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Abstract. Formal methods have proved effective to automatically anal-
yse protocols. Recently, much research has focused on verifying trace
equivalence on protocols, which is notably used to model interesting
privacy properties such as anonymity or unlinkability. Several tools for
checking trace equivalence rely on a naive and expensive exploration of
all interleavings of concurrent actions, which calls for partial-order reduc-
tion (POR) techniques. In this paper, we present the first POR technique
for protocol equivalences that does not rely on an action-determinism as-
sumption: we recast trace equivalence as a reachability problem, to which
persistent and sleep set techniques can be applied, and we show how to
effectively apply these results in the context of symbolic execution. We
report on a prototype implementation, improving the tool DeepSec.

1 Introduction

Security protocols are notoriously difficult to design and their flaws can have
a huge impact. Leaving aside implementation flaws and weaknesses of crypto-
graphic primitives, there is already a long history of logical mistakes in the basic
design of protocols, e.g., [30,5,13,4]. At this level of detail, protocols can how-
ever be represented in the so-called symbolic model, which makes them amenable
to automated formal verification. This approach has lead to mature tools and
industrial successes, e.g., [15,6,31].

Verification techniques have focused at first on reachability properties of pro-
tocols, used to model, e.g., secrecy or authentication. More recently, equivalence
properties have received a lot of attention, as they are often necessary to model
privacy properties such as ballot secrecy in e-voting [25], anonymity or unlinka-
bility [4,16]. Equivalence verification is complex, and each of the various state-
of-the-art techniques has its own limitations. Tools for verifying scenarios with
an unbounded number of sessions such as Proverif [15] or Tamarin [14] are usu-
ally efficient but only support a constrained form of equivalence, namely diff-
equivalence, which is too limiting, e.g., to model unlinkability [29]. Many tools
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for verifying bounded scenarios rely on symbolic execution [24]. For instance,
Apte [18] and its successor DeepSec [21] implement an algorithm that explores
all symbolic executions, maintaining pairs of sets of symbolic states and solving
at each step complex equality, deducibility and indistinguishability constraints.
Akiss [17] follows a different approach, enumerating all symbolic executions to
check that none yields a non-equivalence witness. The strength of these tools is
that they decide trace equivalence, which can adequately capture e.g., unlinka-
bility. However, their algorithms are very costly and, despite recent progress, it
is still only possible to analyse small scenarios in a reasonable amount of time.

All the techniques mentioned above for deciding trace equivalence of secu-
rity protocols rely on an enumeration of all symbolic executions including all
interleavings of concurrent actions. This is obviously a cause of major ineffi-
ciency, which has lead to a quest for partial-order reduction (POR) techniques.
These techniques, which have a long and successful history in traditional software
verification [28,33,11], generally consist in leveraging action independencies to
restrict the interleavings that a model-checking algorithm explores. In the con-
text of verifying reachability properties for security protocols, some specific POR
techniques have sometimes had to be devised [22,32], but there have also been
successful uses of generic POR techniques such as sleep sets [23] (see [9] for a
detailed discussion). In the context of verifying trace equivalence for security
protocols, the only available POR techniques are, to the best of our knowledge,
the ones we proposed in [8,9]. These ad hoc techniques have lead to significant
performance gains in Apte and DeepSec [21,9]. However, they crucially rely on
an action-determinism assumption (i.e., once the observable trace is fixed, the
system is deterministic) which is limiting in practice. For instance, there is no
precise modeling of unlinkability involving action-deterministic systems.

In this paper, we present the first POR technique for checking trace equiv-
alence on security protocols, without any action-determinism assumption. Our
first step towards this goal is to recast the trace equivalence problem as a reach-
ability problem in a carefully designed labeled transition system (LTS), to which
we can then apply persistent and sleep set techniques. However, this result is not
directly useful in practice, for several reasons. First, this LTS is infinitely branch-
ing, due to the arbitrary choices that the attacker can make when interacting
with the protocol. This is the main issue addressed in protocol equivalence check-
ers, typically through symbolic execution. Second, determining when two actions
are independent (the first ingredient of POR techniques) is far from obvious in
our LTS. Independencies are often approximated through simple static checks
in practical POR algorithms [28] but, as we shall see, it does not seem feasible
in our setting without losing too many independencies. Instead, we determine
independencies by exploring symbolic executions. We ignore constraint solving
in that process, as it would be too expensive: this trade-off allows us to detect
enough independencies at a reasonable cost. More generally, we show how to
compute persistent sets in the same style, to eventually obtain a symbolic form
of the sleep set technique. Third, the direct symbolic approach would still be
overly expensive, due to another typical state explosion problem caused by con-
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ditionals [12]. We circumvent it by showing that conditionals can be simplified,
and often eliminated, in a way that does not affect persistent set computations.
This approach yields a POR technique that is fast enough and allows to signif-
icantly reduce the number of symbolic traces to consider when checking trace
equivalence. It is also independent of the specific verification algorithms that will
be used to check equivalence along the reduced set of traces. We implemented
the technique as a library to validate it experimentally.

Outline. We present a standard security protocol model in Section 2. After re-
calling persistent and sleep set techniques in Section 3, we design in Section 4 our
concrete equivalence LTS to which they apply. Section 5 then defines a symbolic
abstraction of this LTS, and shows how it can be used to obtain effective POR
algorithms, notably through the collapse of conditionals. Finally, we present our
implementations and experimental results in Section 6. Detailed proofs of all our
results are available in [10].

2 Model for security protocols

We model security protocols in a variant of the applied pi-calculus [1]: processes
exchange messages represented by terms quotiented by an equational theory.

2.1 Syntax

We assume a number of disjoint and infinite sets: a set Ch of channels, denoted
by c or d; a set N of names, denoted by n or k; a set X of variables, denoted by x
or y; and a set W of handles of the form wc,i with c ∈ Ch and i ∈ N, which will
be used for referring to previously output terms. Next, we consider a signature Σ
consisting of a set of function symbols together with their arity. Terms over a set
of atomic data A, written T (A), are inductively generated from A and function
symbols from Σ. When A ⊆ N , elements of T (A) are called messages and
written m. When A ⊆ W, they are called recipes and written M , N . Intuitively,
recipes express how a message has been derived by the environment (attacker)
from the messages obtained so far. Finally, we consider an equational theory E
over terms to assign a meaning to function symbols in Σ.

Protocols are then modelled through processes using the following grammar:

P,Q := 0 | in(c, x).P | out(c, u).P | if u = v then P else Q | (P | Q) | P +Q

where c ∈ Ch, u, v ∈ T (N ] X ) and x ∈ X . The process 0 does nothing.
The process in(c, x).P expects a message m on the public channel c, and then
behaves like P{x 7→ m}, i.e., P in which x has been replaced by m. The process
out(c, u).P outputs u on the public channel c, and then behaves like P . We
have constructions to perform tests (modulo E), parallel composition, and non-
deterministic choice. We do not consider replication, and thus we do not need a
specific “new” operation: we assume that names are implicitly freshly generated.

Example 1. We consider Σenc = {enc, dec,mac, 〈 〉, proj1, proj2, nonceerr,macerr}.
The symbols enc, dec, and mac of arity 2 represent encryption, decryption and
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message authentication code; concatenation of messages is modelled through
the symbol 〈 〉 of arity 2, with projection functions proj1 and proj2 of arity 1.
The function symbols nonceerr and macerr are constants (arity 0) that are used
to model error messages. Then, we reflect the properties of the cryptographic
primitives through the equational theory induced by the following equations:

dec(enc(x, y), y) = x, proj1(〈x, y〉) = x, and proj2(〈x, y〉) = y.

We consider the BAC protocol used in e-passports which aims at establishing a
fresh session key derived from kP and kR. Informally, we have:

1. P → R : nP
2. R→ P : enc(〈nR, 〈nP , kR〉〉, kE), mac(enc(〈nR, 〈nP , kR〉〉, kE), kM )
3. P → R : enc(〈nP , 〈nR, kP 〉〉, kE), mac(enc(〈nP , 〈nR, kP 〉〉, kE), kM )

The keys kE and kM are long term keys shared between the passport P and
the reader R. First, P sends a fresh random number nP to the reader, and the
reader answers to this challenge by generating its own nonce nP , as well as kR
to contribute to a fresh session key. This encryption together with a mac is sent
to the passport. The passport will then check the mac, decrypt the ciphertext
and verify whether the nonce inside corresponds to the nonce nP generated at
the first step. In case decryption fails or the nonce inside the message is not the
expected one, an error message will be sent. Otherwise, a message is sent to the
reader. After checking that the message is the expected one, both entities are
able to compute the fresh session key derived form kR and kP . In our syntax,
we model the role of the passport as follows:

P (kE , kM ) = out(c, nP ).in(c, x).
if mac(proj1(x), kM ) = proj2(x)
then if proj1(proj2(dec(proj1(x), kE))) = nP

then out(c, 〈mP ,mac(mP , kM )〉).0
else out(c, nonceerr).0

else out(c,macerr).0

where mP = enc(〈nP , 〈proj1(dec(proj1(x), kE)), kP 〉〉, kE).

2.2 Semantics

A configuration K is a pair (P;φ) where: P is either a multiset of processes with
no free variable, or a special object ⊥i with i ∈ N; and φ = {wi . mi}1≤i≤n is a
frame, i.e., a substitution of domain dom(φ) = {w1, . . . , wn} ⊆ W such that the
mi are messages. Configurations (⊥i;φ) are called ghost configurations dead at
age i, and will only become useful in Section 4. Other configurations are said to
be alive.

The operational semantics is given as an LTS on (alive) configurations, with
the relation α7−→ defined in Figure 1. There, the index of the next output to be
performed on channel c is defined as

#c(dom(φ)) = max({0} ∪ {j + 1 | wc,j ∈ dom(φ)}).
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({in(c, x).Q} ] P;φ)
in(c,M)7−−−−−→ ({Q{x 7→Mφ}} ] P;φ) if M ∈ T (dom(φ))

({out(c, u).Q} ] P;φ)
out(c,wc,i)7−−−−−−→ ({Q} ] P;φ ∪ {wc,i . u}) with i = #c(dom(φ))

({if u = v then Q1 else Q2} ] P;φ) τ7−→ ({Q1} ] P;φ) if u =E v

({if u = v then Q1 else Q2} ] P;φ) τ7−→ ({Q2} ] P;φ) if u 6=E v

({Q1 +Q2} ] P;φ) τ7−→ ({Q1} ] P;φ) ({Q1 +Q2} ] P;φ) τ7−→ ({Q2} ] P;φ)

({Q1 | Q2} ] P;φ) τ7−→ ({Q1, Q2} ] P;φ) ({0} ] P;φ) τ7−→ (P;φ)

Fig. 1. Operational semantics of processes

A process may input a term that an attacker built using the knowledge
available to him through the frame, where messages output by the protocol are
added. The output rule slightly differs from the standard one, which would use
a fresh handle variable. Our use of fixed constants wc,i makes it possible to view
the transition system as a standard LTS, without any notion of freshness or
α-renaming. Anticipating on the next sections where we build on top of this a
different LTS encoding trace equivalence, we note that this design choice does
not create spurious dependencies. We do not model internal communications,
assuming instead that the attacker controls all communications (all channels are
public). The last rules evaluate conditionals (modulo E), break parallel operators,
remove null processes, and perform non-deterministic choices.

The relation K α1...αk7−−−−→ K′ between configurations, where k ≥ 0 and each αi
is an observable or a τ action, is defined in the usual way. Given a sequence tr of
actions, we denote obs(tr) the sequence of actions obtained by erasing τ actions.

Example 2. Let Ksame = (P (kE , kM );φ0) with φ0 = {wc′,0.〈m′R,mac(m′R, kM )〉}
and m′R = enc(〈n′R, 〈n′P , k′R〉〉, kE). Intuitively, the configuration Ksame represents
a situation where the attacker initially knows part of a past transcript (i.e., φ0)
of the passport under consideration (i.e., P (kE , kM )). We have that

Ksame
out(c,wc,0).in(c,wc′,0).τ.τ.out(c,wc,1)7−−−−−−−−−−−−−−−−−−−−−−−→ (0;φ0 ] {wc,0 . nP ;wc,1 . nonceerr}).

2.3 Equivalences

Many privacy-type properties (e.g., ballot privacy in e-voting, unlinkability) are
modelled relying on trace equivalence. In our setting, this behavioural equiv-
alence relies on a notion of static equivalence that captures indistinguishable
sequences of messages.

Definition 1. Two frames φ and ψ are in static equivalence, φ ∼s ψ, when
dom(φ) = dom(ψ), and Mφ =E Nφ iff Mψ =E Nψ for any M,N ∈ T (dom(φ)).

This equivalence is then lifted from sequences of messages to configuration.
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Definition 2. Let KP = (P;φ) and KQ = (Q;ψ) be two configurations with

dom(φ) = dom(ψ). We write KP vt KQ if for every execution KP tr17−−→ (P ′;φ′),
there exists tr2 and (Q′;ψ′) such that KQ tr27−−→ (Q′;ψ′), obs(tr1) = obs(tr2) and
φ′ ∼s ψ′. Then, KP ≈t KQ, if KP vt KQ and KQ vt KP .

Example 3. Consider the configurationKdiff = (P (k′E , k
′
M );φ0) which models the

fact that the attacker is now in presence of an other passport that the one that
produced φ0. We have that Ksame 6vt Kdiff , which means that the attacker is able
to detect the presence of a passport for which he has partial knowledge of a past
session (i.e., φ0). To see this, consider the trace from Example 2. It is possible
to produce the same trace starting from Kdiff , but the resulting frame is then
φ′ = φ0]{wc,0 .nP ;wc,1 .macerr} which does not satisfy the test wc,1 = nonceerr

contrary to the frame produced starting from Ksame. This corresponds to a well-
known unlinkability attack discovered in [4] on French passports. This attack can
be easily fixed by using the same error message in both cases. In such a case,
the inclusion holds. This is a non trivial inclusion that can be automatically
established by the DeepSec verification tool.

For illustrative purposes, we have only considered here a simple scenario for
which configurations under study are actually action-deterministic, i.e., where
for any s and α there is at most one s′ such that s α7−→ s′. In practice, we want to
consider more complex scenarios involving several passports and readers, which
results in configurations that are not action-deterministic: several passports can
output on the same channel at the same time. In particular, unlinkability is ex-
pressed as an equivalence between processes that are not action-deterministic [4].
When considering unlinkability, we also note that using diff-equivalence instead
of trace equivalence, as is done in Tamarin and Proverif when checking equiv-
alences for unbounded sessions, systematically leads to false attacks [29]. For
such properties, one thus has to resort to verifying trace equivalence in the
bounded setting. However, the lack of POR techniques supporting non-action-
deterministic processes is a major problem, since equivalence verification tools
perform very poorly when the state explosion problem is left untamed.

3 Persistent and sleep sets in a nutshell

We review the key concepts of persistent and sleep sets, based on [28] but slightly
reformulated. These general concepts apply to an action-deterministic LTS. We
thus assume, in this section, a set of states Q, a set of actions T , and a partial
transition function δ : Q × T → Q. We write s α−→ s′ when s′ = δ(s, α). We say
that α is enabled in state s if there exists an s′ such that s′ = δ(s, α). The set
of enabled actions in s is written E (s). A state s is final when E(s) = ∅.

Definition 3. Independence is the greatest relation ↔ ⊆ T × Q × T that is
symmetric, irreflexive and such that, for all (α, s, β) ∈↔ (written α↔s β):

– if s α−→ s′ then β ∈ E(s) iff β ∈ E(s′);

– if s α−→ s1 and s
β−→ s2, then s1

β−→ s′ and s2
α−→ s′ for some s′.
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Persistent sets. A set T ⊆ E (s) is persistent in s if, for all non-empty sequences
of actions s = s0

α0−→ s1 . . . sn
αn−−→ sn+1 such that αi 6∈ T for all 0 ≤ i ≤ n, we

have that αn ↔sn α for all α ∈ T . We may note that E (s) is persistent in s. In
practice, persistent sets may be computed from stubborn sets (see [10]).

In the following, we assume a function pset : Q × T ∗ → 2T which associates
to any state s ∈ Q and any sequence w such that s w−→ s′ with E (s′) 6= ∅, a
non-empty set of actions pset(s, w) which is persistent in s′.

A trace s0
α0−→ s1 . . .

αn−−→ sn+1 is persistent, written s0
α0...αn−−−−−→pset sn+1, if

αi ∈ pset(s0, α0 . . . αi−1) for all 0 ≤ i ≤ n.

Proposition 1. Let s′ be a final state that is reachable from s. We have that s′

is also reachable from s through a trace that is persistent.

Sleep sets. If a persistent set contains two independent actions, then the asso-
ciated search has redundancies. This has lead to the introduction of sleep sets.
This technique relies on an arbitrary ordering < on actions. A sleep set execution
is an execution (s0, ∅) = (s0, z0) α0−→ (s1, z1) . . . αn−−→ (sn+1, zn+1) with states in
Q× 2T such that s0

α0...αn−−−−−→pset sn+1, and for any 0 ≤ i ≤ n we have αi 6∈ zi and
zi+1 = {β ∈ zi | αi ↔si β} ∪ {β ∈ pset(s0, α0 . . . αi−1) | β < αi, αi ↔si β}.

Proposition 2. Let s′ be a final state that is reachable from s (in the original
LTS). We have that s′ is also reachable from (s, ∅) through a sleep set execution.

4 Concrete LTS for security protocols

In order to apply the POR techniques of Section 3, we need to reformulate trace
equivalence as a reachability property of final states in some LTS.

Given a set of handles W ⊆ W, we define Conf(W ) as the set of alive and
quiescent configurations with a frame of domain W . An alive configuration (P;φ)
is quiescent if any P ∈ P is of the form in(c, x).P ′ or out(c, t).P ′ (in other words,
no τ action can be triggered from it). We define the set of dead configurations
over W as Conf⊥(W ) = {(⊥j ;φ) | dom(φ) ⊆W and j ∈ N}.
We define our trace equivalence LTS as follows:

– States are of the form 〈|A ≈ B|〉 where A,B ⊆ Conf(W )∪Conf⊥(W ) for some
W ⊆ W, and at least one configuration in A∪B is alive. The domain dom(s)
of such a state is W , and its age is age(s) = max({0} ∪ {j + 1 | (⊥j , φ) ∈
A ∪ B}).

– Actions are of the form out(c,wc,i) or in(c,M) with c ∈ Ch, i ∈ N, M ∈
T (W).

– The transition relation is given by

s = 〈|A ≈ B|〉 α−→ 〈|Aa ] An ] Ag ≈ Ba ] Bn ] Bg|〉

where Ag, Aa, An are given below (and Bg, Bn, and Ba are defined similarly):

• Aa = {A′ | ∃A ∈ A such that A α7−→ A′′ τ
∗

7−→ A′ 6 τ7−→},
• An = {(⊥age(s);φ) | (P;φ) ∈ A, (P;φ) is alive, (P;φ) 6 α7−→}, and
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• Ag = A ∩ Conf⊥(dom(s)).

The transitions gather all alternatives that can perform the same output
(resp. input) action. Therefore, even if our protocol allows several alternatives
for a given observable action, our resulting trace equivalence LTS is action-
deterministic. Configurations that cannot execute such an action become ghosts.
A ghost configuration (⊥i;φ) is a configuration that cannot evolve anymore; its
index i will crucially be used to know what other frames were present when it
died (see Example 4).

Given a set of configurations A, we define A≥i as the set of all configurations
of A that are still alive at age i. More formally, we have that:

A≥i = {(P, φ) ∈ A | (P, φ) is alive or P = ⊥j with j ≥ i}
We write φ vs ψ when dom(φ) ⊆ dom(ψ) and both frames are in static equiva-
lence on their common domain, i.e., φ ∼s ψ|dom(φ). We lift vs to a set of frames
(and thus configurations): φ vs Ψ when there exists ψ ∈ Ψ such that φ vs ψ.

Definition 4. A state s = 〈|A ≈ B|〉 is left-bad when there exists (P;φ) ∈ A
such that:

– either (P;φ) is a ghost, i.e., P = ⊥j for some j, and φ 6vs B≥j;
– or (P;φ) is alive and φ 6vs (B ∩ Conf(dom(s))).

The notion of being right-bad is defined similarly, and we say that a state s is
bad when it is right-bad or left-bad.

We will see that trace inequivalence implies the existence of a bad state.
Thanks to ghosts, this will directly imply the existence of a final bad state. Fun-
damentally, ghosts are there to avoid that partial-order reduction makes us miss
a bad state by not exploring certain transitions. Of course, practical verification
algorithms will never perform explorations past a state that corresponds to a
inequivalence witness. Note, however, that detecting such states is only possible
thanks to complex constraint solving, which we cannot afford in our symbolic
POR algorithms. Hence, one important aspect in our design of ghosts is that
they lift well to the “unsolved” symbolic setting.

Example 4. Ghosts are crucial to make sure that progressing in the LTS never
kills a witness of inequivalence. For instance, consider the two processes:

Pu = out(c, u) +(out(c, n).out(d, n′)) where u ∈ {a, b} are two public constants.

Consider s0 = 〈|(Pa; ∅) ≈ (Pb; ∅)|〉 and s0
out(c,wc,0)−−−−−−−→ s1

out(d,wd,0)−−−−−−−→ s2 where:

– s1 = 〈|{(0; {wc,0 . a}), A} ≈ {(0; {wc,0 . b}), A}|〉
– s2 = 〈|{(⊥0; {wc,0 . a}), A′} ≈ {(⊥0; {wc,0 . b}), A′}|〉
– A = (out(d, n′); {wc,0 . n}), and A′ = (0; {wc,0 . n,wd,0 . n′}).

Note that s1 is bad because {w0
c .a} 6∼s {w0

c .b} and s2 is bad because the ghost
configurations are not statically equivalent either. However, without the ghost
configurations, s2 would not be bad (neither left nor right).

Our first contribution is a result that reduces trace equivalence to reachability
of a final bad state in our trace equivalence LTS, on which POR techniques can
be applied.
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Proposition 3. Let A0 and B0 be two alive configurations of same domain, and
s0 = 〈|A0 ≈ B0|〉 where A0 = {A | A0

τ7−→
∗
A 6 τ7−→}, and B0 = {B | B0

τ7−→
∗
B 6 τ7−→}.

The following conditions are equivalent:

1. A0 is trace included in B0, i.e., A0 vt B0;
2. no left-bad state is reachable from s0 in the trace-equivalence LTS;
3. no left-bad, final state is reachable from s0 in the trace-equivalence LTS.

5 POR in symbolic semantics

The POR techniques of Section 3 apply to the LTS of Section 4, but this is not
directly usable in practice because our trace equivalence LTS is infinitely branch-
ing. Symbolic execution is typically used to circumvent such problems, both in
traditional software verification [12] and security protocol analysis [19,20]. In
this section, we define a symbolic abstraction of our trace equivalence LTS, and
we show how it can be used to effectively apply the persistent and sleep set
techniques.

5.1 Symbolic equivalence LTS

As is common in symbolic semantics for security protocols [19,20], we rely on
second-order variables, which will be instantiated by recipes, and first-order vari-
ables, which will be instantiated by messages. First-order variables are distinct
from standard variables occurring in processes to represent input messages. More
precisely, when an input is executed symbolically, the associated variable will be
substituted by a first-order variable. As a result, standard variables will only oc-
cur bound in symbolic processes, while first-order variables will only occur free.
Conversely, only first-order variables will be allowed to occur free in processes,
frames, and states.

Second-order and first-order variables will respectively be of the form Xc,i

and xc,iφ where c ∈ Ch, i ∈ N, and φ is a symbolic frame, i.e., a frame whose
terms may contain first-order variables. Intuitively, Xc,i stands for the recipe
used for the ith input on channel c, and xc,iφ will be instantiated by the message
resulting from that recipe in the context of the frame φ. The use of variables
with explicit c, i parameters avoids us to deal with freshness or α-renaming issues
when implementing the symbolic analysis. We denote vars1(t) (resp. vars2(t))
the first-order (resp. second-order) variable occurring in t. Finally, vars(R) is the
set of handles that occur in a recipe R. We say that a symbolic frame φ is well-
founded if, whenever φ(wc,i) = t and xd,jψ ∈ vars1(t), we have that φ is a strict
extension of ψ meaning that φ|dom(ψ) = ψ (denoted ψ v φ), and ψ 6= φ. This
well-foundedness condition will obviously be preserved in symbolic executions:
if t is the ith output on channel c, it may only depend on inputs received before
that output, i.e., at a time where the frame ψ does not contain wc,i. From now
on, we impose that all frames are well-founded, which allows us to define the
first-order substitution associated to a second-order substitution.
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Definition 5 (λθ). Let θ be a substitution mapping second-order variables to
recipes. Its associated first-order substitution λθ is the unique substitution of
(infinite) domain {xc,iφ | vars(Xc,iθ) ⊆ dom(φ)} such that λθ(x

c,i
φ ) = (Xc,iθ)(φλθ),

which can be defined by induction on the size of frame domains.

We now define symbolic actions and states, and their concretisations. We take
symbolic actions of the form out(c,wc,i) and in(c,Xc,i,W ), where c ∈ Ch, i ∈ N
and W ⊆ W. Given a substitution θ mapping second-order variables to recipes,
we define the θ-concretisations of symbolic actions as follows: out(c,wc,i)θ =
out(c,wc,i), and in(c,Xc,i,W )θ = in(c,R) when Xc,iθ = R ∈ T (W ). We will use
constraints which are conjunctions of equations and disequations over (symbolic)
terms, i.e., terms that may contain first-order variables. The empty constraint
is written >, and conjunction is written ∧ and considered modulo associativity-
commutativity.

A symbolic state S = 〈A ≈ B〉IC is formed from a mapping I : Ch → N
providing input numbers, a constraint C, and two sets A and B of symbolic
configurations, i.e., configurations that may contain first-order variables. We
further require that:

– there is at least one alive configurations in A ∪ B;
– all alive configurations in A∪B share the same frame domain, noted dom(S);
– any ghost configuration in A ∪ B should have a domain W ⊆ dom(S);
– processes in configurations do not contain null processes, and do not feature

top-level conditionals, parallel and choice operators.

With this in place, we define the solutions of S = 〈A ≈ B〉IC as the set Sol(S)
containing all the substitutions θ such that:

– dom(θ) = {Xc,i | i < I(c)};
– for any u = v (resp. u 6= v) in C, uλθ =E vλθ (resp. uλθ 6=E vλθ).

Given S and θ ∈ Sol(S), we define its θ-concretisation Sθ as 〈|Aλθ ≈ Bλθ|〉.

Remark 1. Beyond the differences in formalism, our notion of solution is quite
close to ones found, e.g., in [19,20], with one difference: when no xc,iφ variable
occurs in S, θ(Xc,i) is completely unconstrained. This means that when an input
variable is unused in the input’s continuations, our solutions are incorrect wrt.
the corresponding recipe. We do not need to worry about this mismatch, though,
because we only need a symbolic semantics that covers all concrete executions; it
does not need to be sound. In fact, our analysis will never rely on the existence of
a solution for a given symbolic state. It will never check that a term is deducible,
and will almost ignore (dis)equality constraints, only checking for immediate
contradictions among them.

We can now define symbolic transitions, and establish their completeness.

Definition 6. Consider a symbolic state S = 〈A ≈ B〉IC and a symbolic action
A, the possible transitions S

A
� S′ are defined by mimicking concrete transitions

as follows:

10



– We first execute the action A, gathering all possible resulting configurations
into a pre-state SA = 〈A′ ≈ B′〉I′C . To be possible, such a transition has to
be of the form A = in(c,Xc,i,W ) with i = I(c), or A = out(c,wc,i) with
i = #c(dom(S)). The resulting pre-state SA is not a valid state because
it may contain e.g., top-level conditionals, choice operators. This pre-state
also includes ghosts (⊥n;φ) of the configurations (P;φ) of S that could not
perform A, where n = age(S) as defined in the concrete semantics. We define
I ′ to coincide with I on all channels, except on c where I ′(c) = I(c)+1 when
A is an input on c. When executing A = in(c,Xc,i,W ) in a configuration
(P;φ) of S that can perform an input on c, we use the term xc,iφ|W to substitute

for the input variable.

– Then we declare S
A
� S′ if S′ is a state that can be obtained from SA by

repeatedly performing the following operations, until none applies:

• If a configuration features a top-level conditional, the conditional is re-
placed by one of its branches, and the constraints are enriched accord-
ingly.

• If a configuration features a top-level choice operator, it is replaced by
the two configurations where the choices are made.

We also require that S′ does not have an immediately contradicting con-
straint, i.e., a constraint containing an equation and its negation.

A perhaps surprising consequence of our definition is that, if in(c,Xc,i,W ) is
enabled in S, then any in(c,Xc,i,W ′) is also enabled. Allowing smaller domains
is important for checking independencies. We also allow larger domains, possibly
even larger than dom(S), mainly because it simplifies the theory, at no cost in
practice.

Example 5. Consider arbitrary terms t, u, and v 6= v′, and the symbolic state
S = 〈(P;ψ) ≈ (P;ψ′)〉I> where P = in(c, x).if x = t then out(c, ok) else 0,

φ = {wc,0 7→ u}, ψ = φ ] {wd,0 7→ v} and ψ′ = φ ] {wd,0 7→ v′}.
We illustrate how the choice of W affects which transitions are possible from
state S with action A = in(c,Xc,i,W ), where i = I(c) is the only value that
allows this action to execute, and I ′ coincides with I except on c for which
I ′(c) = I(c) + 1. If W = {wc,0}, then there are two possible transitions:

S
A
� 〈(out(c, ok);ψ) ≈ (out(c, ok);ψ′)〉I′

xc,iφ =t
S

A
� 〈(0;ψ) ≈ (0;ψ′)〉I′

xc,iφ 6=t
If W = {wc,0, wd,0}, four transitions are possible, notably including

S
A
� 〈(out(c, ok);ψ) ≈ (0;ψ′)〉I′

xc,iψ =t, xc,i
ψ′ 6=t

.

Indeed, we are considering here an input whose recipe may exploit the different
frames of our two configurations. It is a priori possible that the resulting message
passes the test x = t only in one configuration.

Remark 2. It may be useful to note that the following property is preserved by
symbolic execution, though we do not exploit it: in a configuration (P;φ) of a
state 〈A ≈ B〉IC , the only first-order variables that appear are of the form xc,iψ
with ψ v φ and i < I(c).
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Proposition 4. Let S = 〈A ≈ B〉IC be a symbolic state, θ ∈ Sol(S). Let s′ and
α be such that Sθ

α−→ s′. There exists S′, A and θ′ w θ (i.e. θ′|dom(θ) = θ) such
that S

A
� S′, θ′ ∈ Sol(S′), α = Aθ′, and s′ = S′θ′. Moreover, if α is of the form

in(c,R), the proposition holds with A = in(c,Xc,I(c),W ) for any W such that
vars(R) ⊆W .

5.2 Independence relations

We first define the enabled symbolic independence relation, and show that it is a
sound abstraction of independence for enabled actions. For that, we assume here
a notion of incompatible constraints. It can be anything as long as two constraints
C and C′ are only declared incompatible when C ∧C′ is unsatisfiable. In practice,
we only check for immediate contradictions, i.e., the presence of an equation and
its negation. This allows us to easily check ⇔ee in the implementation.

Definition 7. Given a symbolic state S, and two symbolic actions A and B
enabled in S, we write A⇔ee

S B when:

– A and B are neither two inputs nor two outputs on the same channel;
– for any S

A
� SA, S

B
� SB, we have that SA

B
� SAB and SB

A
� SBA for

some symbolic states SAB and SBA;
– for any S

A
� SA

B
� SAB, and S

B
� SB

A
� SBA, we have that SAB and

SBA have incompatible constraints, or SAB = SBA.

We now turn to defining a sound abstraction of independence between a
concretely disabled and enabled action. Intuitively, A⇔de

S B will guarantee that
executing concretisations of B cannot enable new concretisations of A.

Definition 8. Given a symbolic state S, as well as two symbolic actions A
and B, we write A⇔de

S B when B is enabled in S, and

– either A is not enabled in S′ for any S′ such that S
B
� S′;

– or A is enabled in S but A/B are not of the form in(c,Xc,i,W )/out(d,wd,j)
with wd,j ∈W .

Proposition 5. Let S be a symbolic state and A and B be two symbolic actions.
Let θ ∈ Sol(S), s = Sθ and α (resp. β) be a concretisation of A (resp. B).

– If A⇔ee
S B, and α, β ∈ E (s), then α↔s β.

– If A⇔de
S B, α 6∈ E (s) and β ∈ E (s), then α↔s β.

Example 6. Let P = in(c, x).out(c, x) | out(d, t), and S = 〈(P; ∅) ≈ (P; ∅)〉I0>
with I0(c) = 0 for any c ∈ Ch. We have in(c,Xc,0, ∅) ⇔ee

S out(d,wd,0): in-
puts and outputs commute, for inputs whose recipes rely on the currently avail-
able (empty) domain. We have in(c,Xc,0, ∅) ⇔de

S out(d,wd,0) (the output does
not enable new concretisations for the input) but not in(c,Xc,0, {wd,0}) ⇔de

S

out(d,wd,0) (the input is feasible, but performing it after the output would en-
able new concretisations).
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5.3 Persistent set computation

Having defined over-approximations of transitions and dependencies, we now
describe how to compute, for a state S, a set of actions T+(S) that yields a per-
sistent set for any concretisation of S. More precisely, we shall compute stubborn
sets (cf. [10]).

Our symbolic LTS is still infinitely branching, due to the absence of con-
straints on inputs domains W . However, when exploring the LTS, it often suffices
to consider inputs with a canonical domain, i.e., the domain of the current state.
We formalise this by defining the enabled cover of a symbolic state S: EC (S) is
the set of all actions that are enabled in S, with the constraint that inputs are
of the form in(c,Xc,i,dom(S)). Proposition 4 already ensures that any concrete
action in E(Sθ) can be mapped to a symbolic action in EC (S).

Definition 9. Let S be a symbolic state, A and B be two symbolic actions such
that B is enabled in S. We say that A ⇔S B when (i) A ⇔de

S B and, (ii) if A
is enabled in S then A⇔ee

S B.

Given a symbolic state S, we say that a set of actions X is a symbolic stubborn
set for S when X ∩ EC (S) 6= ∅ and, for any A ∈ X and any execution

S = S1
B1

� S2 . . . Sn
Bn
� Sn+1 with Bi ∈ EC (Si) for all 1 ≤ i ≤ n

such that A 6⇔Sn Bn, there exists 1 ≤ i ≤ n such that Bi ∈ X.
We assume a computable function which associates to any symbolic state S

such that EC (S) 6= ∅ a set T+(S) that is a symbolic stubborn set for S. Com-
puting T+(S) is typically achieved as a least fixed point computation, initialising
the set with an arbitrary action in EC (S), exploring executions that avoid the
current set and adding actions Bn when they are dependent with an action al-
ready in the set. In this process all transitions in the enabled cover of S and
its successors are considered (unless they are in the current set) without caring
for the existence of a solution for the visited states. The computation is carried
out with each possible action of EC (S) as its initial set, and a result of minimal
cardinality is kept. In the worst case, it will be EC (S) itself.

If done in a depth-first fashion, the computation is (a symbolic approximation
of) Godefroid’s stubborn set computation through first conflict relations [28]. It
is however more efficient to perform the explorations in breadth, since the addi-
tion of an action along an exploration can potentially prevent the continuation
of another exploration. In any case, the details of how T+(S) is computed do
not matter for correctness.

Example 7. Consider the process P = in(c, x).Q | in(d, x).out(d, t).Q′ where Q,
Q′ and t are arbitrary. Consider computing T+(S) for S = 〈(P ; ∅) ≈ (P ; ∅)〉I0> ,
initialising the set with A0 = in(c,Xc,0, ∅). Since A0 ⇔S in(d,Xd,0, ∅) we
have to explore successors of S by the input on d. There is only one, call it
S′. We have A0 ⇔S′ out(d,wd,0), so again we consider the successor S′′ by
the output action. We have A1 = in(c,Xc,0, {wd,0}) ∈ EC (S′′) with A1 6⇔S′′

A0, hence we add A1 to our set. We repeat the process from S. We have
that A1 ⇔S in(d,Xd,0, ∅), then A1 6⇔S′ out(d,wd,0). More precisely, we have

13



that A1 6⇔de
S′ out(d,wd,0). Hence we add A2 = out(d,wd,0) to our set. Be-

cause A2 6⇔de
S in(d,Xd,0, ∅) = A3, we will also add that action in the next

iteration. We thus obtain T+(S) = {A0, A1, A2, A3}, satisfying our specifi-
cation of T+. This symbolic stubborn set yields the symbolic persistent set
T+(S) ∩ EC (S) = {in(c,Xc,0, ∅), in(d,Xd,0, ∅)}; in that case, no reduction is
possible. However, starting with process P | out(e, t′).P ′ and initialising the set
with A4 = out(e,we,0) will often lead to a very good reduction, i.e., a singleton.

Proposition 6. Let S be a symbolic state such that EC (S) 6= ∅, and T =
{Aθ | A ∈ T+(S)}. For any θ′ ∈ Sol(S), the set T ∩E (Sθ′) is persistent in Sθ′.

Having computed symbolic persistent sets, we now define a persistent set
assignment pset for the concrete LTS. By completeness, we know that, for any

concrete execution s0
α0−→ s1 . . .

αn−1−−−→ sn there exists S0
A0

� S1 . . .
An−1� Sn and

θ0 v θ1 . . . v θn with θ0 the empty substitution, θi ∈ Sol(Si) and Siθi = si for
all i ∈ [0;n], and Aiθi+1 = αi for all i ∈ [0;n− 1]. We assume a choice function
abs which, to each such concrete execution associates a symbolic abstraction:
abs(s0, α0 . . . αn−1) = (S0, S1, . . . , Sn). We can assume that the choice is com-
patible with prefixing:

abs(s0, α0 . . . αn) = (Si)0≤i≤n+1 implies abs(s0, α0 . . . αn−1) = (Si)0≤i≤n.

Building on this, we define pset(s0, α0 . . . αn−1) = {Aθ | A ∈ T+(Sn)}∩E (Snθn)
where abs(s0, α0 . . . αn−1) = (S0, . . . , Sn), which, by Proposition 6, is a persistent
set in sn (uniquely defined as the state reachable from s0 after α0 . . . αn−1). In
other words, we obtain the persistent set for a concrete state from the symbolic
persistent set of one of its symbolic abstractions, but we choose this abstraction
depending on the concrete execution and not only its resulting state.

With this in place, Proposition 1 guarantees that for any execution from
s0 to a final state sf , there exists a persistent execution (wrt. pset) from s0
to sf . Hence, the search for final bad states can be restricted to only explore
concretisations of symbolic persistent traces, i.e., symbolic executions where the
only transitions considered for a state S are those in T+(S) ∩ EC (S).

5.4 Symbolic sleep sets

We finally describe how we implement sleep sets symbolically. We shall define
a symbolic LTS with sleep sets, whose states (S,Z) compound a symbolic state
S and a set of symbolic actions Z. The sleep set technique relies on a strict
ordering of actions, but the order is only relevant for comparing independent
actions, which do not have the same skeleton (the skeleton of an action denotes
its input/output nature and its channel). Thus, we assume a strict total order <
on action skeletons, and lift it to symbolic and concrete actions. Then, a sleep
set execution in our symbolic LTS is any execution

(S0, ∅) = (S0, Z0)
A0

� (S1, Z1) . . . (Sn, Zn)
An
� (Sn+1, Zn+1)

such that for 0 ≤ i ≤ n, we have that Ai ∈ T+(Si) ∩ EC (Si), Ai 6∈ Zi, and
Zi+1 = {B ∈ Zi | B ⇔ee

Si
Ai} ∪ {A′ ∈ T+(Si) ∩ EC (Si) | A′ < Ai, A

′ ⇔ee
Si
Ai}.
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These symbolic sleep set executions are complete with respect to the sleep
set technique applied to our concrete LTS with the pset function defined above.

Proposition 7. Let (s0, ∅) α0−→ (s1, z1) . . .
αn−1−−−→ (sn, zn) be a sleep set execution

in our initial LTS. Then, there is (S0, ∅)
A0

� (S1, Z1) . . . An−1� (Sn, Zn) a sleep
set execution in our symbolic LTS, and substitutions ∅ = θ0 v θ1 . . . v θn such
that si = Siθi, αi = Aiθi+1 for i ∈ [1;n− 1], and sn = Snθn.

Example 8. Let S be the state from Example 7. Starting with (S, ∅), we may per-
form two transitions in the sleep LTS: A0 = in(c,Xc,0, ∅) and A3 = in(d,Xd,0, ∅).
Assuming that S

A0

� Sc and A0 > A3, we have (S, ∅) A0

� (Sc, {A3}). Assum-
ing now that Q starts with another input on c, the persistent set for Sc will
contain inputs on c and d. However, executing A3 is not allowed in (Sc, {A3}).
Intuitively, while the persistent set technique only looks forward, the sleep set
technique also takes into account the past, and indicates here that exploring A3

is not useful after A0, since it can equivalently be performed before it.

5.5 Collapsing conditionals

The above techniques allow us, in principle, to compute significantly reduced set
of symbolic traces whose concretisations contain a witness of non-equivalence
when such a witness exists. However, the algorithm for computing persistent
sets is quite inefficient when applied on practical case studies: it relies on explo-
rations of their symbolic LTS, which is highly branching and too large due to
conditionals. This is a typical problem of symbolic execution, which manifests
itself acutely in our setting, where the branching factor of a state is generally the
product of those of its configurations. We circumvent this difficulty by observing
that stubborn sets for a state (and its sleep set executions) can be computed by
analysing a transformed state where conditionals are pushed down. Our trans-
formation can often completely eliminate conditionals in our case studies, and
is key to obtaining acceptable performances.

To justify an elementary step of this transformation, we consider a symbolic
state S containing a conditional we would like to simplify: S = S′[if u =
v then P else Q] (S′[·] denotes a state with a hole). We require that P and
Q are respectively of the form α.P ′ and β.Q′ where α and β have the same
skeleton. We make the observation that, independently of the execution and the
evaluation of the test u = v, the same action will be released and, in case of
outputs, the precise output term has little impact in the context of our symbolic
analysis. Following this intuition, we would like to postpone the conditional by
considering Sc = S′[γ.if u = v then P ′ else Q′], where γ is either the input
α = β, or a well-chosen combination of the outputs α and β. The choice of γ
should ensure that the transformation cannot create action independencies that
did not hold before the transformation. Formally, we assume a fresh function
symbol ∆ of arity 4, and take Sc = S′[T c] where T c is defined as:

in(c, x).if u = v then P ′ else Q′ when (α, β) = (in(c, x), in(c, x))

out(c,∆(t, t′, u, v)).if u = v then P ′ else Q′ when (α, β) = (out(c, t), out(c, t′))
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Proposition 8. For any execution S = S0
A1

� S1 . . .
An
� Sn, there is an execu-

tion Sc = T0
A1

� T1 . . .
An
� Tn, such that, for any A and i ∈ [1;n], A ⇔Ti−1

Ai
(resp. Ai ⇔Ti−1 A) implies A⇔Si−1 Ai (resp. Ai ⇔Si−1 A).

Hence, T+(Sc) is a symbolic stubborn set for S and any sleep set execution
from S is also a sleep set execution from Sc.

Repeatedly applying this result, we can eliminate most conditionals from our
protocols, and compute stubborn sets and sleep set executions efficiently.

6 Implementation and benchmarks

The results of the previous sections allow us to compute a set of symbolic
actions, that can be used to restrict the search when looking for a witness
of non-equivalence. By Proposition 3, (P1; ∅) 6≈ (P2; ∅) iff a bad state can
be reached from s0 = 〈|B1 ≈ B2|〉, where Bi = {Ki | (Pi; ∅) τ7−→

∗ Ki 6 τ7−→}.
By Proposition 2, this implies the existence of a sleep set execution in our
trace equivalence LTS from (s0, ∅) to a bad state. By Proposition 7, this im-
plies the existence of a concrete execution whose underlying symbolic trace
S0 = 〈B1 ≈ B2〉I0>

A0

� . . .
An
� Sn+1 is a sleep set execution in our symbolic

LTS. Such symbolic traces can be computed.

6.1 Implementation

To concretely realise and evaluate our techniques, we have implemented our
symbolic analysis as a standalone library called Porridge [7], and have interfaced
it with Apte in the first place, and then with its successor DeepSec, once this tool
has been made available [21]. These tools perform an exhaustive search for non-
equivalence witnesses using symbolic execution. Conceptually, this search can
be seen as a naive symbolic exploration, combined with an elaborate constraint
solving procedure. The two aspects being orthogonal, we can straightforwardly
obtain a correct optimisation by restricting the symbolic exploration according
to the set of traces computed by Porridge.

Porridge. The library is open-source, written in OCaml. The code implements
exactly the techniques presented above, with only a few minor additions.It con-
sists of ∼6k LoC. Performance-wise, we heavily make use of hashconsing and
memoization, but not from multicore programming yet. The design of the li-
brary, with an independent POR functor, makes it easy to apply symbolic POR
analyses to other LTS; we can already perform POR for trace inclusion, and
expect to use this flexibility to consider slightly different protocol semantics.

Integration in Apte and DeepSec. As mentioned above, Apte and DeepSec
are based on constraint solving procedures on top of which an exhaustive and
naive symbolic executions exploration is performed. This exploration is naive
in the sense that all interleavings are considered (except for the specific case
of action-deterministic protocols already discussed in introduction). We have
shown that restricting the exploration to symbolic sleep set traces still yields a
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Test Size Time (ratio) Explorations (ratio) Time (s)

BAC (unlinkability) 4 7.6 7.23 12.23

Private Auth. (anonymity) 2 1.25 2.71 0.04
Private Auth. (anonymity) 3 1.67 4.01 0.04
Private Auth. (anonymity) 4 8.21 10.51 1.17
Private Auth. (anonymity) 5 14.89 16.61 10.57
Private Auth. (anonymity) 6 60.2 36.75 4864

Private Auth. (unlinkability) 2 2.29 9.6 0.16
Private Auth. (unlinkability) 3 14.06 29.77 79.57
Private Auth. (unlinkability) 4 46.2 46.69 7171

Feldhofer (anonymity) 2 1 4.72 0.03
Feldhofer (anonymity) 3 4.63 7.08 0.37
Feldhofer (anonymity) 4 22.47 16.3 544.93

Feldhofer (unlinkability) 4 36.27 22.58 1510.09

Table 1. Relative speed-up and reduction of explorations with Porridge vs. without
Porridge. In the last column, we show the computation time without Porridge. The
size refers to the total number of processes in parallel.
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Fig. 2. Relative speed-up and reduction of explorations with Porridge vs. without
Porridge on Private Authentication (ANO) of different sizes.

decision procedure for trace equivalence. This restriction is easily implemented,
as lightweight modifications (∼500 LoC) of Apte and DeepSec.Note that the
differences between the semantics presented in Section 2 and the ones used by
those tools can easily be ignored by slightly restricting the class of protocols.
Concretely, we exploit the class of protocols with non-blocking outputs as done
in [9], which is not restrictive.

6.2 Experimental evaluation

We have carried out numerous benchmarks, focusing on DeepSec since it is both
more general and more efficient than Apte, and measuring the improvements
brought by Porridge in terms of computation time and number of explorations.
The latter is also a good indicator of the effectiveness of the reduction achieved
since it represents the number of times DeepSec explores an action and applies
its costly constraint solving procedure.
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Case studies. We verify some privacy properties on several real-life protocols
of various sizes by modifying the number of sessions being analysed. We model
unlinkability [29,4] of the BAC protocol [4], of Private Authentication [2] and of
Feldhofer [26], and anonymity as well for some of them. The results are shown
in Table 1 and make use of processes that are not action-deterministic.

Setup. We run DeepSec and Porridge both compiled with OCaml 4.06.0 on a
server running Ubuntu 16.04.5 (Linux 4.4.0) with 12∗2 Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20GHz and 256G of RAM. We run each test on a single core with
a time-out of 2 hours (real-time) and maximal memory consumption of 10GB.

Results. We report in Table 1 the relative speed-up of computation time and
the reduction of explorations brought by Porridge. We plot the same information
for numerous sizes of Private Authentication in Figure 2. We observe that speed-
ups are closely related to the reduction achieved on the number of explorations.
As the size of protocols increases, Porridge quickly speeds up computations by
more that one order of magnitude.

7 Conclusion

We have presented the first POR technique that is applicable to verifying trace
equivalence properties of security protocols, without any action-determinism as-
sumption. Our contributions are: an equivalence LTS that recasts trace equiva-
lence as a reachability property; a symbolic abstraction of the equivalence LTS on
which persistent and sleep set techniques can be effectively computed; a collapse
of conditionals that significantly speeds up these computations. Our technique
applies to a wide class of protocols, has been implemented as a library and inte-
grated in the state-of-the-art verifier DeepSec, showing significant performance
improvements on case studies.

Compared to (our) earlier work on POR for protocol equivalences [8,9], we
follow a radically different approach in this paper to obtain a technique that
applies without any action-determinism assumption. In the action-deterministic
case, the two techniques achieve similar but incomparable reductions: sleep sets
are more efficient on improper blocks, but the focused behavior of compression
is unmatched with sleep sets. Finally, we note that although sleep sets allow to
recover a form of dependency constraint, we do not know how to justify its use
in practice outside of the action-deterministic case. We hope that future work
will allow to unify and generalize both techniques.

A crucial aspect of our new approach is that it manages to leverage classic
POR techniques, namely persistent and sleep sets, for use in our specific se-
curity setting. In fact, we view this work as a first step towards bridging the
gap between standard POR and security-specific techniques. As usual in POR,
many variations (e.g., in how we integrate with the equivalence verifiers) and ap-
proximations (e.g., in independencies or stubborn set computations) should be
explored to look for performance gains. The recent work on dynamic POR [27,3]
(DPOR), which aims to find a trade-off between performance and quality of the
computed persistent sets, is of particular interest here, though it is unclear at this
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point to which extent generic results can be extracted from the above-mentioned
works for re-use in our security setting.
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17. R. Chadha, c. Ciobâcă, and S. Kremer. Automated verification of equivalence
properties of cryptographic protocols. In Proc. 21st European Symposium on Pro-
gramming Languages and Systems (ESOP’12), LNCS. Springer, 2012.

18. V. Cheval. Apte: an algorithm for proving trace equivalence. In Proc. 20th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’14), 2014.

19. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative
tests and non-determinism. In Proc. 18th Conference on Computer and Commu-
nications Security (CCS’11). ACM Press, 2011.

20. V. Cheval, V. Cortier, and S. Delaune. Deciding equivalence-based properties using
constraint solving. Theoretical Computer Science, 492:1–39, June 2013.

21. V. Cheval, S. Kremer, and I. Rakotonirina. Deepsec: Deciding equivalence prop-
erties in security protocols - theory and practice. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P’18). IEEE Computer Society Press, 2018.

22. E. Clarke, S. Jha, and W. Marrero. Partial order reductions for security protocol
verification. In Proc. 6th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 503–518. Springer, 2000.

23. C. J. F. Cremers and S. Mauw. Checking secrecy by means of partial order reduc-
tion. In System Analysis and Modeling. Springer, 2005.

24. S. Delaune and L. Hirschi. A survey of symbolic methods for establishing
equivalence-based properties in cryptographic protocols. Journal of Logical and
Algebraic Methods in Programming, 2016.

25. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, (4):435–487, July 2008.

26. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID
systems using the AES algorithm. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 357–370. Springer, 2004.

27. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In ACM Sigplan Notices, volume 40, pages 110–121. ACM, 2005.

28. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems.
PhD thesis, Université de Liège, 1995.
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