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Chapter 6
Recent Developments in Particle
Tracking Diagnostics for Turbulence
Research

Nathanaël Machicoane, Peter D. Huck, Alicia Clark, Alberto Aliseda,
Romain Volk, and Mickaël Bourgoin

6.1 Introduction

Flow velocity measurements based on the analysis of the motion of particles
imaged with digital cameras have become the most commonly used measurement
technique in contemporary fluid mechanics research [1, 2]. Particle image velocime-
try (PIV) and particle tracking velocimetry (PTV) are two widely used methods
that enable the characterisation of a flow based on the motion of particles, from
Eulerian (PIV) or Lagrangian (PTV) points of view. Several aspects influence the
accuracy and reliability of the measurements obtained with these techniques [2]:
resolution (temporal and spatial), dynamical range, the capacity to measure 2D or
3D components of velocity in a 2D or 3D fluid domain, statistical convergence,
etc. These imaging and analysis considerations depend on the hardware (camera
resolution, repetition rate, on-board memory, optical system, etc.) but also on the
software (optical calibration relating real-world coordinates to pixel coordinates,
particle identification and tracking algorithms, image correlation, dynamical post-
processing, etc.) used in the measurements. In this context, particle tracking
velocimetry can provide highly resolved, spatially and temporally, measurements
of the flow velocity (if the particles are flow tracers) or of particle velocities
(if the particles immersed in the flow have their own dynamics) in experimental

N. Machicoane · A. Clark · A. Aliseda
University of Washington, Department of Mechanical Engineering, Seattle, WA, USA

P. D. Huck
University of Washington, Department of Mechanical Engineering, Seattle, WA, USA

Laboratoire de Physique, ENS de Lyon, CNRS and Université de Lyon, Lyon, France

R. Volk · M. Bourgoin (�)
Laboratoire de Physique, ENS de Lyon, CNRS and Université de Lyon, Lyon, France
e-mail: mickael.bourgoin@ens-lyon.fr

© The Editor(s) (if applicable) and The Author(s) 2019
F. Toschi, M. Sega (eds.), Flowing Matter, Soft and Biological Matter,
https://doi.org/10.1007/978-3-030-23370-9_6

177



178 N. Machicoane et al.

fluid mechanics research and applications [2–5]. A frequent implementation of
this method in the laboratory is based on taking a pair of images (with double
exposure cameras, typical of PIV) in rapid succession followed by a larger time
interval before the next pair of images. A second common implementation of this
method starts with the capture of a long sequence of images, all equally separated
by a small time interval (with high-speed cameras). In the first case, the particle
tracking velocimetry technique provides a single vector per particle in a pair of
consecutive images, with subsequent velocity measurements in other image pairs
being uncorrelated. The high-speed image sequence, on the contrary, provides the
opportunity to track the same particle over multiple (n) images and provides several
(n-1) correlated velocity (or n-2 acceleration) measurements, at different locations
but along the same particle trajectory.

There are three recent contributions implemented by the authors and summarised
in this chapter that apply equally to both versions of the particle tracking velocimetry
technique: each one advances important aspects in one of the stages of the
measurement of velocity from particle images. The first contribution (Sect. 6.2)
provides an optical-model-free calibration technique for multi-camera particle
tracking velocimetry and potentially also for particle image velocimetry. This
method is simpler to apply and provides equal or better results than the pinhole
camera model originally proposed by Tsai in 1987 [6]. In the context of particle
tracking with applications in fluid mechanics, particle centre detection and tracking
algorithms have been the focus of more studies [7, 8] than optical calibration
and 3D position determination. Although many strategies with various degrees
of complexity have been developed for camera calibration [9–13], most existing
experimental implementations of multi-camera particle tracking use Tsai pinhole
camera model as the basis for calibration. Using plane-by-plane transformations, it
defines an interpolant that connects each point in the camera sensor to the actual
light beam across the measurement volume. As it does not rely on any a priori
model, the method easily handles potential complexity and non-linearity in an
optical setup while remaining computationally efficient in stereo-matching 3D data.
In opposition, Tsai approach, sketched in Fig. 6.1, is based on the development on
a physical model for the cameras arrangement with several parameters (the number
depending on the complexity). The model assumes that all ray of light received on
the camera sensor pass through an optical centre (pinhole) for each camera. The
quality of the inferred transformation will therefore be sensitive to variations of
the setup leading to calibration data which may no longer match the model due to
optical distortions, for instance. Besides, Tsai model requires non-linear elements to
account for each aspect of the optical path. In practice, realistic experimental setups
are either complex and time-consuming to model via individual optical elements in
the Tsai method or over-simplified by ignoring certain elements such as windows,
or compound lenses, with loss of accuracy.

The second contribution (Sect. 6.3) addresses the reconstruction of trajectories
from the set of particle positions detected in the image sequence, an important aspect
of particle tracking velocimetry [8, 14–17]. It describes the practical implementation
of two recent developments: shadow particle velocimetry using parallel light
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Fig. 6.1 Sketch of Tsai pinhole camera model and stereo-matching: the position of a particle in
the real world corresponds to the intersection of 2 lines �1 and �2, each emitted by the camera
centres O1 and O2 and passing through the position of particles P1 and P2 detected on each camera
plane �1 and �2

combined with pattern tracking [18, 19] and trajectory reconstruction based on an
extension of the four-frame best estimate (4BE) method. While the former was
developed originally to access the size, orientation, or shape of the tracked particles,
the latter is an extension of previous tracking algorithms [17] (which also extended
previous algorithms) and which can be easily implemented as an add-on to an
existing tracking code.

Finally, Sect. 6.4 describes a method to estimate noiseless velocity and accelera-
tion statistics from particle tracking velocimetry tracks. This is a crucial step because
imaging techniques may introduce noise into the detection of particle centres,
which is then amplified when computing successive temporal or spatial derivatives.
The position signal is then usually time-filtered prior to differentiation [5, 20], a
procedure that increases the signal-to-noise ratio at the cost of signal alteration. The
method described here, inspired by work in this area [21, 22], is based on computing
the statistics of the particles displacements with increasing time lag, does not require
any kind of filter, and allows for the estimation of noiseless statistical quantities both
in the Lagrangian framework (velocity and acceleration time correlation functions)
and in the Eulerian framework (statistics of spatial velocity increments) [23, 24].

Note that this chapter does not intend to review all the possible extensions of
particle tracking velocimetry and has been limited to some recent developments
from the authors’ groups, which we believe can be useful and easily implemented to
improve the accuracy of already operational PTV systems in other groups or which
may help users developing new PTV experiments. Many other interesting advances
have been developed over the past decade. We can, for instance, mention the use
of inverse-problem digital holography [25–27], which allows to track particles in
3D with one single camera, new algorithms allowing to track particles in highly
seeded flows such as the shake the box method [28] or the tracking of particles
with rotational dynamics [29, 30], which allows to investigate simultaneously the
translation and rotation of large objects transported in a flow.
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6.2 A Model-Free Calibration Method

6.2.1 Principle

3D particle imaging methods require an appropriate calibration method to perform
the stereo-matching between the 2D positions of particles in the pixel coordinate
system for each camera and their absolute 3D positions in the real-world coordinate
system. The accuracy of the calibration method directly impacts the accuracy of the
3D positioning of the particles in real-world coordinates.

The calibration method proposed here (further discussed in [31]) is based on
the simple idea that no matter how distorted a recorded image is, each bright point
on the pixel array is associated with the ray of light that produced it. As such, the
corresponding light source (typically a scatterer particle) can lie anywhere on this
ray of light. An appropriate calibration method should be able to directly attribute
to a given doublet (xp, yp) of pixel coordinates its corresponding ray path. If
the index of refraction in the measurement volume of interest is uniform (so that
light propagates along a straight line inside the measurement volume) each doublet
(xp, yp) can be associated with a straight line d (defined by 6 parameters in 3D:
a position vector O�(xp, yp) and a displacement vector V�(xp, yp)), regardless
of the path outside the volume of interest, which can be very complex as material
interfaces and lenses are traversed. The calibration method described here builds
a pixel-to-line interpolant I that implements this correspondence between pixel

coordinates and each of the 6 parameters of the ray of light: (xp, yp)
I−→ (O�, V�).

While this method may seem similar to Tsai approach which also designates a ray of
light for each doublet (xp, yp), there is a significant difference in that Tsai approach
assumes a camera model and is sensitive to deviations in the actual setup from
this idealised optical model. The proposed approach does not rely on any a priori
model and is only based on empirical interpolations from the actual calibration data.
Thus, the new method implicitly takes into account optical imperfections, media
inhomogeneities (outside the measurement volume) or complex lens arrangements.
Additionally, the generalisation of the method to cases where light does not
propagate in a straight line is straightforward: it is sufficient to build the interpolant
with the parameters required to describe the expected curved path of light in the
medium of interest (for instance, a parabola in the case of linear stratification).

6.2.2 Practical Implementation

An implementation of the method proposed is used to build the interpolant I from
experimental images of a calibration target with known patterns at known positions.
The process described here concerns only one camera for clarity. In general, in
a realistic multi-camera system, the protocol has to be repeated for each camera
independently.
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A calibration target, consisting of a grid of equally separated dots, is translated
perpendicularly to its plane (along the OZ axis) using a micropositioning stage,
and is imaged at several known Z positions by every camera simultaneously. In
total, NZ images are taken by each camera: Ij is the calibration image when the
plane is at position Zj (with j ∈ [1, NZ]). For an example highlighting the quality
of the calibration method, NZ = 13 planes were collected across the measurement
volume. The calibration protocol, sketched in Fig. 6.2, then proceeds as follows:
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Fig. 6.2 Sketch of the calibration method. (a) Image Ij of the calibration target (over Nx ×Ny pix-
els) located at one position Zj (in real-world coordinates). From this image the centre of the images
of the calibration dots in pixel coordinates ((xk

j , yk
j )k∈[1;Nj ]) is determined. (b) Corresponding

known location of the centre of the calibration points in real-world coordinates ((Xk
j ,X

k
j )k∈[1;Nj ]).

From (xk
j , yk

j )k∈[1;Nj ] and (Xk
j ,X

k
j )k∈[1;Nj ], the coefficients of the transformation Tj connecting

pixel and real-world coordinates of the target located at Zj are evaluated (the procedure is repeated
for several target positions Zj∈[1,Nz]) using least squares methods [32]. From a practical point of
view the transformations Tj can be easily determined using ready to use algorithms, such as the
fitgeotrans function in Matlab R©. Note that for the simplicity of the illustration of the method,
we show here a situation with no optical distortion and no perspective deformation, where the
plane-by-plane transformation Tj is just given by a magnification factor Mj between pixel and
real-world coordinates. In an actual experiment, perspective effects would require at least a linear
projective transformation, defined by a 2×2 matrix M

αβ
j with at least 4 coefficients to be estimated

for each plane position Zj . More realistic situations would require higher order polynomial
transformations including a larger number of coefficients [32]; a third polynomial transformation
embeds, for instance, 10 coefficients per plane). (c) Stacks of calibration planes at 3 different
positions (Zj=1,2,3) in 3D real-world coordinates (for simplicity, only 3 planes are illustrated,
although in an actual calibration more planes may be used for better accuracy). The 3 coloured
crosses illustrate the 3 projections (one on each of the 3 planes, the colour of the points corresponds
to the colour of the plane onto which it is projected) in real-world coordinates ((X, Y,Z)j=1,2,3)
of an arbitrary point (x, y) in pixel coordinates to which the 3 transformations Tj=1,2,3 have been
applied. These projections are distributed along a path of light corresponding to the line in real-
world coordinates that projects onto the point (x, y) in the camera pixel coordinates. Since in a
homogeneous medium light propagates in straight lines, the path of light is simply determined by a
linear fit (dashed line), in 3D real-world coordinates, of the three points ((X, Y,Z)j=1,2,3). Using
more calibration planes leads to more points for the linear fit and hence to a better accuracy. This
procedure then directly connects the pixel coordinate (x, y) into the corresponding ray of light
that produces it. Note that the fit is only done within the calibration volume where the target is
translated along the Nz planes and does not extend to the cameras



182 N. Machicoane et al.

1. Dot centres detection. For each calibration image Ij the dot centres are
detected, giving a set (xk

j , yk
j )k∈[1;Nj ] of pixel coordinates. Nj is the number

of dots actually detected on each image Ij . Real-world coordinates of the dots
(Xk

j , Y
k
j , Zk

j )k∈[1;Nj ] are known. Lowercase coordinates represent pixel coordi-
nates, while uppercase coordinates represent absolute real-world coordinates.

2. 2D Plane-by-plane transformations. For each position Zj of the calibration
target, the measured 2D pixel coordinates (xk

j , yk
j )k∈[1;Nj ] and the known 2D

real-world coordinates (Xk
j , Y

k
j )k∈[1;Nj ] are used to infer a spatial transformation

Tj projecting 2D pixel coordinates onto 2D real-world coordinates in the plane
XOY at position Zj . Different type of transformations can be inferred, from a
simple linear projective transformation, to high order polynomial transformations
if non-linear optical aberrations need to be corrected (common optical aberra-
tions are adequately captured by a third-order polynomial transformation). This
is a standard planar calibration procedure, where an estimate of the accuracy
of the 2D plane-by-plane transformation can be obtained from the distance, in

pixel coordinates, between (xk
j , yk

j )k∈[1;Nj ] and T−1
j

(
Xk

j , Y
k
j , Zj

)
k∈[1;Nj ]. The

maximum error for the images used here is less than 2 pixels, corresponding in
the present case to a maximum error of about 1/10th of the diameter of the dots
in the calibration image.

3. Building the pixel-line interpolant and stereo-matching. The key step in the
calibration method is building the pixel-to-line transformation. For a given pixel
coordinate (for instance, corresponding to the centre of a detected particle), this is
simply done by applying the successive inverse plane-by-plane transformations
T−1

j to project the pixel position to real space at each plane. This builds a set
of points (one per plane) which define the line of sight corresponding to the
considered pixel coordinate. The line is then determined by a linear fit of these
points. For practical purposes, instead of repeating this procedure every time for
every detected particle, we rather chose to build a pixel-line interpolant, I, which
directly connects pixels coordinates to a ray path. To achieve this, a grid of NI
interpolating points in pixel coordinates (xIl , yIl )l∈[1,NI] is defined, for which
the ray paths have to be computed. The inverse transformations T−1

j are then
used to project each point of this set back onto the real-world planes (X, Y,Zj ),
for each of the NZ positions Zj . Each interpolating point (xIl , yIl ) is therefore
associated with a set of NZ points in real world (XIl , YIl , Zj ). Conversely, these
points in real world can be seen as a discrete sampling of the ray path which
impacts the sensor of the camera at (xIl , yIl ). If light propagates along a straight
line, the NZ points (XIl , YIl , Zj ) should be aligned. By a simple linear fit of these
points, each interpolating point (xIl , yIl ) is related to a line �l , defined by a point
O�l

= (X0
l , Y

0
l , Z0

l ) and a vector V�l
= (V xl, Vyl, V zl) (hence 6 parameters

for each interpolating point). Each of these rays from the NI interpolation points
is used to compute the interpolant I, which allows any pixel coordinate (x, y)

in the camera to be connected to its ray path (O�, V�) corresponding to all
possible positions of light sources that could produce a bright spot in (x, y).
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Stereo-matching, or finding the 3D position of a point (or particle), is performed
by finding a set of rays from each camera that cross (or almost cross) in the
vicinity of the same spot in the volume of interest. The most probable 3D location
of the corresponding particle is then taken as the 3D position that minimises
the total distance to all those rays. The interpolant described in the method is
created using every pixel in the cameras, as this step is done only once, but
the method can be applied with a subset of the pixel array. For a setup with
moderate optical distortion, a loose interpolating grid with a few hundreds points
(typically, 20 × 20) is largely sufficient. As a matter of fact, using the interpolant
is not mandatory, as all the calibration information is embedded in the plane-
by-plane transformations. Third-order polynomial plane-by-plane transformation
embeds 10 parameters each (5 polynomial coefficients for each of the X and
Y transformations). If, instead, 7 calibration planes are used, the calibration
information embeds about 70 parameters in total. Using the interpolant approach
is above all a practical solution, while the interpolation information embeds a
massive number of hidden parameters (6 per interpolation point) and is therefore
expected to be highly redundant. Therefore, it is generally unnecessary to build
the interpolant on a too refined grid (however, the added computational cost is
minimal as the interpolant is only built once per calibration procedure, and can be
stored in a small file for later use). This may happen for systems with important
small-scale and heterogeneous optical distortions, in which case higher order
plane-by-plane transformations (hence embedding more parameters) would also
be necessary.

6.2.3 Results: Comparison with Tsai Model

The calibration procedure proposed by Tsai [6] has been widely used to recover
the optical characteristics of an imaging system to reconstruct the 3D position of
an object. The accuracy of the proposed imaging calibration procedure is assessed
by comparing it with a simple implementation of Tsai model. A camera model
accounting only for radial distortion is used. While improved optical elements
in Tsai model could increase the accuracy, they come at an increased operator
workload.

Our stereoscopic optical arrangement (see Refs. [31, 33] for more details), typical
of PTV in a 1 cm thick laser sheet, focuses on the geometrical centre of a water
flow inside an icosahedron, with both cameras objectives mounted in a Scheimpflug
configuration. A plate mounted parallel to the laser sheet with 2 mm dots, attached
to a micrometric traverse (with 10 μm accuracy), is used as a target. Both calibration
methods use 13 target images, 1 mm apart from each other along the Z axis.

The calibration method uses the 2D positions of the target dots, and provides a
series of positions that cannot exactly match the 3D real coordinates because, in both
methods, the model parameters are obtained by solving an over-constrained linear
system in the least-square sense. The calibration error, i.e., the absolute difference
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between the (known) real coordinates and the transformed ones, is computed to
evaluate the calibration accuracy. This error can be estimated along each direction

or as a norm: d =
√

d2
X + d2

Y + d2
Z (Table 6.1). Figure 6.3 plots the total 3D error

averaged over the 13 planes used, for both the proposed method and Tsai model.
The accuracy of the proposed calibration is superior to that of the Tsai method

(in its simplest implementation). The error is at least 300% smaller (depending on
which component is considered) and is reduced to barely 0.5 pixel. It is important to
note that the error map obtained with the Tsai method (Fig. 6.3b) seems to display
a large bias along Y that could be due to the use of Scheimpflug mounts, which
are typically not included in this Tsai calibration, and to the angle between the
cameras and the tank windows. This hypothesis was verified by comparing the two
calibrations procedures in more conventional conditions, where they give similar
results with a very small error.

For the present optical arrangement and the new calibration method, the error in
the Y positioning is the smallest. Indeed, due to the shape of the experiment (an
icosahedron), the y axis of the camera sensor is almost aligned with the Y direction
so that this coordinate is fully redundant between the cameras, while the x axes of
each camera sensor form an angle α � π/3 with the X direction so that the precision
on X positioning is lower. This directly impacts the precision on the Z positioning,
whose error is almost equal to the X positioning error.

Table 6.1 Spatial average of the absolute deviation from the expected position of the targets

dX (μm) dY (μm) dZ (μm) d (μm)

Proposed calibration 32.7 12.6 39.2 59

Tsai model 121 171.1 112.7 266.6

(a) (b)

Fig. 6.3 Calibration error averaged along Z using the proposed calibration method (a) or Tsai
model (b)
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6.2.4 Discussion

Up to 13 planes were used to build the operator that yields the camera calibration.
While two planes are the minimum required for the method, a larger number
of planes imaged provide better accuracy. In this case study, the major sources
of optical distortion were the Scheimpflug mounts, the imperfect lenses, and the
non-perpendicular interfaces. 7 planes provided an optimal trade-off between high
accuracy and simplicity, with an error only 2% larger than the 13 planes setup, while
using only 3 planes yields an 10% larger error. The fact that few planes are sufficient
to obtain a good accuracy of the calibration is likely related to the fact that the third-
order polynomial plane-by-plane transformations are sufficient to handle most of
the distortions, including those originating from the optics, from the tilt and shift
system and from the refraction at the air–water interface, so that the projection of
a pixel position to real space is accurately aligned along a line which defines the
corresponding line of sight. Few points are then needed to accurately fit the line
parameters (using more points essentially ensures a more robust fit with respect
to small errors in the plane-by-plane transformations). When dealing with a more
complex experiment, i.e., with a refraction index gradient, increasing the number of
planes in the calibration would improve the results allowing to accurately capture
the curvature of the light rays.

The proposed calibration method has several advantages that make it worth
implementing in a multi-camera particle imaging setup. First, it requires no model
or assumption about the properties of the optical path followed by the light in the
different media outside the volume of interest. It only requires light to propagate
in straight line. The method simply computes the equation for propagation of light
in space. This ray line equation is fully determined by the physical location of the
calibration dots located at known positions in space. Note that the present calibration
method is versatile enough so that the linear propagation constraint can be easily
relaxed. This can be useful, for instance, to calibrate stratified flows, with spatial
variations of optical index. It is then sufficient to change the linear fit used to
determine the line of sight (from the projected pixel coordinates to the planes), by
an appropriate curved path of light (a polynomial fit may often be a good enough
approximation). Second, this method is turnkey for any typical optical system. The
implementation of the new method is easily done and can be used retroactively using
previous calibration images.

Let us briefly discuss the improved accuracy of the calibration, compared to
the model of Tsai. The reason for the improved accuracy is mainly hidden in the
higher number of (hidden) parameters actually defining both calibration methods.
As pointed out earlier, in the new proposed calibration all the calibration parameters
are embedded in the plane-by-plane transformations, with 10 parameters for each
third-order polynomial transformation. Using 13 calibration planes ends up with
130 hidden calibrating parameters. These reduce to 70 when using 7 planes. In any
case this is much larger than the number of parameters embedded in the Tsai model
(which has typically 6 external parameters defining the position and the orientation
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of the equivalent pinhole camera) and several internal parameters (focal length,
pixel aspect ratio, optical distortion parameters, etc.), typically of order 10. It is
therefore not surprising that the present method gives better accuracy. Note also that
the present comparison may be unfair to the Tsai model, as we have not considered
more sophisticated pinhole camera models, properly accounting, for instance, for
tilt and shift corrections, and which would naturally embed a larger number of
parameters and an increased accuracy. Such extension of the pinhole approach is
based on sophisticated physical and geometrical models, with algorithms that tend to
be tedious to implement. A big advantage of the present calibration is its versatility
and ease of algorithmic implementation, which remains identical whatever the
complexity of the optical path. Finally, note that while the proposed method has
a larger number of parameter, they only come from empirical determination and
are obtained automatically through the calibration process, and there is no need to
prescribe a priori a set of parameters tightened to a specific model requiring choices
from the user. This makes the method not only more accurate but also adaptable and
objective.

To conclude, the model-free calibration method proposed can be easily imple-
mented with both the calibration image acquisition and spatial detection of target
points currently standard in the field. The calibration algorithm and the operator
calculation to convert pixel locations to physical locations, with minimal errors, can
easily be programmed in any language available to experimentalists (the reader can
contact the authors for source codes to implement the calibration algorithms). The
new method is at least equally, and frequently more, accurate than the commonly
used Tsai model, and it can be used more easily and in a wider range of optical
configurations. As experimental setups become more complicated with more optical
and light refraction elements, this method should prove simpler to implement and
more accurate than the model-based Tsai one.

6.3 Particle Tracking Algorithms

Section 6.3.1 describes the implementation of particle tracking velocimetry in a
von Kármán flow using parallel light beams and two cameras forming an angle of
90◦. As described below, the originality of this implementation of PTV is in the
combination of parallel illumination and of pattern tracking (rather than particle
tracking), which makes the calibration and the matching particularly simple and
accurate. It is well suited to the tracking of small objects in a large volume using
only two standard LEDs as light sources. In this setup, tracking is performed
independently on the 2 views using a nearest neighbour algorithm prior to stereo-
matching 2D tracks. Section 6.3.2 describes recent improvements of the tracking
algorithms which use more than two consecutive frames in order to increase track
lengths.
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6.3.1 Shadow Particle Tracking Velocimetry

Experimental Setup

Particle tracking has been performed in a tank with a 15 cm × 15 cm square cross-
section, where a von Kármán flow is created between two bladed discs, of radius
R = 7.1 cm and separated by 20 cm, counter-rotating at constant frequency �

(Fig. 6.4a). The flow has a strong mean spatial structure arising from the counter-
rotation of the discs. The azimuthal component resulting from this forcing is of order
2πR� near the discs’ edge and zero in the mid-plane (z = 0), creating a strong
axial gradient (Fig. 6.4a). The discs also act as centrifugal pumps ejecting fluid
radially outward in their vicinity, resulting in a large-scale poloidal recirculation
with a stagnation point in the geometrical centre of the cylinder (Fig. 6.4b). Using
water to dilute an industrial lubricant, UconTM, a mixture with a viscosity ν =
8.2 10−6 m2 s−1 and a density of ρ = 1000 kg m−3 allows for the production
of an intense turbulence with a Taylor-based Reynolds number Rλ = 200 and
a dissipative length scale η = 130 microns (see Table 6.2 for more details on
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Fig. 6.4 (a) Sketch of the counter-rotating von Kármán flow. Arrows indicate the topology of the
mean flow, the dashed line indicates the mid-plane of the vessel. (b) Schematic cut of the vessel
along the (z, x) or (z, y) plane. (c) Optical setup for S-PTV with 2 identical optical arrangements
forming an angle θ = 90 degrees (only the vertical arm is described). The 1W LED source is
imaged in the focus of a parabolic mirror to form a large collimated beam. A converging lens and a
diaphragm are used to make the LED a better point-like source of light. Light propagates through
the flow volume passing through a beam splitter (BS) before being collected using a 15 cm large
lens that redirects the collimated light into the camera objective. The optical system [L2+objective]
is focused on the camera sides of the vessel, marked with a dashed-dotted line
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Table 6.2 Parameters of the flow

� v′
x v′

y v′
z v′ τη η ε Rλ Re

Hz mmss−1 mmss−1 mmss−1 mmss−1 ms μm W.kg−1 – –

4.2 0.39 0.37 0.24 0.34 2.9 154 1.0 155 16,200

5.5 0.50 0.49 0.33 0.45 2.0 128 2.1 190 21,200

6.9 0.62 0.62 0.41 0.56 1.5 111 3.6 225 26,700

�, rotation rate of the discs; the dissipative time scale is estimated from the zero-crossing (t0 =
(t0x + t0y + t0z)) of the acceleration auto-correlation functions: t0 � 2.2τη [36], the dissipation
rate ε is estimated as ε = ν/τ 2

η , and the dissipative length scale is η = (ν3/ε)1/4. The rms
velocities are obtained at the geometrical centre of the flow using data points situated in a ball

with a 1 cm radius. The Taylor-based Reynolds number is estimated as Reλ =
√

15v′4/νε with

v′ =
√

(v′
x

2 + v′
y

2 + v′
z

2)/3. The large-scale Reynolds number is Re = 2πR2�/ν. The kinematic

viscosity of the water-UconTM mixture is ν = 8.2 10−6 m2s−1 with a density ρ = 1000 kg m−3

the flow parameters). This setup allows for the tracking of Lagrangian tracers
(250 μm polystyrene particles with density ρp = 1060 kg m−3) in a large volume
6 × 6 × 5.5 cm3 centred around the geometrical centre of the flow ((x, y, z) =
(0, 0, 0)). Two high-speed video cameras (Phantom V.12, Vision Research, Wayne,
NJ.) with a resolution of 800 × 768 pixels, and a frame rate up to fs = 12 kHz
are used. This sampling frequency is sufficient to resolve particle accelerations,
calculated by taking the second derivative of the trajectories.

The camera setup uses a classical ombroscopy configuration [34], with parallel
illumination. We have recently used such a setup (depicted in Fig. 6.4c) for
Lagrangian studies of turbulence [35]; we will use the data from this experiment
to illustrate the present section. It consists of 2 identical optical configurations with
a small LED located at the focal point of a large parabolic mirror (15 cm diameter,
50 cm focal length) forming 2 collimated beams which are perpendicular to each
other in the measurement volume. A converging lens and a diaphragm are used
to make the LED a better point-like source of light. This large parallel ray of
light then reflects on a beam splitter and intersects the flow volume before being
collected by the camera sensor using a doublet consisting of a large lens (15 cm
in diameter, 50 cm focal length) and a 85 mm macro camera objective. All optical
elements are aligned using large (homemade) reticles, which also precisely measure
the magnification in each arrangement. When placing an object in the field of view,
it appears as a black shadow on a white background, corresponding to the parallel
projection of the object on the sensor. Thanks to the parallel illumination, the system
has telecentric properties. The particle size and shape do not depend then on the
object-to-camera distance, as opposed to classical lighting schemes where due to
perspective the apparent object size changes with the object-to-camera distance.
The telecentricity also makes the calibration of each camera trivial as there is a
simple, unique, and homogeneous magnification factor relating the (x, y) pixel
coordinates to the (X,Z) real-world coordinates for one camera and to (Y, Z)

real-world coordinates for the other camera. In addition, the optical arrangement
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is rigorously implemented so that the Z real-world coordinate is exactly redundant
between the 2 cameras. This makes the matching step (detailed below) both simple
and accurate. When particles are tracked, camera 1 will provide their (x1, z1) 2D
positions, while camera 2 will measure their (y2, z2) positions. As the z coordinate
is redundant, a simple equation z2 = az1 + b accounts for slight differences in the
magnification and centring between both arrangements.

The Trajectory Stereo-Matching Approach

Given the magnification of the setup (1/4, 1 px equals 90 μm), the depth of field
of the optical arrangement is larger than the experiment. As both beams do not
overlap in the entire flow domain, particles situated in one light beam but outside
the common measurement volume can give a well-contrasted image on one camera
while not being seen by the other. Such a situation could lead to an incorrect stereo-
matching event when many particles are present. This is illustrated in Fig. 6.5a,
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Fig. 6.5 (a) Scheme of the intersecting parallel light beams showing individual particle stereo-
matching is not reliable. The black dots are two particles at the same z position outside of the
beams overlapping region and the dashed circle is a particle at the same z position within the
region (both situations being measured identically by the cameras). (b) Time evolution of the raw
z (redundant) coordinate of the same particles as obtained with 2D tracking with camera 1 and
camera 2. Only 38 matched trajectories are plotted. (c) Affine relation between z2 = az2 + b

(a = 0.98, b = 15.6 px) measured with 1900 trajectories corresponding to 6 × 105 data points. (d)
A random sample of 150 trajectories in the vessel obtained from the same movie
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where the shadows left by two particles situated at the same z position but outside of
the beams overlap (black dots) could be interpreted as one “ghost” particle within
the overlapping region (dashed circle). To mitigate these errors, we construct 2D
trajectories for each camera using the (x1, z1) and (y2, z2) coordinates separately.
Once tracked in time, these trajectories, instead of individual particle positions, may
be stereo-matched. This approach is similar to the “pattern matching” originally
proposed by Guezennec et al. [16], in contrast with the particle-matching strategy,
used in many recent studies, which perform stereo-matching on individual particles
before tracking. The advantage of this method, in particular when it is combined
with telecentric illumination, is that neither stereo-matching nor tracking errors are
made, as will be detailed below. However, one must track many more 2D trajectories
that are stereo-matched. Another drawback is the projection of 3D positions into
a plane, which strongly decreases the inter-particle distance making the apparent
particle overlap an issue when the particle diameter becomes large with respect to
the effective measurement volume. However, the presence of redundancy in the
z coordinate may be used to overcome such indetermination when the apparent
proximity results only from the projection.

We implement a 2D tracking scheme using a simple method inspired from
previous works [8, 17, 20]. This tracking procedure searches for particles in frame
n + 1 whose distance from particles in frame n is smaller than a specified value.
If only one particle is found in the vicinity of the last point of a track, this track is
continued. When multiple candidates are found, the track is stopped and new tracks
are initiated with these new particles. Particles in frame n+1 which do not match
with any of the existing tracks in frame n initiate new trajectories. This procedure,
whose improvement is described in the next subsection, results in a collection of 2D
trajectories with various lengths.

Stereo-matching is then performed by identifying trajectories with z1(t) �
z2(t) using the relation z2 = az1 + b as shown in Fig. 6.5b. This calibration
relation is determined recursively using a dilute ensemble of particles for which
the initial identification of a single pair of 2D trajectories gives a first estimate
of the relationship between z2 and z1. As more trajectories are found, the affine
relationship is refined until the maximum possible amount of trajectories for a
single experiment is obtained. In this recursive manner, the tracking algorithm is
self-calibrating. Here, the parameters are a = 0.98, b = 15.6 px estimated from
1900 matched trajectories, corresponding to 6 106 data points as shown in Fig. 6.5c.
Together with the pixel-to-mm conversion from one of the cameras, this method
provides all relevant information about particle positions in world coordinates. Note
that the temporal support for the 2D tracks z1(t) and z2(t) for a given particle may
not be identical (the track may be longer on one camera than on the other or may
start and end at slightly different times). When it comes to analysing 3D Lagrangian
statistics, only the portions of trajectories over a common temporal interval are
kept. In addition, only trajectories with sufficient temporal overlap (typically 70
time-steps, i.e., approximately 2.5τη) are matched, in order to prevent anomalous
trajectories due to possible ambiguities when matching short patterns. Such an
occurrence becomes increasingly unlikely as the trajectory duration threshold is
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increased. A false trajectory can only occur when the relationship z2 = az1 + b

becomes undetermined, which may happen, for instance, when two particles are
close to colliding and the matching of the two nearby particles becomes ambiguous.
Such a situation remains however an extraordinarily rare event in dilute situations.
After tracking and stereo-matching, each pair of movies gives an ensemble of
trajectories from which all single particle statistics can be computed as shown in
Fig. 6.5d.

Flow Measurements

Measurements are performed in a volume (6 × 6 × 5.5 cm3) larger than one integral
scale (Lv = v′3ε−1 � 4.8 cm) of an inhomogeneous flow. As the statistics are
subsampled spatially and temporally, a large number of trajectories are then needed
to achieve a good statistical convergence. We record 200 sets of movies with a
duration of 1.3 s at 12 kHz and obtainO(1000) tracer trajectories per set. A statistical
ensemble of O(105) trajectories with mean durations 〈t〉 ∼ 0.25/� permits the
spatial convergence of both Eulerian and Lagrangian statistics. The flow properties
are obtained from the PTV data and are given in Table 6.2 together with the
energy dissipation ε. The latter quantity is estimated by calculating the zero-crossing
time τ0 of the acceleration auto-correlation curves which is empirically known to
be related to the Kolmogorov time scale τη (τ0 � 2.2τη) [36] and thus, energy
dissipation. The fluctuating velocity of the flow is found to be proportional to the
propeller frequency � (Table 6.2) due to inertial steering at the bladed discs which

forces the turbulence that becomes full-developed, provided Re = 2πR2�
ν >

3300 [37]. In what follows, we focus our analysis on the case � = 5.5 Hz.
of trajectories, each containing the temporal evolution of the Lagrangian velocity
at the particle position. Based on this ensemble of trajectories, one may reconstruct
the mean velocity field in 3D,

〈v〉(x, y, z) =(〈vx〉, 〈vy〉, 〈vz〉),

and the rms fluctuations of each velocity component (v′
x, v

′
y, v

′
z). This is achieved

by an Eulerian averaging of the Lagrangian dataset on a Cartesian grid of size 123,
which corresponds to a spatial resolution of 5 mm in each direction. The choice of
the grid size must fulfil several criteria: it must be small compared to the typical
scale of the mean flow properties (here, Lv ∼ 4.8 cm), but large enough so that
statistical convergence is achieved. Here, the grid size was chosen so that there are
at least O(1000) trajectories in each bin, enough to converge both mean and rms
values.

Figure 6.6a, b displays two cross-sections of the reconstructed mean flow in two
perpendicular planes, the mid-plane �xy = (x, y, z = 0) and �yz = (x = 0, y, z),
a horizontal plane containing the axis of rotation of the discs. We observe a
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mean flow structure that is close to the schematic view of Fig. 6.4a. The flow is
almost radial and convergent with 〈vz〉 ∼ 0 in �xy , with a z component which
reverses under the transformation z → −z (Fig. 6.6b). We also observe a strong y-
component of the velocity in �yz which reverses under the transformation y → −y

and corresponds to the differential rotation imposed by the discs. These cross-
sections also reveal that the flow has the topology of a stagnation point at the
geometric centre (0, 0, 0), as was shown in another von Kármán flow with a circular
section [38]. With a 3D measurement of the mean flow, it is possible to compute
spatial derivatives along all directions. This leads to ∂x〈vx〉 ∼ ∂y〈vy〉 � −1.5 � for
the stable directions, and ∂z〈vz〉 ∼ 3.0 � for the unstable direction. Note that the
sum of these terms must be zero because this quantity is the divergence of the mean
flow. This condition is found to be well satisfied although the velocity components
were computed independently without any constraint. The verification that the flow
is divergence-free is then an a posteriori test that the reconstruction of the mean
flow is physically sound. Figure 6.6c, d displays rms values of velocity fluctuations

Fig. 6.6 Cuts of the 3D reconstructed Eulerian mean velocity (a, b) field and rms velocity (c, d).
The reconstruction is achieved by computing the mean 〈 v 〉 and rms values (v′

x, v′
y, v′

z) of the

velocity in each bin of a Cartesian grid of size 123. (a) �xy = (x, y, z = 0) plane. Arrows are
(〈vx〉, 〈vy〉), the colour coding for the 〈vz〉. (b) �yz = (x = 0, y, z) plane. Arrows are (〈vy〉, 〈vz〉),
the colour coding for the 〈vx〉. (c) rms value of velocity fluctuations v′ =

√
(v′

x
2 + v′

y
2 + v′

z
2)/3

in the �xy = (x, y, z = 0) plane. (d) rms value of velocity fluctuations in the �yz = (x = 0, y, z)

plane
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v′ =
√

(v′
x

2 + v′
y

2 + v′
z

2)/3 in �xy = (x, y, z = 0) and �yz = (x = 0, y, z).
These maps reveal that the flow properties are anisotropic and inhomogeneous at
large scales, as previously observed in similar setups [39].

6.3.2 Improved Four-Frame Best Estimate

As mentioned in the previous section, using only two frames and a nearest neighbour
criterion may lead to multiple candidates for a given track or wrong matches
when increasing the number of particles in the field of view. To overcome such
limitation, four-frame tracking methods were developed, as, for instance, the “four-
frame minimal acceleration method” (4MA), developed by Maas et al. [14], which
minimises the change in acceleration along the track, or the further extension by
Ouellette et al., known as “four-frame best estimate” particle tracking method (4BE)
which minimises the distance between the prediction of particle position two time-
step forward in time and all the particles detected at that time [17]. The 4BE method
was shown [17] to have an improved tracking accuracy compared to the 4MA
method. The 4BE method builds on a nearest neighbour approach and three-frame
tracking methods to improve tracking performance by utilising location predictions
based on velocities and accelerations.

The 4BE method uses four frames (n−1, n, n+1, and n+2) to reconstruct particle
trajectories, as illustrated in Fig. 6.7a. Individual tracks are initialised by using the
nearest neighbour method, which minimises the distance between a particle in frame
n − 1 and frame n. Once a track is started, the first two locations in the track are
used to predict the position x̃n+1

i of the particle in frame n + 1:

x̃n+1
i = xn

i + ṽn
i �t, (6.1)

where xn
i is the position of the particle in frame n, ṽn

i is the predicted velocity, and
�t is the time between frames. A search box is then drawn around this predicted
location to look for candidates to continue the track. The size of the search box is
set to be as small as possible (usually a few pixels) since it is expected that the actual
particle location will be close to the prediction. Additionally, if the flow statistics are
anisotropic, the search box can be adjusted to be larger along the axis with higher
velocity fluctuations and smaller in the directions with smaller fluctuations. This
decreases computational costs because it limits the number of particles found in the
initial search, thus limiting possible track continuations. The particles found within
this bounding box can then be used to predict a set of positions x̃n+2

i in frame n+2:

x̃n+2
i = xn

i + ṽn
i (2�t)2 + 1

2
ãn
i (2�t)2 , (6.2)
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where xn
i , ṽn

i , and �t are the same as above, and ãn
i is the predicted acceleration. As

in the previous frame, n+1, a search box is drawn around each of the x̃n+2
i predicted

locations. Each of these bounding boxes is then interrogated for particles. Using
these particle locations, the track is determined by minimising the cost function φn

ij :

φn
ij = ||xn+2

j − x̃n+2
i ||. (6.3)

Equation (6.3) minimises the distance between the actual (xn+2
j ) and predicted

(x̃n+2
i ) particle locations, thus minimising changes in acceleration for a given track.

An optional upper threshold, typically half the length of the search box, can be set
on the cost function to help limit tracking error. The particle, and, therefore, the
track that minimises this cost function and falls within the threshold is then defined
as the correct track and all other possible tracks are discarded. It is also important to
note that a track is discarded if at any point it does not contain any particles in the
search box in frames n + 1 or n + 2.

While 4BE with nearest neighbour initialisation (4BE-NN) is a very good
compromise between tracking accuracy and efficiency (low computational cost),
there are certain cases where it starts to fail. For instance, it is not suitable for
situations where the particle displacement starts to be comparable to the inter-
particle distance. Therefore, we have developed a modified initialisation (MI)
method for 4BE (4BE-MI) that is more effective at detecting tracks than the
current nearest neighbour initialisation [40]. Figure 6.7b shows the modified 4BE
algorithm. This method uses a search box based on the estimated maximum particle

Fig. 6.7 (a) 4BE-NN. Particle locations are denoted with filled symbols, whereas predicted
particle locations are denoted with hollow symbols. The boxes represent the bounding boxes used
in the algorithm. The predicted path is overlaid in the figure. (b) 4BE-MI. The initial bounding
box (now shown in the figure) allows for more potential tracks to be examined when searching for
the correct track. (c) Comparison of tracking performance for 4BE-NN and 4BE-MI methods. At
values of ξ < 0.2, the tracking error is zero for 4BE-MI
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displacement between two frames to initialise tracks. The size of this search box
is determined based on the flow characteristics (instantaneous spatial-averaged
velocity, velocity fluctuations in all three directions, etc.), but it is always larger
than the size of the search box used for track continuation (which is only aimed at
accounting for the error in evaluating the next position in the track). This allows the
algorithm to explore multiple possible trajectories for each particle and eliminates
the assumption that the closest particle in the next frame is the only option when
starting a track. It also enables a track to be constructed based on knowledge of the
flow physics as a feature of the initialisation.

The performance of the 4BE algorithm both with and without the modified
initialisation scheme was analysed using direct numerical simulation (DNS) data
of a turbulent channel available through the Johns Hopkins University Turbulence
Databases [41]. The DNS was performed in a 8π × 2 × 3π domain using periodic
boundary conditions. The Reynolds number was Re = Uch

ν
= 2.2625 × 104, where

Uc and h are, respectively, the channel centre-line velocity and height. The flow was
initially seeded with tracer particles throughout the entire volume. The particles
were then advected through the channel for each time-step based on the resolved
DNS flow field. The trajectories were cut in a subdomain of the channel, creating
an ersatz of particle entering and leaving the measurement volume as is typical in
experiments. The trajectories generated were then used to benchmark the tracking
scheme by comparing tracking results to the known trajectories.

Several datasets were generated by varying the distances that the particles moved
between frames. This generated data over a wide range of ξ , defined as the ratio of
the average distance each particle moves between frames to the average separation
between particles in a frame. When ξ is small, tracking is easy because the particles
move very little between frames and there are not many particles to consider for
track continuation. However, as this ratio increases, tracking becomes more difficult
because the particles move a large amount between frames and there are many
particles per frame. Figure 6.7c shows the tracking error Etrack plotted against ξ .
The tracking error is defined as:

Etrack = Nimperfect

Ntotal
, (6.4)

where Nimperfect is the total number of imperfect tracks and Ntotal is the total number
of tracks in the dataset generated. A perfect track must start at the same point as the
actual track and must contain no spurious locations.

Figure 6.7c shows how the tracking error Etrack is decreased when using
the modified initialisation scheme. Etrack is equal to zero, meaning there are
no erroneous tracks computed, up to approximately ξ = 0.2 for the modified
initialisation scheme. Additionally, at all values of ξ , the modified initialisation
scheme performs better than the nearest neighbour initialisation scheme. This shows
the advantage of the modified initialisation scheme in creating trajectories in flow
with large particle displacements or high particle density.
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6.4 Noise Reduction in Post-Processing Statistical Analysis

Particle tracking velocimetry leads to a collection of tracks, (xj (t))j∈[1,N ], from
which turbulent statistics, such as the mean flow and velocity fluctuations, may be
computed. Most of the desired quantities have in common that they require taking
the derivative of the particle positions, which inevitably leads to noise amplification.
In the Lagrangian framework, single particle (two-time) statistics such as velocity or
acceleration auto-correlation functions are of great interest; they will be considered
in Sect. 6.4.1. In the Eulerian framework, moments of velocity differences separated
by a distance r (structure functions) are of great importance; these two particle
statistics will be addressed in Sect. 6.4.2.

The method presented below seeks to obtain unbiased one- and two-point
statistics of experimental signal derivatives without introducing any filtering. It is
valid for any measured signal whose typical correlation scale is much larger than
the noise correlation scale. While one aims to obtain the real signal x̂, the presence
of noise b implies that one actually measures x(t) = x̂ + b. For simplicity, we
consider the case of a temporal signal x(t) that is centred, i.e., 〈x〉 = 0, and is
obtained by considering x(t) − 〈x〉, where 〈·〉 is an ensemble average.

The method is based on the temporal increment dx of the signal x over a time dt

that we express as dx = x(t +dt)−x(t) = dx̂ +db. Assuming that the increments
of position and noise are uncorrelated, the position increment variance is written as〈
(dx)2

〉
=

〈
(dx̂)2

〉
+

〈
(db)2

〉
. Introducing the velocity v̂ and acceleration â through

a second-order Taylor expansion x̂(t + dt) = x̂(t) + v̂ dt + â dt2/2 + o(dt2), one
obtains: 〈

(dx)2
〉
=

〈
(db)2

〉
+ 〈v̂2〉dt2 + 〈

â.v̂
〉
dt3 + o(dt3), (6.5)

where
〈
(db)2

〉
= 2

〈
b2

〉
in the case of a white noise [24, 42]. In Eq. (6.5)

〈
(dx)2

〉
is

a function of dt so that one can recover the value of the velocity variance 〈v̂2〉 by

calculating time increments of
〈
(dx)2

〉
(dt) over different values of dt followed by

a simple polynomial fit in the form of Eq. (6.5). If the noise is coloured,
〈
(db)2

〉
=

2
〈
b2

〉
−2

〈
b(t)b(t + dt)

〉
. In this case, the method requires the noise to be correlated

over short times when compared to the signal correlation time. As a result, only the

lowest values of
〈
(dx)2

〉
(dt) are biased by

〈
b(t)b(t + dt)

〉
and a fit still successfully

allows for the evaluation of the root mean square (rms) velocity, v̂′ = √〈v̂2〉. For
an experimentally measured signal x, equally spaced at an acquisition rate fs , the
minimal value of dt is 1/fs ; we can then obtain the values of dx for different
values of dt = n/fs . For this method, a value of the acquisition rate fs higher
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than usual is required, in order to be able to access derivatives of the signal without
aliasing error.

We can extend the previous calculation to higher order derivative statistics by
considering higher order increments. The second-order increment d2x = x(t +
dt) + x(t − dt) − 2x(t), which is related to the acceleration variance 〈â2〉 here,
yields, for instance:

〈
(d2x)2

〉
=

〈
(d2b)2

〉
+ 〈â2〉dt4 + 1

6

〈
â
d2â

dt2

〉
dt6 + o(dt6), (6.6)

where
〈
(d2b)2

〉
= 6

〈
b2

〉
in the case of a white noise [24, 42], but otherwise

introduces additional noise correlation terms which are functions of dt .

6.4.1 Lagrangian Auto-Correlation Functions

The approach developed above is not restricted to one-time statistics of the signal
derivatives but can be generalised to estimate the noiseless first- and second-order
derivative auto-correlation functions of the signal Cv̂v̂ = 〈

v̂(t)v̂(t + τ)
〉

and Cââ =〈
â(t)â(t + τ)

〉
. This is done by considering the correlations of first- and second-

order increments
〈
dx(t)dx(t + τ)

〉
and

〈
d2x(t)d2x(t + τ)

〉
which are functions of

dt and τ . Noiseless velocity and acceleration correlation functions are estimated,
respectively, for each time lag τ using a polynomial fit of the signal time increment
dt with the following expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cdxdx(τ, dt) = Cv̂v̂(τ )dt2 + 1

2

(
Cv̂â(τ ) + Câv̂(τ )

)
dt3+

+Cdbdb(τ, dt) + o(dt3)

Cd2xd2x(τ, dt) = Cââ(τ )dt4 + 1

12

(
Câ(d2â/dt2)(τ ) + C(d2â/dt2)â(τ )

)
dt6+

+Cd2bd2b(τ, dt) + o(dt6),

(6.7)

where Cfg = 〈
f (t)g(t + τ)

〉
is a cross-correlation function. It can be noted that the

case of the rms values corresponds to τ = 0 and it is noted that 〈(dx)2〉 and 〈(d2x)2〉
are functions of dt . In the previous expressions and in the case of a white noise, we
can write auto-correlation functions of the first- and second-order increments of the
noise. With the signal sampled at a frequency fs , one has dt = n/fs and τ = m/fs .
The correlation functions of the digitised noise increments are written as:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cdbdb

(
τ = m

fs

, dt = n

fs

)
=

〈
b2

〉
(2δm,0 − δm,n),

Cd2bd2b

(
τ = m

fs

, dt = n

fs

)
=

〈
b2

〉
(6δm,0 − 4δm,n + δm,2n),

(6.8)

where δm,n is the Kronecker symbol. For both derivatives, the white noise magnitude
in the first-order derivative auto-correlation functions is the highest for τ = 0
and is an additive term. The noise then yields a negative term for m = n. In the
case of second-order derivatives (for acceleration in the case of Lagrangian tracks),
the noise magnitude has a larger weight and the noise also contributes to a third
time point of the function (m = 2n) with a positive term of smaller amplitude.
Considering white noise terms up to dt6, all other values of τ will directly yield the
function without noise.

Results

The method has been applied to the material particle trajectories from Ref. [43].
It has been tested successfully for different particle diameters (from 6 to 24 mm),
Reynolds numbers (350 < Reλ < 520), and two density ratios (0.9 and 1.14), as
well as for neutrally buoyant particles from Ref. [44]. We will focus only on the case
of particles 6 mm in diameter and of density ratio 1.14 at a Reynolds number Reλ =
520 in this example. The position trajectories are obtained by stereo-matching of
successive image pairs obtained, thanks to two cameras and ambient lighting. The
particles appear as large, bright discs on a uniform dark background which yields
sub-pixel noise for the trajectories (the apparent particle diameter is about 20 pixels)
and is not correlated with the particle position as the background is uniform (nor
with its velocity as the exposure time is short enough to fix the particles on the
images). In practical situations, the presence of sub-pixel displacements can lead to
a short-time correlation of the noise, typically over a few frames.

Figure 6.8 shows the evolution of
〈
(dx)2

〉
and

〈
(d2x)2

〉
with dt . A simple linear

function of dt2 is enough for
〈
(dx)2

〉
and a sixth-order one suits better

〈
(d2x)2

〉
.

The first points of
〈
(d2x)2

〉
do not follow Eq. (6.6), which may be due to the fact

that we are not dealing with a purely white noise as will be shown in Fig. 6.9b.
Using the estimated values of the rms acceleration, a′, and 〈(d2b)2〉, we can define
a noise-to-signal ratio b′f 2

s /a′ = 11.9, where we have defined b′ = √〈(d2b)2〉/6
by analogy with the white noise case. When considering the noise weight on the
velocity signals, we of course find a much smaller magnitude b′fs/v

′ = 0.14 as it
is only a first-order derivative (v′ being the rms of the velocity estimated with this
method).



Fig. 6.8 (a) Evolution of
〈
(dx)2

〉
with (dt/τa)

2, where τa = 8.1 ms is the particle acceleration

time scale (integral of the positive part of the particle acceleration auto-correlation function). The

dashed line is a linear fit over the range 0 < dt/τa ≤ 0.25. (b) Evolution of
〈
(d2x)2

〉
with

dt/τa . The dashed-dotted and dashed lines are fourth and sixth order fits (α + β(dt/τa)
4 resp.

α +β(dt/τa)
4 +γ (dt/τa)

6) over the range 0 < dt/τa ≤ 0.62. The insets are zooms on low values
of dt/τa



Fig. 6.9 (a) Auto-correlation functions of the velocity or acceleration (b) estimated from the
proposed method (dashed line) and directly computed by differentiating the position signal
obtained by PTV (continuous line). The insets are zooms on the low values of τ . The fit ranges used
to obtain the functions are the same that used in Fig. 6.8. The dashed-dotted line in figure (b) is the
correlation estimated from filtered trajectories using a Gaussian kernel K = Aw exp(−t2/2w2),
where w = 12 points and Aw is a normalisation factor
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Figure 6.9 shows the auto-correlation function of both the velocity and accel-
eration estimated with the proposed method, compared to the raw functions. With
the low level of noise in this configuration, the velocity is almost unbiased and
both functions are indistinguishable except for the first points of the raw function
that are offset by the noise. On the second-order derivative, it can be observed
in Fig. 6.9b that the raw acceleration auto-correlation function is biased for more
than the three first points only (see inset). This is because the noise is not white
but has a short correlation time compared to the signal. Combined with the finite
duration of the trajectories, the raw correlation function is noisy over the whole
range of time lags τ . This curve is plotted together with the one estimated with the
method, fitting the coefficient up to dt = 5 ms which corresponds to 30% correlation
loss in acceleration signals (same range as in Fig. 6.8b, but the precise choice is
not critical). Although the signal-to-noise ratio is poor, the estimated correlation
function seems to be following the median line between the peaks caused by noise
and crosses zero at the location that seems to be indicated by the raw function. It
is also close to the auto-correlation function from Ref. [43], estimated by filtering
the data with a Gaussian kernel K = Aw exp(−t2/2w2) (with w = 12 points and
a compact support of width 2w, Aw is a normalisation factor). It should be stressed
that the value w = 12 was chosen arbitrarily as a compromise between suppressing
oscillations at small lags without altering too much the shape of the function at
larger lags.

With the new method, we compute an acceleration time scale τa = 8.1 ms and an
acceleration magnitude a′ = 12.4 mmss−2, which is close to the values τa = 8.8 ms
and a′ = 12.9 mmss−2 found for the filtered data [43]. However, in the latter case,
the value of a′ depends strongly on the choice of the filter width w, so that one
usually estimates a′ by computing it for different filter widths which can then allow
to extrapolate a best estimate value (as introduced in [5]).

Discussion

The present de-noising method estimates moments and auto-correlation functions
of experimental signal derivatives. This method relies on two main assumptions:

1. The signal is correlated on a longer time scale than the noise.
2. The sampling frequency, fs , is high enough so that the first and second

derivatives of the signal can be computed by taking increments over several (N )
points.

We have tested the method in the context of Lagrangian particle tracks in turbulence
for which the noise is correlated on times much shorter than the signal, considering
both first- and second-order derivatives of a time dependent signal. The results are
in good agreement to what is obtained by classical filtering processes which require
a long bias study specific to the data type [5, 45], and we believe them to be more
accurate. The method avoids subjective tuning of the filter width and choice of filter
type while yielding unbiased quantities by requiring data fits in an appropriate range.
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While the fit range is still an adjustable parameter, we observed its impact on the
results to be smaller than when filtering the data. Another advantage of the method
is an easy access to the noise magnitude. While building a new experimental setup,
one can gather just enough statistics to converge second-order moments to estimate
the noise magnitude and try and improve the setup iteratively.

6.4.2 Eulerian Structure Functions

Method

The method presented above can be extended to compute Eulerian statistics,
such as structure functions, from the collection of tracks (that can be two-frame
displacement vectors in PIV). From particle positions x, which are measured with
some noise b (x = x̂ + b, where x̂ are the actual positions), we define a 3D
Lagrangian displacement field between two consecutive images taken at instants
t and t + dt is then dx = x(t + dt) − x(t) = dx̂ + db. This displacement field can
be conditioned on a Cartesian grid so that its first moment

〈dx〉 = 〈
v̂
〉
dt + 〈

b
〉 + o(dt2) (6.9)

is computed in each bin of the grid to compute the mean flow
〈
v̂
〉
. We then compute

the centred second-order moment of the displacement field

〈
(dx − 〈dx〉)2

〉
=

〈
v̂′2〉

dt2 + 2
〈
b′2〉 +

〈
â′ · v̂′〉

dt3 + o(dt3), (6.10)

where the prime stands for fluctuating quantities. Note that this formula is easily
extended to centred cross-component second-order moments which are linked to
the components of Reynolds stress tensor in each point of the grid.

The de-noising strategy is applied to data obtained from a pair of images taken
with standard PIV cameras, one experimental set corresponds to a single value

of dt . The moments 〈dx〉 and
〈
(dx)′2

〉
=

〈
(dx − 〈dx〉)2

〉
are then calculated for

multiple experimental sets where images of the particles in the flow are collected

at increasing values of dt . When the evolution of
〈
(dx)′2

〉
with dt is fitted by a

polynomial of the form c1dt2 + c2 in each bin, the leading coefficient is the field〈
v̂′2〉. The third-order correction is negligible because dimensional analysis gives〈
v̂′2〉

/
〈
â′ · v̂′〉

τη ∼ Reλ, where τη = √
ν/ε is the dissipative time and Reλ is

the Reynolds number at the Taylor length scale. In turbulent flows,
〈
â′ · v̂′〉 is well

approximated by the dissipation rate ε. Taking dt smaller than the dissipative time
ensures that the displacement field variance is well approximated. The advantage
of this method is that it uses all the measurements taken at different values of
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dt without having to choose any particular dt , as would be done in a classical
PIV experiment. And unlike PIV, there is no filtering of the data in the form of
windowing.

This method can be extended to higher order moments of the displacement field,
as well as to recover increment statistics, for example, the longitudinal second-

order structure function of the velocity (Ŝ2 =
〈
[(v̂(x + r) − v̂(x)) · er ]2

〉
, with

er = dx/|dx|), by fitting the evolution of
〈
[(dx(x + r) − dx(x)) · er ]2

〉
with a

polynomial Ŝ2(|r|)dt2 + c2:

〈
[(dx(x + r) − dx(x)) · er ]2

〉
=

〈
[(db(x + r) − db(x)) · er ]2

〉
+

+
〈
[(v̂(x + r) − −v̂(x)) · er ]2

〉
dt2 + · · · +

+ 〈[(v̂(x + r) − v̂(x)) · er ][(â(x + r) − â(x)) · er ]
〉
dt3 + o(dt3).

(6.11)

Note that the structure function computation does not require the conversion of
displacements to Eulerian coordinates, but rather to bin the inter-particle distance
|r|. This means that measuring structure functions is possible at arbitrarily small
separations |r|, without any requirements on the Eulerian spatial binning. This
method requires only a statistical convergence in the number of particles N at a
certain range of inter-particle distance (a number that is proportional to N2). This
represents a significant advantage over methods for structure function computation
that carry an associated increase in measurement noise at small separations |r|.

The second-order moment of the velocity fluctuations and second-order structure
function are presented here as examples of what the expansion of statistical
moments, combined with data collected at different dt can achieve. Higher order
moments for the velocity fluctuations and higher order structure functions can be
easily computed by this method with reduced noise, although they will contain
residual noise from the computation of lower order moments (o(dt3) terms above).

Results

Particle displacements measured in a homogeneous, isotropic turbulence experi-
ment [33, 46] are used to demonstrate the validity and accuracy of the method. Two
CMOS cameras with a resolution of 2048×1088 pixels were used in a stereoscopic
arrangement. Images were collected in double-frame mode, separated by a time-step
dt from 0.05τη to 0.2τη. Alternatively, using a very fast acquisition/illumination
rate using high-speed camera and kHz pulsed lasers allows us to collect a single
image sequence and then take a variable dt in the analysis by skipping an increasing
number of images in the sequence. Measurements were obtained in a volume of
10 × 10 × 1 cm3 using a Nd:YAG laser. For each experiment, approximately 10,000
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Fig. 6.10 (a) Longitudinal second-order structure functions of the raw displacement field against
the separation |r| normalised by the Kolmogorov length scale η for different values of dti equally
spaced from 0.05 to 0.2 τη at Reλ = 291. (b) Same quantities but plotted at a given separation |r|
(indicated by the vertical dashed lines on (a); ascending order is for different values of dt), as a
function of the inter-frame time-step value dt . The lines are fits of the form c1dt2 + c2

pairs of image sets per time-step (each set providing the 3D position of several
hundred particles in the flow) were collected to ensure statistical convergence.

The different results for the longitudinal second-order structure function of dx
(Fig. 6.10a) at different time-steps, dt , show a strong dependency on how the noise
affects the signal for different values of dt . The displacement correlation plotted at
fixed separations (five different values) are all quadratic in dt (Fig. 6.10b), showing
that this approximation is robust for different levels of measurement noise. The trend
c1dt2 + c2 from Eq. (6.11) is followed at different values of the separation |r|, with
the positive values of c2 being proportional to the variance of the noise (Eq. (6.10)).
The quadratic coefficient c1 is the second-order function of the velocity with the
noise removed. The presence of the inertial range is highlighted by the 2/3 slope in
Fig. 6.11a, over approximately one decade, in good agreement with the prediction
of Kolmogorov for the second-order structure function in homogeneous isotropic
turbulence (Ŝ2 ∼ ε2/3|r|2/3) [47]. Turbulence variables extracted from velocity
measurements would be subject to a significant level of uncertainty and inaccuracy
(seen in Fig. 6.10a) if the noise were not removed by the method proposed here.

Figure 6.11b shows the estimation of the dissipation rate of turbulent kinetic

energy, εr = Ŝ2
3/2

/|r| for three different Reynolds numbers studied in this exper-
imental implementation of this de-noising method. The plateau values obtained
confirm the presence of the inertial range and their values correspond to the
ensemble average of the local dissipation rate. The estimations of ε, as well as u′
(spatial average of the fluctuating velocity map), for different Reynolds numbers
compare well with those in [33], obtained by 2D3C PIV, confirming the accuracy of
the method. In fact, the values of u′ and ε are slightly lower than those obtained by
PIV. This discrepancy can be explained, qualitatively, based on the physics of the
measurements and the effect of the noise on these metrics when it is not eliminated
from the displacement measurements. Previous velocity measurements in the same
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Fig. 6.11 (a) Second-order structure functions of the velocity extracted with the proposed method
for different Reλ. The black dashed line corresponds to a power law of exponent 2/3. (b) Energy

dissipation rate estimated as εr = Ŝ2
3/2

/|r|

experiment, conducted by traditional PIV [33], corresponded well with the actual
velocity measured with this technique, but with the noise variance retained. The
structure function (and hence ε) measured with traditional techniques was also
subject to this erroneous increase in the value due to the contribution of noise
to the computation of this statistical value. Equation (6.11) shows that the term〈
[(db(x + r) − db(x)) · er]2

〉
will increase the value ε due to noise. To determine

the importance of this term, it is expanded into 4
〈
b2

〉
(1−Cb(|r|)), where Cb(|r|) is

the noise spatial correlation, bounded between (−1, 1). Regardless of the value of
Cb, it will erroneously increase the value of the structure function yielding a higher
value of ε. As the value of Cb depends on spatial separation, it will not uniformly
raise it for all values of |r| and the slope of the structure function may evolve with
separation, making the value of ε noisier.

Discussion

The comparison of the flow statistics with a previous 2D3C PIV study [33] allows
for the validation of the proposed method. In fact, the measurements show better
results, with no need to tune arbitrary filtering parameters to remove noise (the
interrogation window size, for instance). The only parameters that must be chosen
for the method proposed here are the different values of dt that are accessible for a
given flow and camera/illumination available, the form of the fit function, and finally
the binning in space to compute the Eulerian average and fluctuating velocities (if
so desired), and in separation distance to compute the structure function.

The values of dt are subject to two limitations. They must be high enough
so that particles move more than the measurement error while keeping the large
displacements associated with highest dt from interfering with the ability of the
particle tracking algorithm to identify individual particles [48]. As mentioned, a
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maximum value of dt � τη ensures that the third-order correction remains small,〈
v̂′2〉 / 〈

â′ · v̂′
〉
τη ∼ Reλ. This was verified in the present experimental setup and

we found this correction to be negligible when compared to the second-order term.
This was also the case for the structure function provided the separation lies in the
inertial range |r|  η. In such cases, the best agreement between fit functions and
the data overall was found when using a quadratic function of dt . As for the number
of time-step values needed, the value of ε when using only the three larger values
of dt was only 5% lower than when using all five datasets. Using only the lowest
value and largest values of dt allowed for a simple calculation of ε that was only
2% higher than with the full experimental set.

The displacement vector field obtained from particle tracking in this multiple
time-step method is computed in a Lagrangian frame of reference. To compute the

values of
〈
(dx)2

〉
against dt , the displacement field must be binned into a spatial

grid, converting it to an Eulerian frame of reference. Although the number of
particles per image, or Eulerian grid cell, is relatively small in these PTV images,
the velocity is estimated independently for each particle pair. Thus, the statistical
convergence in the method is reached relatively quickly (without the need for a
very large number of image pairs). The computation of the structure functions
highlights this advantage. As pointed out above, the structure function could in
principle be computed to arbitrarily small separation between particles. However,
great care should be taken in doing so because: (1) it is difficult to achieve statistical
convergence in finding particles with small separations; (2) the second and third-
order terms in Eq. (6.11) are of the same order of magnitude when the separation is
in the dissipation range (|r| ∼ 10η). These reasons explain why an increase of the
structure functions at small separations is observed in Fig. 6.10a.

6.5 Conclusions

We have presented recent developments in the characterisation of flows in laboratory
experiments using particle tracking velocimetry, one of the most accurate techniques
in experimental fluid mechanics. By tracking simultaneously hundreds of particles
in 3D, it allows the experimentalist to address crucial questions related, for instance,
to mixing and transport properties of flows.

The main aspects of particle tracking are addressed. A new optical calibration
procedure based on a plane-by-plane transformation, without any camera model,
is presented. It is at least as precise as Tsai model though more versatile as it
naturally accounts for optical distortions and can be used in very complex con-
figurations (such as Scheimpflug arrangement, for instance). Tracking algorithms
are at the heart of PTV, and the practical implementation of two of their recent
development is described: shadow particle tracking velocimetry using parallel light
and trajectory reconstruction based on a four frames best estimate method (4BE)
with improved initialisation. While the former was developed originally to access
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the size, orientation, or shape of the tracked particles, the latter is a natural extension
of classical PTV setup and can be easily implemented as an add-on of any existing
code.

A drawback of particle imaging techniques, as opposed to direct methods such
as hot wire anemometry, is that they rely on measuring particle displacement. They
are inevitably subject to noise amplification when computing spatial or temporal
derivatives. We present recent developments addressing this important question
which are based on computing statistics of the particle displacement with increasing
time lag. They do not require any kind of filtering, and allow for the estimation
of noiseless statistical quantities both in the Lagrangian framework (velocity and
acceleration time correlation functions) and in the Eulerian framework (statistics of
spatial velocity increments).

We conclude by mentioning that experimental techniques in fluid mechanics are
continuously being improved, as new ideas combined with technological advances
increase the resolution and the range of existing methods: for instance, cameras
are becoming ever faster and sensors better resolved; an important breakthrough in
high-resolution optical tracking is expected in the coming years, thanks to FPGA
(field programmable gate array) technology which allows to process images on-
board and hence to increase the effective data rate. Such a technique has been
pioneered by Chan et al. [49] and further developed by Kreizer et al. [50] to achieve
on-board particle detection, allowing to directly stream particle positions to the hard
drive of the control computer, avoiding the usual memory limitation of high-speed
cameras, and making the recording duration virtually unlimited.
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