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Abstract— Aircraft upset recovery requires aggres-
sive control actions to handle highly nonlinear aircraft
dynamics and critical state and input constraints.
Model predictive control is a promising approach for
returning the aircraft to the nominal flight envelope,
even in the presence of altered dynamics or actuator
limits; however, proving stability of such strategies
requires careful algebraic or semi-algebraic analysis
of both the system and the proposed control scheme,
which can be challenging for realistic control sys-
tems. This paper develops economic model predictive
strategies for recovery of a fixed-wing aircraft from
deep-stall. We provide rigorous stability proofs us-
ing sum-of-squares programming and compare several
economic, nonlinear, and linear model predictive con-
trollers.

I. INTRODUCTION

Aircraft upset incidents remain a severe cause of fatal-
ities in civil aviation [1] and this has motivated research
into upset and loss of control recovery [2—(]. Upset
recovery has been approached with various control tech-
niques including adaptive control [7], machine learning
[8], and model predictive control (MPC) [9, 10]. MPC, in
particular, is promising since it can handle nonlinearities,
actuator saturation, and state constraints. It also tends
to have a provably large closed-loop region of attraction.

In this paper, we propose a loss of altitude (LOA)
minimizing economic model predictive control (EMPC)
strategy for deep-stall recovery which we compare to lin-
ear and nonlinear tracking type MPC controllers. LOA is
an important performance metric for upset recovery ma-
neuvers and it can be exploited to enlarge the operational
envelope during and after the maneuver, particularly at
low altitudes [11, 12]. The EMPC framework, see, e.g.,
[13] for an overview, allows for direct minimization of the
LOA. We consider a 1.6 kg fixed-wing unmanned aircraft
capable of stable deep-stall descent [14, 15], which allows
us to isolate the longitudinal aerodynamics.
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MPC has been applied to a variety of aerospace sys-
tems [16]. In [9], MPC is employed to generate guidance
trajectories for recovery of a piloted aircraft from a high-
pitch upset. EMPC has been extensively studied in the
context of process control [13]; however, comparatively
few aerospace applications have been reported in the
literature [16]. LOA minimizing EMPC was considered in
[10] for automatic recovery from a high-bank condition.
However, closed-loop stability of the proposed MPC
recovery scheme was not proven in either [9] or [10].

Closed-loop stability of an EMPC controller can be
guaranteed if the dynamics and stage cost jointly satisfy
an appropriate dissipativity condition both with [17]
and without [18] terminal constraints. When dissipativity
does not hold (or cannot be proven), regularization terms
can be added to ensure closed-loop stability [19]. For
nonlinear systems proving these conditions is nontrivial.
However, advances in semi-definite relaxations [20] have
led to a surge of sum-of-squares (SOS) programming
techniques [21, 22] which have been used to compute
stability certificates for continuous [23, 24] and discrete
[25, 20] systems as well as proving dissipativity properties
[27, 28]. Further, an SOS-based stability analysis for
general MPC strategies is presented in [29]. However,
computational issues and the restriction of SOS program-
ming to polynomial functions conflict with the need for
accurate aerodynamic models.

Our contributions are fourfold: (i) We design an LOA
minimizing EMPC controller using a piecewise polyno-
mial model of the aircraft dynamics that is suitable for
both accurate control and application of SOS techniques;
(ii) we illustrate how SOS techniques can be applied to
systems with piecewise dynamics in order to rigorously
prove the stability of our EMPC controller; (iii) we
propose an adaptive regularization scheme using SOS
to determine minimal regularization gains that ensure
dissipativity; (iv) we provide a comparison between lin-
ear, nonlinear, and economic MPC for LOA-minimal
recovery. In this work, we restrict ourselves to terminal
state constraints.

The layout of the paper is as follows: In II, we discuss
the upset recovery problem. In III, we recall the theories
of EMPC and SOS programming; we then provide the
optimal control formulation in IV. In V, we show us-
ing SOS programming that the synthesized closed-loop
system satisfies the conditions for asymptotic stability.
Finally, VI compares different MPC strategies.
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Notation: Real-valued variables and functions are
designated in italic, finite sequences in bold, polynomials
in Fraktur. x[i] is the i-th element of a sequence x. Z is
the difference between x and a reference z*. R [z] is the
set of polynomials with real coefficients. For a function p
(polynomial p) and a € R, denote Qp<, = {z|p(z) <a}
and O,—, = {z|p(z) = a}. Superscripts ?® and P°5* de-
note low and high-angle of attack dynamics.

II. PROBLEM FORMULATION

In the context of aviation, the term upset can be used
to describe a variety of abnormal situations. In a tech-
nical sense, an upset can be understood as an undesired
yet often attractive mode of the nonlinear dynamics that
shows significantly altered steady-state responses and
usually immediately precedes wing stall and departure
of the aircraft (e.g., deep-stall flight, gyroscopic spins, or
spirals). Input saturation, inversion and tight state con-
straints make designing recovery approaches challenging.

In this paper, we develop an MPC strategy to minimize
loss-of-altitude using only the elevator 7, i.e., thrust
F =0, in accordance with governmental procedures for
manual recovery [30]. LOA is a crucial metric for both
collision avoidance and operating envelope recovery post
stabilization [11, 12]. We will adopt the convention that
the aircraft has recovered when it returns to a stable trim
condition within the region of attraction of a nominal
flight controller which subsequently reinstates level flight.

We consider only the longitudinal aircraft dynamics,
which are given by

mV = Fcosa — (gCp(a,n) + mgsiny), (la)
mV4 = Fsina + (gCL(a, ) — mgcosv), (1b)
0 =g, (1)
I, = (cagCm(c,n) — Cyqq) s (1d)

with airspeed V, inclination +, pitch rate g, angle of
attack «, pitch angle ® = v + «, and elevator deflection
7, where ¢ = %QSV2 and Cyy > 0 is a linear damping
parameter. The aircraft’s descent rate is then

2y = —Vsiny. (2a)

The aerodynamic coefficients Cr,,Cp,Cy, are given as
continuous piecewise polynomial models

gpre
C@(Oéﬂ?) = { Q:post (3)

with ag = 16.29° and €P™ €P°t € R [, 5]. The polyno-
mials and remaining parameters are provided in [31].

The elevator deflection is physically restricted to values
between —60° to 20°. In this work, we treat the elevator
rate 7, rather than the deflection, as a control input,
the state is thus = = (V, 7, q, o, ) and the control
input is u = (1, F'). The underlying aerodynamic models
are defined on the following regions of the state-space
X = [5m/s;30m/s]x [—60°; +60°] x[-150 °/s; +150 °/s] x
[—10°; +75°] x [—60° +20°]. The control inputs are re-
stricted to U = [—200°/s; +200°/s] xRx>o;

if a < ag;
else;

III. METHODOLOGY

Consider a nonlinear system which represents (1),
T = f(l'v u) ) (4)

subject to the constraints x € X C R", u € U C R™,
and its discrete time representation

ot = [z, u) =z + 7 f(z,u) (5)
with sampling period 7 > 0. For some u € UY and
1 = =z, write zy41 = fN(x,u); let Z = X xU

and denote the set of trim conditions as Ztim
{(:Evu) €Z|x:f+(x,u)}

Definition 1: A set X' C X is called a stable set for
20 € X' and k: X’ — U if and only if

fl(x) € X, (6a)
[z — & (2)| = 0, (6b)

with fF = f*(-,k(:)) for all z € X’ and N > 0. The
region of attraction R then is the largest” stable set.
The stable sets of (4) can be characterized using Lya-
punov’s stability theory:

Theorem 1: [32] Let V(-) be positive-definite with
V(0) =0 and X\ > 0; if

VV - (fu(z) —2") <0 (7)
for all x # z* with V(z) < A, then Qy<, is a stable set

for fo(z*)=0. <
Stability of (4) follows under some mild conditions [33].

A. Model predictive control

The model-predictive feedback law is defined by the
solution of the following OCP:

Given a measured state xo € X and target (zf,uy) €
Zrim. solve the constrained nonlinear program

N-1
min Z Oz, ui) , (8a)
[
Tig = fH(@su), i=0,...,N—1, (8b)
N =Xf, XGXN, ueu? (8(‘,)

Here, £ : Z — R is called the stage cost. The MPC
feedback law is then

u(t) = afl)(z(1)) (9)

where (X,1) is a minimizer of (8) with xg = x(t). The
set of recoverable conditions is further defined as

Zn = {(zo,u) € X xUN | N (zo,u) = 25 and (10)
Vk < N. f¥(zo,u*) € X},
where u* are the first k elements of u, and X denotes
the projection of Zy onto X'. We assume that [17]:

Assumption 1: Z is compact, £ and fT are continuous
and Xy contains xy in its interior.

*In the sense of X’ C R for any stable set X”.



The following Theorem provides sufficient conditions
for closed-loop stability of EMPC.

Theorem 2: [17] Let (zf,uy) € Z"M satisfy:!

1) f7 is strictly dissipative with respect to (w.r.t.) the

supply ratet ¢p: (z,u) — £(x,u) — (s, uyp);

2) lzp,up) < l(x,u) for all (z,u) € Ztim;
then z; is an asymptotically stable equilibrium of (5),
(9) with region of attraction Xy as defined above. <
Recall that:

Definition 2: The control system (5) is called strictly
dissipative w.r.t. a supply rate ¢: Z — R if and only if
there exists a storage function A: X — R such that

Alzt) = A(z) < —p(x — ) + s(z,u) (11)

for a p: X — Rx positive definite® and all (z,u) € Z.
Note that unlike conventional MPC, ¢ may not necessar-
ily be positive definite around the target equilibrium.
B. Sum-of-squares programming

We make extensive use of sum-of-squares (SOS) pro-
gramming to prove dissipativity and to estimate the re-
gion of attraction of the nominal controller. A polynomial
f € R[z] is a sum of squares, f = >, {2 with (f;), C R[],
if and only if §f = 3(z)" Q3(x), where Q = 0 and j is a
vector of monomials in z [22]; the set of sum-of-squares
polynomials is denoted X [z]. This equivalence reduces
the problem “f € X [z]” to a semi-definite programming
problem [20]. Since sum-of-squares polynomials are non-
negative, the following lemma can be proven.

Lemma 1: [23] Let f,g1,...,0k, b € Rz]; we have

ﬂ Qg,<0 N Oy=o € Qj<o. (12)
if lezgz +ph—feX [:c} for sq,..
R[z]. <

If the sufficient condition holds, we write (s,h) F
ni Qgigo N tho Cy QfSO with s = (517 e ;5k>7 saying
that (s, h) proves the set inclusion.

.5, € X[z] and p €

IV. CONTROLLER DESIGN

In this section, we devise an EMPC strategy for LOA
minimal recovery and a corresponding regularization
scheme to ensure dissipativity. No thrust is applied dur-
ing recovery and we consider only the elevator rate as
an input, i.e., v = 7. In level flight a nominal flight
controller ki, stabilizes the aircraft. Thus, the nominal
trim condition is unattainable for the elevator-only re-
covery strategy; instead, we choose a target steady-state
(xf,ur) for EMPC that is contained in the interior of
the control-invariant nominal stable set, viz.

zy = (10.8m/s, —2.28°, 0°/s, 4.15°, —6.80°) ,
up =0°/s,

(13a)
(13Db)

T Assumption 2 of [17] is fulfilled if f* is locally controllable in
an open environment of z .

tWe write hereafter “dissipative w.r.t. the cost £

SA continuous function ¢ is said to be positive definite (p.d.) if
@(-) > 0 everywhere except at the origin and ¢(0) = 0.

the unique gliding trim condition with minimal descend

speed [15]. We want the EMPC controller to minimize
the positive loss-of-altitude, Az = 2zgn — 2g0, Which
corresponds to the altitude-loss stage cost

(a(x) = 25 — 25 = =7V sinny. (14)

We denote by £} the steady-state loss of altitude, which
satisfies € = la(zp,up) < a(z,u) for all (z,u) € ZWm,
Without propulsion, the aircraft descends in steady-state
in order to convert potential into kinetic energy and
% > 0. However, (14) is not positive definite on Z;
the loss of altitude becomes negative (i.e., the aircraft
ascends) for any positive inclination 7. To ensure that
the dissipativity condition in Theorem 2 holds we add
quadratic regularization terms to the stage cost:

Cr(w,u) = Lale) + 5 llz = 2llg, + 5 lu—uglly, . (15)

where @, € R"*" Q, € R™*™ are positive diagonal ma-
trices. In the next section we illustrate how to determine
minimal gains @, and @, which ensure dissipativity.
We also investigate the performance of a nonlinear
tracking MPC controller which uses the stage cost

2 2
br(z,u) =3 lle -l +5llu—uslly,:  (16)

where @, and @, are positive definite weighting matri-
ces. The stability of the tracking NMPC can be estab-
lished using [33, Theorem 5.5]. All controllers enforce the
box constraints (z,u) € X x U.

V. ANALYSIS

As our main result, we use SOS programming to
synthesize a suitable storage-candidate function £ and
regularization gains satisfying the conditions of Theo-
rem 2. We further estimate the region of attraction of
the nominal level-flight trim condition to ensure that
the target steady-state for recovery lies within reach
of the nominal flight controller. In order to transform
the nonlinear aircraft dynamics model (1)—(2) into a
piecewise polynomial form, we replace sine and cosine by
their 3rd-order Taylor polynomials, providing sufficient
accuracy within the chosen ranges of v and «. Likewise,
within the stable neighbourhood the inversion V1! is
well approximated by a 5th-order Taylor polynomial. The
resulting polynomial functions are denoted by fv, f., etc.
and zT = 7" (2 = 77 if a < ap, a+ = P8 (& =
§Po5t) else. For tractability, any terms of fP¢, fP25t with
degree larger than 5 or coefficients smaller than 1076 are
removed with negligible loss of accuracy. The cost supply
rate is likewise approximated by &, € R [z, u].

A. Dissipativity & Regularization

To prove that the EMPC feedback law is stabilizing,
the system dynamics must be strictly dissipative w.r.t.
the stage cost £. Proving this condition requires a suitable
storage function A : X — R satisfying (11). With
an analytical search for A being intractable in general,
a polynomial storage function proving dissipativity can
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Fig. 1: Provable stable set under nominal LQR control inputs.

be synthesized by solving a sum-of-squares feasibility
problem. However, it is often unknown a-priori if there
exists a sum-of-squares polynomial storage function of a
given degree which proves dissipativity of the dynamics
w.r.t. the chosen stage cost. This can be remedied with a
regularization. It has been established in [19] that if the
gains Q = diag(Q,, Q) in (15) are chosen sufficiently
large, then the dynamics are dissipative w.r.t. the stage
cost. There, the authors propose a procedure based on
Gershgorin’s circle theorem which is computationally
simple but prone to conservative (large) regularization
gains.

Instead, we propose to use min-trace SOS program-
ming to search simultaneously for a polynomial storage-
candidate £ and diagonal gains @) that directly prove the
dissipativity condition (11), by solving the problem

min - t2(Q) St [ 2N Qaca, S O an
py s2 20 Qaza, Co O

where Qg)Q denotes the set of all z € R™*™ where
£of(2) - £(2) — Gu(2) < 3 llz — 2llg —€llzll; (18)

for some small € > 0 and zt = §() € {fP,§Po5}. This
approach is guaranteed to have a feasible solution, allows
the choice of £ as a polynomial of arbitrary order, while
ensuring that @@ — 0 if the system is dissipative and £
is a polynomial of suitable order.

For a linear storage-candidate, solving Eq. (17) yields

Q1 = diag(0.0014, 0.39, &, &, &, &),  (19)

where €; < e. For a quadratic storage however, we
get regularization gains Q2 < €lj, indicating that the
discrete aircraft system is almost dissipative.

B. Nominal region of attraction

The MPC recovery controllers do not use thrust; we
rely on a nominal flight controller k), to return the
aircraft to steady level flight. To ensure safety we switch
from the MPC to the nominal control law only once the

system state is within the region of attraction of k1. As
an example we choose the nominal flight trim condition

2 = (13m/s, 0°, 0°/s, 1.35°, —1.51°) (20a)
u = (0°/s, 0.835N) (20b)

with k), given as continuous LQR feedback for the
linearized dynamics around (v, u1v1). The controlled
dynamics are given by & = f’.

Using a polynomial Lyapunov-candidate function U €
R [z], we can reformulate (7) into a sum-of-squares op-
timization problem in order to estimate the region of
attraction of (1y1, ury1) in nominal flight. An arbitrarily
chosen ellipsoidal shape function p is used to determine
the size of the stable set. As sum-of-squares are limited
to non-negativity, we use the relaxed condition

VU - () < —e 23 (21)

with ¢ > 0 small; let Q&,) denote the set of states x
such that (21) holds for & = f\) € {jre,frost}. The
optimization problem is then given as

max A s.t. S0 F Qp<p Cx Q<
A,p>0 pre
50EX[x] s1 F Qy<x N Qa<ay, Cx QQ] (22)
s1,82C3[x] - - ost
U p.d. so F QQ}S,\ n Qazao Cs me

which is a bilinear program. We therefore employ the
iterative bisection strategy described in [23, 24].

After 49 iterations, the provable stable set in Fig. 1 is
obtained with A* = 0.6859 and p* = 28.8696; p is given
in the appendix. A larger ROA may be computable using
multiple Lyapunov function-candidates VP, YPost,

VI. NUMERICAL RESULTS

We placed an NMPC controller (NMPC, ¢r), a linear
MPC (LMPC) controller, an EMPC controller with
regularization gains @; (r-EMPC, /{g) and the un-
regularized EMPC controller (EMPC, ¢A) in closed-loop

9The LMPC controller was designed using the same stage cost
and constraints as the NMPC controller but using (5) linearized
about the target equilibrium as the prediction model.
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Fig. 2: Economic and tracking MPC for deep-stall recovery in airspeed V, inclination v, and angle of attack a.

with the nonlinear model. The regularization gains Q2
are small enough that the closed-loop traces of r-EMPC
using @2 were indistinguishable from un-regularized
EMPC. All MPC simulations utilize Euler integration
with a sampling rate 7 = 50 ms, horizon length N = 120,
and simulation time 7" = 20s. The optimal control prob-
lem (8) was solved using Ipopt [34]. Further details of
the computations are given in the appendix (Tab. I). The
initial condition was (8.26 m/s, —36.4°,0°/s, 32.6°, —41°).

Fig. 2 shows the closed-loop trajectories for all four
strategies; only LMPC fails to recover the aircraft due to
elevator inversion in deep-stall. Of the remaining three,
pure EMPC provides the most aggressive approach, par-
tially regaining height by ascent, leading to a slower tran-
sition back to normal flight, whereas the regularization
gains cause r-EMPC to transition faster. Both economic
strategies noticeably overshoot! the target airspeed and
path inclination in order to regain altitude.

Recall that the MPC controllers guide the aircraft to a
stable gliding conditions and a nominal flight controller
is used to resume level flight. The nominal controller
takes over if the state enters its ROA, which was es-
timated in Section V, (but not earlier than 5s into
the recovery). The resulting recovery trajectories are
shown in Fig. 3. The tracking NMPC recovery shows by
far the largest LOA (8.4m), while non-regularized and
regularized EMPC are similar (7.5m and 7.4m), with
r-EMPC encountering a slightly reduced LOA due to the
later switching point of the non-regularized scheme.

VII. CONCLUSION

Economic MPC is a promising tool for LOA-minimal
recovery of an aircraft from upset conditions; however,
providing certifiable guarantees of closed-loop stability
is nontrivial. In this paper, we applied polynomial SOS
programming to a piecewise longitudinal aerodynamics
model to prove stability of a deep-stall recovery EMPC
strategy, proposed an SOS based regularization scheme

lOvershoot is acceptable in this application except during very
low-altitude flight.

0 —— EMPC ||
—— 1-EMPC
—— NMPC
)
< 5|
=
=
_10 [
Il Il Il Il
0 2 4 6 8 10

Fig. 3: Upset recovery strategies with switching to nomi-
nal control. The full MPC trajectories are shown dotted.

that computes minimal regularization gains needed to
ensure dissipativity and illustrated that the gains ap-
proach zero as the order of the storage function-candidate
is increased. To guarantee stability for all (admissible)
states, even very small gains help to avoid undesirable
closed-loop behaviour such as periodic oscillations.

Finally, we presented a numerical comparison of differ-
ent MPC strategies for recovery of nominal flight. Our
investigations revealed EMPC offers significant perfor-
mance advantages compared nonlinear tracking MPC
and that regularized EMPC is also compatible with
recovery of level flight. Future work includes reduction
of computation and application to NASA’s GTM.

APPENDIX

The aircraft states and inputs, were scaled by dy =
10m/s, dy = 45°, dg = 150°/s, do = 45°, d,, = 80°,
dan = 100°/s, and dp = 25N. The gains for linear and
nonlinear tracking MPC were Q, =I5 and @4, = 0.010
and for nominal LQR feedback, @, = I5 and @, = I
(all gains with respect to the scaled states and inputs).

Eq. (17) for Q2 has been solved on a single node of
the University of Michigan HPC cluster in 3h (Intel Xeon



TABLE I. Simulation details & results. Computation
time accuracy + 10 ms (Intel Core i7, 3 GHz, 16 GB).

EMPC r-EMPC NMPC
average time OCP 1.74s 0.768 s 0.674s
comp. time (MPC) 951s 503s 486's
comp. time (to level) 522 362s 309

" optimal cost (k=1)" |~ 476 ~ | ¢ 6.65 | ¢ 989 |
residual norm <3x107° | <1x107% | <9x10~*

E5, 2.4 GHz, 44 GB). The ellipsoidal shape for Eq. (22) is
defined as p = (d;lx)T diag(0.50,0.50,1,1,0.50) (d; 'z);
the computation took 6.0h on a personal computer
(Intel Core i7, 3 GHz, 16 GB). All SOS problems were
constructed and solved by sosopt/SeDuMi. As the piece-
wise model is not differentiable in ag due to Eq. (3),

we approximate the aerodynamics by H(a — ag) CP™ +
(1 — H(a — ap)) CPO%t, where H(a) = L

Tre=—ma7i and

Problem 8 is solved while iteratively decreasing u. Fur-
ther details of the simulations are given in Tab. I. The im-
plemented controllers are not yet real-time capable and
need efforts to optimize their computational footprint.
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