since bn /∈ Close(v0), we know that DistT (v0, bn) ≥ tg/2. Thus, we have that
tin ≥ tout + tg. This yields to a contradiction since the semantics gives us
tin − tout < tg.

This allows us to conclude the proof of this claim. ut
With Claim 3 and Claim 4, we can apply Corollary 1 on the trace tr, and thus,

we can move all transitions in FD(Sb) right after Lin leading us to a partially
cleaned trace:

K ′0
L′reset

T
tr1
T K

′
out

L′out
T

tr2<
T K

′ t̃r
2≥

T K̃ ′in
L′in
T

t̃r3
K ′1

Therefore, we have that:

K ′0
t̃r0
T K̃ ′reset

L′reset
T

t̃r1
T K̃ ′out

L′out
T

t̃r2<
T K

′ t̃r
2≥

T K̃ ′in
L′in
T

t̃r3
T K

′
1.

To conclude, it remains to check that for any L′ = (a, in?(u), s, r) occurring
in t̃r1.L

′
out.t̃r2< .t̃r2≥ .L

′
in, we have that r = (b′, R′) for some b′ and some R′ such

that 2DistT (v0, b
′) < tg or vars(R′) ⊆ dom(φ(K̃ ′reset)).

Let us consider L = (a, in?(u), s, t, (b′, tb, R
′)) the timed counterpart of L,

and assume that 2DistT (v0, b
′) ≥ tg. We distinguish two cases:

– Case tb < tout + tg/2. In such a case, we know that L′ ∈ S2
a. For all

w ∈ vars(R′), there exists L′w ∈ tr such that L′ ↪→d L
′
w. Therefore, by con-

struction, L′w ∈ BD(S1
a, S

2
a), and this action has been moved before L′reset.

Thus, we have that vars(R′) ⊆ dom(φ(K ′reset)).
– Case tb ≥ tout + tg/2. In such a case, we know that L′ ∈ S2

b ⊆ FD(Sb) and
thus has been moved after L′in.

This concludes the proof. ut
Proposition 2. Let K0 be a valid initial configuration for Pprox and V0 w.r.t.

a topology T = (A0,M0, Loc, v0, p0) and I0. If K0
tr−→T K1 then there exists an

execution K ′0
tr′

K ′1 such that K ′i = untimed(Ki) for i ∈ {0, 1}.
Moreover, for any sub-execution of K ′0

tr′
K ′1 of the form

(breset.P c v0 ] P;Φreset)
v0,τ

(bP c v0 ] P;Φreset)
tr′0

K−in
v0,in

<t(u)
K ′in

where tr′0 only contains actions (a, α) with α ∈ {τ, out(u), in(u)}, we have that:
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– 2DistT (v0, a) < t for any (a, α) ∈ tr′0;
– for any (a, in?(v)) occurring in tr′0.(v0, in

<t(u)), the agent b responsible of
the output and the recipe R (as defined in Figure 1) are such that either
2DistT (v0, b) < t, or vars(R) ⊆ dom(Φreset).

Proof. Let K0 be a valid initial configuration for Pprox and V0 w.r.t. a topology

T = (A0,M0, Loc, v0, p0) and I0. Let K0
tr−→ K1 be a trace. Because of the

specific grammar generating V0 we can decompose tr into several pieces of the
form: Lreset.tr1.Lout.tr2.Lin where Lreset is a reset transition, Lout the following
output and Lin the following guarded input. Therefore, we can apply Proposi-
tion 7 on each piece. Finally we can concatenate all these relaxed sub-traces to
obtain a full trace as described in Proposition 2. ut

Theorem 3. Let I0 be a template, Pprox be a protocol, t0 ∈ R+, and V0(z0, z1)
be a parametrised role obtained using the following grammar:

P,Q := end(z0, z1) | in(x).P | let x = v in P
| new n.P | out(u).P | reset.out(u′).in<t(x).P

where x ∈ X , n ∈ N , u, u′ ∈ T (Σ+
c ,X∪N∪{z0, z1}), v ∈ T (Σ+,X∪N∪{z0, z1})

and t ≤ 2 × t0. If Pprox admits a distance hijacking attack w.r.t. t0-proximity,
then Pprox admits an attack against t0-proximity in the topology T t0DH.

Proof. Let T = (A0,M0, Loc, v0, p0) ∈ CDH and K0 = (P0;Φ0; tinit) be a valid
initial configuration for the protocol Pprox and V0 w.r.t. T and I0. We have that:

K0
tr−→T (bend(v0, p0)c tvv0 ∪ P;Φ; t) = K1 with DistT (v0, p0) ≥ t0.

Step 1: We first replace guarded inputs occurring in processes other than V0
by simple inputs. Denoting K0 (resp. K1, tr) the counterpart of K0 (resp. K1

and tr) in which guarded inputs have been replaced by simple inputs, we have
that:

K0
tr−→T (bend(v0, p0)c tvv0 ∪ P;Φ; t) = K1 with DistT (v0, p0) ≥ t0.

Indeed, all the required conditions to trigger a simple input will be satsified
since a guarded input is like a simple input with a constraint regarding time.
Moreoever, we have that K0 is a valid initial configuration for Pprox and V0
w.r.t. T and I0.

Step 2: Let Close(v0) = {a ∈ A0 | DistT (v0, a) < t0}. Applying Proposition 2,

we obtain a relaxed trace K ′0
tr′

T K
′
1 such that untimed(Ki) = K ′i for i ∈ {0, 1}.

Moreover, for any sub-execution K ′reset
v0,τ tr′0 v0,in

<t(u)
K ′in of K ′0

tr′
K ′1

starting with an application of the rule RESET and whose only guarded input
is the one occurring at the end, we have that:

– 2DistT (v0, a) < t for any (a, α) ∈ tr′0;
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– for any (a, in?(v)) occurring in tr′0.(v0, in
<t(u)), the agent b responsible of

the output (as defined in Figure 4) is such that either 2DistT (v0, b) < t, or
vars(R) ⊆ dom(φ(K ′reset)).

Since t ≤ 2× t0, we have that:

– DistT (v0, a) < t0 for any (a, α) ∈ tr′0;
– for any (a, in?(v)) occurring in tr′0.(v0, in

<t(u)), the agent b responsible of
the output (as defined in Figure 4) is such that either DistT (v0, b) < t0, or
vars(R) ⊆ dom(φ(K ′reset)).

Step 3: We consider the topology T ′ = (A0,M0, Loc
′, v0, p0) such that Loc′(v0) =

Loc(v0), Loc′(p0) is such that DistT ′(v0, p0) = t0 and:

Loc′(a) =

{
Loc′(v0) if a ∈ Close(v0)
Loc′(p0) otherwise.

In this topology, the agents far away from v0 are moved to p0, and agents in
the neighborhood of v0 are moved to v0. In this topology T ′, we only have two

locations, and we have that K ′0
tr′

T ′ K
′
1 since the locations of the agents are no

longer relevant in the relaxed semantics.

Step 4: We show that we can come back to a timed execution trace, i.e. one
executable in the timed semantics by induction on the number of guarded inputs
in the trace. Given a configuration K̂0 such that untimed(K̂0) = K ′0, we show

that there exists a configuration K̂1 such that untimed(K̂1) = K ′1. To show this

result, we split our execution trace K ′0
tr′

T ′ K
′
1 on several blocks of actions: a

block is either a trace with no guarded input, or a sequence of actions starting
with a reset and ending at the first occurrence of a guarded input. To lift such
a block in the timed semantics, we either rely on Lemma 4, or on the properties
established at Step 2.

To conclude this step, it only remains to show how to lift a block in the timed

semantics. Let K ′reset
v0,τ tr′0 v0,in

<t(u)
K ′in be such a block, and let K̂ be such

that untimed(K̂) = K ′reset, and we denote t̂ the global time of configuration K̂.

We have to show that there exists K̂in such that K̂
(v0,τ).tr

′
0.(v0,in

<t(u)−−−−−−−−−−−−−→ K̂in, and
untimed(K̂in) = K ′in. We start by applying the rule TIM with the delay δ equals

to 2× t0. Let K̂+ be the resulting configuration.
Then we have to show that the sequence of actions Lreset.tr

′
1.Lout.tr

′
2.Lin can

be executed without introducing any delay. Moreover, we show that the resulting
configuration K̂in is such that untimed(K̂in) = K ′in. Actually, the correspondence
between timed and untimed configurations is maintained along the trace.

The only difficult part is when the underlying action is an input. We know
that this input is performed by a ∈ Close(v0). Let in?(u) be an input occurring
in the block and let Φ′ the current frame in the relaxed semantics when this
action occurs and Φ̂ its corresponding frame in the timed trace. By definition of
the relaxed semantics, we know that there exists a recipe R such that RΦ′↓ = u.
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Thus, we know that RΦ̂↓ = u. To conclude, it remains to show that the timing
constraints are satisfied. We distinguish two cases:

– The input has been forged by an agent b ∈ Close(v0). Any w used in R is
either in dom(φ(Kreset)) or outputted after Lreset by an agent located at
the same place as v0. In both cases, since the global time has elapsed of 2t0
between K̂ and K̂+, we know that all these w will be available at time t̂+2t0
for b. Since a and b are located at the same place, we also have that this
input can be done at time t̂+ 2t0.

– The input has been forged by an agent b 6∈ Close(v0). In such a case, we
know that vars(R′) ⊆ dom(φ(K ′reset)), and thus thanks to the delay of 2t0
that has been applied between K̂ and K̂+, we know that the input can be
received at time t̂+ 2t0. Indeed, b can forge the message at time t̂+ t0 and
thus it can be received at time t̂+ 2t0.

Note that, regarding the guarded input, the guard is trivially satisfied since
the global time remains unchanged since the reset action has been performed.

Step 5: To finish, we first reduce the topology to T t0DH = (ADH,MDH, LocDH, v0, p0).
Let us consider the renaming

ρ(a) =

v0 if a ∈ Close(v0)
p0 if a /∈ Close(v0) and a ∈M0

e0 if a /∈ Close(v0) and a 6∈ M0

Since LocDH(ρ(a)) = Loc′(a) for any a ∈ A0, and ρ(a) ∈ MDH if, and only if
a ∈M0, thanks to Lemma 1, we have that:

K0ρ
t̂r0ρ−−→T t0

DH
K̂resetρ

Lresetρ;t̂r1ρ;Loutρ;t̂r2ρ;Linρ−−−−−−−−−−−−−−−−−→T t0
DH
K̂inρ

t̂r3ρ−−→T t0
DH
K̂1ρ.

To conclude, it remains to show that K0ρ is a valid initial configuration
for Pprox, and V0 w.r.t. T t0DH and I0. Denoting Φ0 the frame of K0 and tinit the

global time, we have to prove that img(bΦ0ρc tinitv0
) = ∅, img(bΦρc tinite0

) = ∅ and

img(bΦρc tinitp0
) = Knows(I0, p0, {v0, p0, e0}).

First, we have that img(bΦ0ρc tinitv0
) =

⋃
a∈Close(v0) img(bΦ0c tinita )ρ = ∅ since all

these agents are honest.
Then we have that:

img(bΦ0ρc tinite0
) =

⋃
{a∈A0 | ρ(a)=e0} img(bΦ0c tinita )ρ

=
⋃
{a∈A0 | ρ(a)=e0} ∅

= ∅
Finally we have that:

img(bΦ0ρc tinitp0
) =

⋃
{a∈A0 | ρ(a)=p0} img(bΦ0c tinita )ρ

=
⋃
{a∈A0 | ρ(a)=p0} Knows(I0, a,A0)ρ

=
⋃
{a∈A0 | ρ(a)=p0} Knows(I0, ρ(a), ρ(A0))

=
⋃
{a∈A0 | ρ(a)=p0} Knows(I0, p0, {p0, v0, e0})

This allows us to conclude.
ut
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E Proof of Proposition 3

A process is said initial if it starts with an input action.

Lemma 6. Let T = (A0,M0, Loc, v0, p0) be a topology, and consider an execu-
tion trace of the following form:

K0
tr0−−→T Kreset

Lreset−−−→T
tr1−−→T Kout

Lout−−→T
tr2−−→T Kin

Lin−−→T Kin+
tr3−−→T K1

where Lreset = (v0, reset, s0, treset, ∅), Lout = (v0, out(v), s0, tout,w0), and Lin =
(v0, in

<tg (u), s0, tin, (b0, t
0
b , R0)), and these are the only actions executed with the

session identifier s0.
Then, there exists an execution trace:

K ′0
tr′0
T K

′
reset

L′reset
T

tr′1
T K

′
out

L′out
T

tr′2
T K

′
in

L′in
T

tr′3
T K

′
1

where:

1. K ′0 (resp. K ′1) is the untimed counterpart of K0 (resp. K1), i.e. K ′i =
untimed(Ki) with i ∈ {0, 1};

2. L′reset, L′out, and L′in are the untimed counterpart of the annotations Lreset,
Lout, and Lin, i.e. L′reset = (v0, reset, s0, ∅), L′out = (v0, out(v), s0,w0), and
L′in = (v0, in

<tg (u), s0, (b0, R0));
3. for any L = (a, α, s, r) occurring in tr′1.L

′
out.tr

′
2.L
′
in, 2DistT (v0, a) < tg.

Moreover, when α = in?(u), we have that r = (b′, R′) for some b′ and
some R′ such that 2DistT (v0, b

′) < tg or vars(R′) ⊆ dom(φ(K ′reset));
4. denoting K ′reset = (Preset, Φreset), if bP ca ∈ Preset with session identifier

si 6= s0, then P is an initial process or is left unchanged after K ′reset;
5. denoting K ′in = (Pin, Φin), if bP ca ∈ Pin with session identifier si 6= s0,

then P is an initial process or is left unchanged after K ′in.

Proof. This proposition is an extension of Proposition 7. Indeed, applying Propo-
sition 7 to the subtrace between Kreset and Kin+ we obtain that there exists a
trace satisfying items 2 and 3

K ′reset
t̃rreset

T K̃reset

L′reset
T

t̃r1
T K̃out

L′out
T

t̃r2
T K̃in

L′in
T

t̃rin
T K

′
in+

such that K ′reset = untimed(Kreset) and K ′
in+

= untimed(Kin+).
Let K ′0 = untimed(K0) and K ′1 = untimed(K1). By definition of the relaxed

semantics, we have K ′0
tr0
T K ′reset and K ′

in+
tr3
T K ′1 with tr0 (resp. tr3) the

untimed counterpart of tr0 (resp. tr3). Let t̃r0 = tr0.t̃rreset and t̃r3 = t̃rin.tr3, we
have that:

K ′0
t̃r0
T K̃reset

L′reset
T

t̃r1
T K̃out

L′out
T

t̃r2
T K̃in

L′in
T

t̃r3
T K

′
1

Moreover, we know that items 1, 2, and 3 are satisfied.
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Let t̃r = t̃r0.L
′
reset.t̃r1.L

′
out.t̃r2.L

′
in.t̃r3. Let us prove item 4 and 5 in two steps:

first we modify the trace t̃r into a trace t̂r satisfying items 1 to 4. Then we mod-
ify t̂r into a trace tr′ satisfying all the items (including item 5).

Step 1. In case, all the processes in K̃reset satisfy our requirement, we are done.
Otherwise, there exists a process with session identifier si (si 6= s0) which does

not satisfy our requirement. Let K̃ be the first configuration in the execution
trace

K̃reset

Lreset.t̃r1.L
′
out.t̃r2.L

′
in.t̃r3

T K
′
1

such that the process with session identifier si is initial. If such a configuration
does not exist, let K̃ = K ′1. Then, we consider the following set S:

S = {(a, α, s, r) ∈ t̃r before K̃ | s = si or (a, α, s, r) ∈ t̃r0}.

Let S be the set of transitions β such that β /∈ S and β ∈ t̃r.

Claim. 1. For all L ∈ S and L′ ∈ S, we have that L 6↪→ L′.

Proof. We note L = (a, α, s, r) and L′ = (a′, α′, s′, r′). By definition of S, we

know that either L ∈ t̃r0, or s = si and α 6= in?(u). Otherwise, K̃ is not the first
configuration in which the process with session identifier si is initial. In case,
L ∈ t̃r0, then we know that L′ occurs before L in t̃r and thus L′ ∈ t̃r0, and thus
in S, leading to a contradiction. In case, s = si and thus α 6= in?(u), then we
have that L ↪→ L′ implies L ↪→s L

′ and thus L′ ∈ S, leading to a contradiction.
This concludes the proof of the claim. ut

We now apply Corollary 1, and obtain a trace

K ′0
t̃r′0
T K̃ ′reset

t̃r′

T K
′
1

such that the process with session identifier si is initial in K̃ ′reset or is left
unchanged in the following of the trace.

We then apply the same construction on each process which does not satisfy
our requirement in K̃ ′reset. This construction leads to a trace t̂r which is:

K ′0
t̂r0
T K̂reset

L′reset
T

t̂r1
T K̂out

L′out
T

t̂r2
T K̂in

L′in
T

t̂r3
T K

′
1

satisfying item 4. We can note that item 1, 2, and 3 are still satisfied. Indeed,
we de not add any action between L′reset and L′in.

Step 2. We now need to turn the trace into one that also satisfies item 5. In

case K̂in satisfies our requirement, we are done. Otherwise, there exists a pro-
cess with session identifier si (si 6= s0) which does not satisfy our requirement.
First, we consider the case where the agent ai executing session si is such that
DistT (ai, v0) ≥ tg. Actually, such a case is not possible. Indeed, according to

item 3, this would mean that K̃ ′reset does not satisfy our requirement. Thus,
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we know that the agent ai executing session si is such that DistT (ai, v0) < tg.
In such a case, we proceed as in Step 1. Note that actions that will be added
between L′reset and L′in are only outputs or τ actions executed by agents in the
neighbourhood of v0, i.e. such that DistT (a, v0) < tg. Thus, item 3 is still satis-
fied. ut

Proposition 3. Let T = (A0,M0, Loc0, v0, p0) be a topology, Pprox a protocol,
t0 ∈ R+, I0 a template, and V0(z0, z1) a parametrised process of the form:

block1 . reset . out(m) . in<t(x) . block2 . end(z0, z1) with t ≤ 2× t0
Let K0 be a valid initial configuration for the protocol Pprox and V0 w.r.t. T
and I0. If K0 admits an attack w.r.t. t0-proximity in T , then we have that:

F(T0,Pprox, V0, I0, t0)
tr

=⇒ ({2 : end(v0, p0)} ] P;φ; 2).

Moreover, in case there is no a ∈ M0 such that DistT0(a, v0) < t0, we have
that for any in(u) occurring in tr during phase 1, the underlying recipe R is
either of the form w, or only uses handles ouputted in phase 0.

Proof. Let T = (A0,M0, Loc, p0, v0) be a topology, Pprox a protocol, I0 a tem-
plate and V0 a parametrised process of the right form. Let K0 be a valid initial
configuration for the protocol Pprox and V0 w.r.t. T and I0 such that

K0
tr−→T ({bend(v0, p0)c tv0v0 } ] P;Φ; t) = K1 with DistT (v0, p0) ≥ t0.

Let K0 the configuration obtained from K0 by removing reset instructions, and
replacing guarded inputs by simple inputs for processes other than V0. We have
that K0 is a valid initial configuration for Pprox and V0 w.r.t. T and I0. Moreover,
the trace tr is still executable (up to some reset instructions) and leads to K1,
i.e. K1 in which reset instructions have been removed and guarded inputs have
been replaced by simple inputs.

Therefore, we have that:

K0
tr−→T ({bend(v0, p0)c tv0v0 } ] P;Φ; t) = K1 with DistT (v0, p0) ≥ t0.

Due to the specific form of V0 we know that tr has the right form to apply
Lemma 6. Thus, we know that there exists a trace tr′ such that:

K ′0
tr′0
T K

′
reset

L′reset
T

tr′1
T K

′
out

L′out
T

tr′2
T K

′
in

L′in
T

tr′3
T K

′
1

with:

1. K ′0 (resp. K ′1) is the untimed counterpart of K0 (resp. K1), i.e. K ′i =
untimed(Ki) with i ∈ {0, 1};

2. L′reset, L
′
out, and L′in correspond to the reset.out(u).in<t(x) block occurring

in V0;
3. for any L = (a, α, s, r) occurring in tr′1.L

′
out.tr

′
2.L
′
in, 2DistT (v0, a) < t. More-

over, when α = in?(u), we have that r = (b′, R′) for some b′ and some R′

such that 2DistT (v0, b
′) < t or vars(R′) ⊆ dom(φ(K ′reset));
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4. denoting K ′reset = (Preset, Φreset), if bP ca ∈ Preset with session identifier
si 6= s0, then P is an initial process or is left unchanged after K ′reset;

5. denoting K ′in = (Pin, Φin), if bP ca ∈ Pin with session identifier si 6= s0,
then P is an initial process or is left unchanged after K ′in.

To conclude, it remains to show that such a trace tr′ can actually be mimicked
from the configuration F(T ,Pprox, V0, I0, t0). Actually, some τ actions (REP rule)
have to be added, L′reset is replaced by phase 1, and L′in is followed by a phase 2
action.

Let bP c ta be a process occurring in K0, we know that P = R(a, a1, . . . , an)
with R(z0, z1, . . . , zn) a role of Pprox. We know consider all the actions performed
by this process along the trace tr′, and in particular, we pay attention on the
slicing of all these actions w.r.t. L′reset and L′in. This gives us the corresponding
process that we have to consider in our translation, so that it will be able to
mimic all the actions of bP c ta. Items 4 and 5 allow one to ensure that our slicing
(just before the inputs) is indeed sufficient. Our transformation F≥ also forbid
actions to be executed during phase 1, and this is justified by our item 3.

Finally, it remains to establish that in case there is no a ∈ M0 such that
DistT (a, v0) < t0, we have that for any in(u) occurring in the trace during
phase 1, the underlying recipe R is either of the form w, or only uses handles
outputted in phase 0.

To establish this, we rely on item 3. We know that for any in(u) (with
annotation (a, in?(u), s, r)) occurring in the trace during phase 1, we have that
r = (b′, R′) for some b′ and some R′ such that 2DistT (v0, b

′) < t or R′ only uses
handles outputted in phase 0. Since, by hypothesis, we know that there is no
a ∈M0 such that DistT (a, v0) < t0, thus we know that there is no a ∈M0 such
that 2DistT (a, v0) < 2t0, and thus there is no a ∈M0 such that 2DistT (a, v0) < t
(since t ≤ 2×t0). Thus, we deduce that either b′ is honest or R′ only uses handles
outputted in phase 0, which implies that R′ is either of the form w, or only uses
handles outputted in phase 0. ut
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F Model with restricted agents

In this appendix we want to study how our previous results can be extend/modified
to consider a restricted model in which an agent cannot play the role of a verifier
and the role of a prover at the same time.

F.1 Model

In this model we split the set of agent names A into two subsets Ap ] Av con-
taining respectively the identity of the agents being able to execute a prover
role and those of agents being able to execute a verifier role. Similarly, when
considering a topology T0 = (A0,M0, Loc0, v0, p0) we split A0 (resp. M0) into
Ap0 ]Av0 (resp. Mp

0 ]Mv
0) representing prover and verifier identities. Moreover,

we enforce that p0 ∈ Ap0 and v0 ∈ Av0.

The definition of a configuration remains the same but we must precise the
definition of a valid initial configuration.

First, because we consider provers and verifiers separately we have to consider
two templates Ip0 and Iv0 that will be used to derive the initial knowledge of
respectively a prover and a verifier.

Definition 10. Let Pprox = {P (z0, . . . , zk), V (z0, . . . , zk′)} be a protocol, V0(z0, z1)
be a parametrised role containing the special action end(z0, z1), (Ip0 , Iv0 ) be tem-
plates, and T0 = (A0,M0, Loc0, v0, p0) be a topology. A configuration K =
(P;Φ; t) is a valid initial configuration for the protocol Pprox and V0 w.r.t. T0
and (Ip0 , Iv0 ) if:

1. P = bV0(v0, p0)c t
′

v0
] P ′ for some t′ and for each bP ′c t

′

a′ ∈ P ′ if a′ ∈ Ap0
there exists a1, . . . , ak ∈ A0 such that P ′ = P (a′, a1, . . . , ak) else a′ ∈ Av0
and there exists a1, . . . , ak′ ∈ A0 such that P ′ = V (a′, a1, . . . , ak′)

2. img(bΦc ta) = Knows(Ix0 , a,A0) when a ∈Mx
0 with x ∈ {p, v}, and img(bΦc ta) =

∅ otherwise.

When t = 0 and t′ = 0 for each bP ′c t
′

a′ ∈ P and each {w a′,t′−−−→ u} ∈ Φ, we say
that K is a zero-configuration.

The definition of an attack (Definition 5) can be immediately adapted replac-
ing the template I0 by (Ip0 , Iv0 ). Except this modification, everything remain the
same.

We must do exactly the same modification for Proposition 1 (zero-attacks)
and it stays correct. Indeed in Proposition 4 if K is a valid initial configuration
in the new model it is immediate that K0 is also a valid initial configuration (we
just set all the clocks equal to zero; we do not modify the identity of an agent
executing a process/role).
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F.2 Reducing the topology

Preventing agents from playing a prover and a verifier role at the same time, we
cannot obtain the same reduction results as presented in Section 5. We obtain
similar reduced topologies in which we have duplicated almost all the agents in
order to have one honest (resp. dishonest) prover representative and one honest
(resp. dishonest) verifier representative at each location. The two topologies are
presented in Figure 7 and explained in the corresponding subsections.

v0 p0

v1 v2

p1 p2

t0

malicious node

honest node

v0 p0t0
e0p1

v1
p2 v2

Fig. 7: Topologies T t0MFnew
, and T t0DHnew

Mafia fraud
Regarding mafia fraud, we define the reduced topology T t0MFnew

as follows:

T t0MFnew
= (AMFnew ,MMFnew , LocMFnew , v0, p0) with:

– ApMFnew
= {p0, p1, p2} and AvMFnew

= {v0, v1, v2}
– Mp

MFnew
= {p1, p2} and Mv

MFnew
= {v1, v2}

– LocMFnew
(v0) = LocMFnew

(p1) = LocMFnew
(v1)

and LocMFnew
(p0) = LocMFnew

(p2) = LocMFnew
(v2)

– DistT t0
MFnew

(p0, v0) = t0

This topology can be viewed as T t0MF in which the two dishonest identities i1
and i2 have been duplicated to represent dishonest provers and dishonest veri-
fiers at each locations.

We keep the same definition of executability for a role (Definition 7). A pro-
tocol P = {P (z0, . . . , zk), V (z0, . . . , zk′)} is (Ip0 , Iv0 )-executable if P (z0, . . . , zk)
is Ip0 -executable and V (z0, . . . , zk′) is Iv0 -executable.

Theorem 4. Let (Ip0 , Iv0 ) be two templates, Pprox be a protocol (Ip0 , Iv0 )-executable,
and V0(z0, z1) be a parametrised role containing the special event end(z0, z1). We
have that Pprox admits a mafia fraud attack w.r.t. t0-proximity, if and only if,
there is an attack against t0-proximity in the topology T t0MFnew

.

Proof. (Sketch) This proof is very similar to the one we did for Theorem 2.
In this restricted model, restrictions only concern the definition of valid ini-

tial configurations. It does not modify the semantic of the model. Therefore,
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Lemma 2, Proposition 5, Lemma 3 and Proposition 6 remain true. Hence all the
proof can be followed similarly. A difference occurs in Step 3 in which we must
proceed as follows:

1. we add two agents in the topology one close to v0 and one close to p0
2. we reduce the initial frame applying a projection more cleverly respecting

honesty and roles.

Proof. (Detailed proof) Consider a topology T0 = (A0,M0, Loc0, v0, p0) such
that Pprox admits an attack. Let K0 = (P0;Φ0; tinit) be an initial configuration
that is valid for Pprox, V0 w.r.t. T0 and (Ip0 , Iv0 ) such that K0 admits an attack
w.r.t. t0-proximity in T0. We consider the execution witnessing this fact:

K0
tr−→T0 (bend(v0, p0).P c tav0 ] P;Φ0 ∪ Φ; t) with DistT0(v0, p0) ≥ t0.

We follow exactly the same shape of the proof of Theorem 2 presented in
Appendix C.

Step 1-a. Applying Lemma 2 with H = A0 r (M0 ∪ {v0, p0}), we obtain a
topology T1 = (A1,M1, Loc1, v0, p0) where A1 = A0, M1 = A0 r {v0, p0}, and
Loc1 = Loc0. We have that:

K0
tr−→T1 (bend(v0, p0)c tav0 ] P;Φ0 ∪ Φ; t)

with DistT1(v0, p0) = DistT0(v0, p0) ≥ t0.
We now consider the configuration K+

0 = (P0;Φ+
0 ; tinit) where we extend Φ0

into Φ+
0 taking into account the role of each agent such that img(bΦ+

0 c
tinit
a ) =

Knows(Ix0 , a,A1) when a ∈ Mx
1 with x ∈ {p, v}. Since we only increase the

knowledge, we have that:

K+
0

tr−→T1 (bend(v0, p0)c tav0 ] P;Φ+
0 ∪ Φ; t)

with DistT1(v0, p0) = DistT0(v0, p0) ≥ t0.

Step 1-b. We follow exactly the same reasoning as in the previous proof. We
successively apply Lemma 3 and Proposition 5 to obtain that:

(P0;Φ+
0 ; tinit)

trρ2−−→T1 (bend(v0, p0)c tav0]Pρ2;Φ+
0 ∪Φρ2; t) with DistT1(v0, p0) ≥ t0.

where P0 is obtained from P0 by removing processes located in a ∈M1.

Step 2. We now consider Φ++
0 the same as Φ+

0 but frame elements located at
a ∈ Mv

1 are moved to v0 and frame elements located at a ∈ Mp
1 are moved to

p0. Let δ0 = Max(DistT1(v0, a)) for any a ∈M1. Clearly, we have that:

(P0;Φ++
0 ; tinit + δ0)

trρ2−−→T1 (bend(v0, p0)c tav0 ] Pρ2;Φ++
0 ∪ Shift(Φρ2, δ0); t+ δ0)
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with DistT1(v0, p0) ≥ t0. Indeed, shifting by +δ0 the initial configuration, all
the messages moved from an agent a ∈ M1 to v0 or p0 can be used by a at
the time tinit of the initial frame. Then we can apply Proposition 6 on T1 and
(P0;Φ++

0 ; tinit + δ0) with V = {v0, p0}. We deduce that:

(P0;Φ++
0 ; tinit + δ0)

trρ2−−→T ′1 (bend(v0, p0)c tav0 ] Pρ2;Φ++
0 ∪ Shift(Φρ2, δ0); t+ δ0)

where T ′1 = ({v0, p0, iv0 , ip0}, {iv0 , ip0}, Loc{v0,p0}, v0, p0) with DistT ′1 (v0, p0) =
DistT1(v0, p0) ≥ t0.

Arbitrarily we can assume that iv0 , ip0 ∈ Ap (it does not modify the correct-
ness of Proposition 6 because the Proposition does not talk about valid initial
configuration and the semantic does not make difference between provers and
verifiers).

Before enter in step 3, let us consider two new identities i′v0 , i
′
p0 ∈ A

v \ A0

and the extended topology

T ′+1 = ({v0, p0, iv0 , ip0 , i′v0 , i
′
p0}, {iv0 , ip0 , i

′
v0 , i

′
p0}, Loc

+
{v0,p0}, v0, p0)

with Loc+{v0,p0} = Loc{v0,p0} ∪ {i′v0 7→ Loc{v0,p0}(v0); i′p0 7→ Loc{v0,p0}(p0)}. It is
easy to see that the trace is still valid in this new topology because we just add
two new agents:

(P0;Φ++
0 ; tinit + δ0)

trρ2−−→T ′+1
(bend(v0, p0)c tav0 ] Pρ2;Φ++

0 ∪ Shift(Φρ2, δ0); t+ δ0)

Step 3. To reduce the size of the initial frame, we apply Lemma 1 on K ′0 =

(P0;Φ++
0 ; tinit + δ0) using ρ3 : A → A′+1 = {v0, p0, iv0 , ip0 , i′v0 , i

′
p0} such that

ρ3(a) = iv0 for any a ∈ Ap \A′+1 and ρ3(a) = i′v0 for any a ∈ Av \A′+1 . We have
that:

(P0ρ3;Φ++
0 ρ3; tinit + δ0)

trρ2ρ3−−−−→T ′+1

(bend(v0, p0)c tav0 ] Pρ2ρ3;Φ++
0 ρ3 ∪ Shift(Φρ2ρ3, δ0); t+ δ0)

with DistT ′1 (v0, p0) ≥ t0.

Now, we show that (P0ρ3;Φ++
0 ρ3; tinit + δ0) is almost valid. Indeed to turn

this configuration into a valid one, we simply have to move frame elements (those
that we have added during Step 1-a and moved during Step 2) located in v0 (resp.
p0) to i′v0 (resp. ip0). This will not change the underlying execution since both

nodes are located at the exact same place and we have that img(bΦ++
0 c

tinit+δ0
i′v0

) =

Knows(Iv0 , i′v0 ,A
′+
1 ) and img(bΦ++

0 c
tinit+δ0
ip0

) = Knows(Ip0 , ip0 ,A
′+
1 ). Then, we add

some frame elements in iv0 and i′p0 , more precisely Knows(Ip0 , ip0 ,A
′+
1 ) and

Knows(Iv0 , i′v0 ,A
′+
1 ). These additional elements will not alter the underlying ex-

ecution.

54



We may note that P0ρ3 satisfies the first item of Definition 2: since P0 is

valid, there exits t′ such that bV0(v0, p0)c t
′

v0
∈ P0 and by construction P0ρ3

still contains bV0(v0, p0)c t
′

v0
. Moreover, for all bP ′c t

′

a′ ∈ P0ρ3, by construction,

we know that a′ ∈ {v0, p0} = A′+1 \ M
′+
1 . Finally, we have that there exists

bP ′′c t
′

a′ ∈ P0 such that P ′′ = P (a′, a1, . . . , an) for P ∈ Pprox and P ′ = P ′′ρ3 =
P (a′, ρ3(a1), . . . , ρ3(an)) with ρ3(a1), . . . , ρ3(an) ∈ A′1.

To conclude, we have to shorten the distance between v0, iv0 , i
′
v0 and p0, ip0 , i

′
p0 .

To do so, we consider a new topology T = (A′+1 ,M
′+
1 , Loc, v0, p0) such that

Loc(v0) = Loc(iv0) = Loc(i′v0), Loc(p0) = Loc(ip0) = Loc(i′p0) and DistT (v0, p0) =
t0.

We have that T = T t0MFnew
applying the renaming: iv0 7→ p1, i′v0 7→ v1,

ip0 7→ p2 and i′p0 7→ v2. ut

Distance hijacking attack

Theorem 5. Let (Ip0 , Iv0 ) be templates, Pprox be a protocol, t0 ∈ R+, and V0(z0, z1)
be a parametrised role obtained using the following grammar:

P,Q := end(z0, z1) | in(x).P | let x = v in P
| new n.P | out(u).P | reset.out(u′).in<t(x).P

where x ∈ X , n ∈ N , u, u′ ∈ T (Σ+
c ,X∪N∪{z0, z1}), v ∈ T (Σ+,X∪N∪{z0, z1})

and t ≤ 2 × t0. If Pprox admits a distance hijacking attack w.r.t. t0-proximity,
then Pprox admits an attack against t0-proximity in the topology T t0DHnew

.

Proof. Let T = (A0,M0, Loc, v0, p0) ∈ CDH and K0 = (P0;Φ0; tinit) be a valid
initial configuration for the protocol Pprox and V0 w.r.t. T and (Ip0 , Iv0 ) such that
we have an attack:

K0
tr−→T (bend(v0, p0)c tvv0 ∪ P;Φ; t) = K1 with DistT (v0, p0) ≥ t0.

Lemma 4, Lemma 5, Corollary 1, Proposition 7 and thus Proposition 2 are
still correct when restraining agent capabilities (because they do not talk about
valid initial configuration).

Therefore Steps 1 to 4 of the proof of Theorem 3 in Appendix D can be
repeated. We define the set Close(v0) = {a ∈ A0 | DistT (v0, a) < t0} and the
topology T ′ = (A0,M0Loc

′, v0, p0) in which DistT ′(v0, p0) = t0 and:

Loc′(a) =

{
Loc′(v0) if a ∈ Close(v0)
Loc′(p0) otherwise.

We have that K0
t̂r−→T ′ K̂1 where t̂r is a sequence of action and K̂1 is such that:

untimed(K̂1) = untimed(K1) where K0 (resp. K1) is the counterpart of K0 (resp.
K1) in which guarded inputs have been replaced by simple inputs.
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To finish we reduce the topology to T t0DHnew
= (ADH,MDH, LocDH, v0, p0). Let

us consider the renaming:

ρ(a) =



v0 if a ∈ Close(v0) ∩ Av
p1 if a ∈ Close(v0) ∩ Ap
p0 if a /∈ Close(v0) and a ∈Mp

0

v1 if a /∈ Close(v0) and a ∈Mv
0

p2 if a /∈ Close(v0) and a ∈ Ap0 \M0

v2 if a /∈ Close(v0) and a ∈ Av0 \M0

Since LocDH(ρ(a)) = Loc′(a) for any a ∈ A0 and ρ(a) ∈ MDH = {p0, v1} if
and only if a ∈M0, thanks to Lemma 1, we have that:

K0ρ
t̂rρ−−→T t0

DHnew

K̂1ρ

To conclude, it remains to show that K0ρ is a valid initial configuration
for Pprox and V0 w.r.t. T t0DHnew

and (Ip0 , Iv0 ). Denoting Φ0 the frame of K0 (it
is the same as in K0) and tinit the initial global time, we have to prove that
img(bΦ0ρc tinita ) = ∅ for a ∈ {v0, v1, p2, v2}, img(bΦ0ρc tinitv1

) = Knows(Iv0 , v1,ADH)

and img(bΦ0ρc tinitp0
) = Knows(Ip0 , p0,ADH).

First, for all a ∈ {v0, v1, p2, v2}, we have that

img(bΦ0ρc tinita ) =
⋃

b∈Close(v0)

img(bΦ0c tinitb )ρ = ∅

since all these agents are honest.
Then we have that:

img(bΦ0ρc tinitv1
) =

⋃
{a∈A0 | ρ(a)=v1} img(bΦ0c tinita )ρ

=
⋃
a∈Mv

0\Close(v0)
img(bΦ0c tinita )ρ

=
⋃
a∈Mv

0\Close(v0)
Knows(Iv0 , a,A0)ρ

=
⋃
a∈Mv

0\Close(v0)
Knows(Iv0 , ρ(a), ρ(A0))

=
⋃
a∈Mv

0\Close(v0)
Knows(Iv0 , v1,ADH)

Finally we can apply the same reasoning for img(bΦ0ρc tinitp0
):

img(bΦ0ρc tinitp0
) =

⋃
{a∈A0 | ρ(a)=p0} img(bΦ0c tinita )ρ

=
⋃
a∈Mp

0\Close(v0)
img(bΦ0c tinita )ρ

=
⋃
a∈Mp

0\Close(v0)
Knows(Ip0 , a,A0)ρ

=
⋃
a∈Mp

0\Close(v0)
Knows(Ip0 , ρ(a), ρ(A0))

=
⋃
a∈Mp

0\Close(v0)
Knows(Ip0 , p0,ADH)

This allows us to conclude. ut
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