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Economic Model-Predictive Control Strategies for Aircraft Deep-stall Recovery with Stability Guarantees

Aircraft upset recovery requires aggressive control actions to handle highly nonlinear aircraft dynamics and critical state and input constraints. Model predictive control is a promising approach for returning the aircraft to the nominal flight envelope, even in the presence of altered dynamics or actuator limits; however, proving stability of such strategies requires careful algebraic or semi-algebraic analysis of both the system and the proposed control scheme, which can be challenging for realistic control systems. This paper develops economic model predictive strategies for recovery of a fixed-wing aircraft from deep-stall. We provide rigorous stability proofs using sum-of-squares programming and compare several economic, nonlinear, and linear model predictive controllers.

I. Introduction

Aircraft upset incidents remain a severe cause of fatalities in civil aviation [START_REF]Loss of Control In-Flight Accident Analysis Report[END_REF] and this has motivated research into upset and loss of control recovery [START_REF] Smaili | Intelligent Flight Control Systems Evaluation for Loss-of-Control Recovery and Prevention[END_REF][START_REF] Richards | Vehicle Upset Detection and Recovery for Onboard Guidance and Control[END_REF][START_REF] Allen | Safe Set Protection and Restoration for Unimpaired and Impaired Aircraft[END_REF][START_REF] Donato | Envelope-aware Flight Management for Loss of Control Prevention given Rudder Jam[END_REF][START_REF] Chang | Aircraft Trim Recovery from Highly Nonlinear Upset Conditions[END_REF]. Upset recovery has been approached with various control techniques including adaptive control [START_REF] Tol | Multivariate Spline-Based Adaptive Control of High-Performance Aircraft with Aerodynamic Uncertainties[END_REF], machine learning [START_REF] Kim | Reinforcement Learning-Based Optimal Flat Spin Recovery for Unmanned Aerial Vehicle[END_REF], and model predictive control (MPC) [START_REF] Schuet | Stall Recovery Guidance Using Fast Model Predictive Control[END_REF][START_REF] Engelbrecht | Optimal Attitude and Flight Vector Recovery for Large Transport Aircraft using Sequential Quadratic Programming[END_REF]. MPC, in particular, is promising since it can handle nonlinearities, actuator saturation, and state constraints. It also tends to have a provably large closed-loop region of attraction.

In this paper, we propose a loss of altitude (LOA) minimizing economic model predictive control (EMPC) strategy for deep-stall recovery which we compare to linear and nonlinear tracking type MPC controllers. LOA is an important performance metric for upset recovery maneuvers and it can be exploited to enlarge the operational envelope during and after the maneuver, particularly at low altitudes [START_REF] Sparks | Optimal Aircraft Control Upset Recovery With and Without Component Failures[END_REF][START_REF] Bunge | Automatic Spin Recovery with Minimal Altitude Loss[END_REF]. The EMPC framework, see, e.g., [START_REF] Ellis | Economic Model Predictive Control[END_REF] for an overview, allows for direct minimization of the LOA. We consider a 1.6 kg fixed-wing unmanned aircraft capable of stable deep-stall descent [START_REF] Cunis | Identification of Thrust, Lift, and Drag for Deep-stall Flight Data of a Fixed-wing Unmanned Aircraft[END_REF][START_REF] Cunis | Dynamic Stability Analysis of Aircraft Flight in Deep-stall[END_REF], which allows us to isolate the longitudinal aerodynamics.

MPC has been applied to a variety of aerospace systems [START_REF] Eren | Model Predictive Control in Aerospace Systems: Current State and Opportunities[END_REF]. In [START_REF] Schuet | Stall Recovery Guidance Using Fast Model Predictive Control[END_REF], MPC is employed to generate guidance trajectories for recovery of a piloted aircraft from a highpitch upset. EMPC has been extensively studied in the context of process control [START_REF] Ellis | Economic Model Predictive Control[END_REF]; however, comparatively few aerospace applications have been reported in the literature [START_REF] Eren | Model Predictive Control in Aerospace Systems: Current State and Opportunities[END_REF]. LOA minimizing EMPC was considered in [START_REF] Engelbrecht | Optimal Attitude and Flight Vector Recovery for Large Transport Aircraft using Sequential Quadratic Programming[END_REF] for automatic recovery from a high-bank condition. However, closed-loop stability of the proposed MPC recovery scheme was not proven in either [START_REF] Schuet | Stall Recovery Guidance Using Fast Model Predictive Control[END_REF] or [START_REF] Engelbrecht | Optimal Attitude and Flight Vector Recovery for Large Transport Aircraft using Sequential Quadratic Programming[END_REF].

Closed-loop stability of an EMPC controller can be guaranteed if the dynamics and stage cost jointly satisfy an appropriate dissipativity condition both with [START_REF] Angeli | On Average Performance and Stability of Economic Model Predictive Control[END_REF] and without [START_REF] Zanon | Economic MPC without terminal constraints: Gradient-correcting end penalties enforce asymptotic stability[END_REF] terminal constraints. When dissipativity does not hold (or cannot be proven), regularization terms can be added to ensure closed-loop stability [START_REF] Jäschke | Fast economic model predictive control based on NLP-sensitivities[END_REF]. For nonlinear systems proving these conditions is nontrivial. However, advances in semi-definite relaxations [START_REF] Parillo | Semidefinite programming relaxations for semialgebraic problems[END_REF] have led to a surge of sum-of-squares (SOS) programming techniques [START_REF] Tan | Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming[END_REF][START_REF] Seiler | Quasiconvex sum-of-squares programming[END_REF] which have been used to compute stability certificates for continuous [START_REF] Topcu | Local stability analysis using simulations and sum-of-squares programming[END_REF][START_REF] Chakraborty | Nonlinear region of attraction analysis for flight control verification and validation[END_REF] and discrete [START_REF] Ahmadi | Non-monotonic Lyapunov functions for stability of discrete time nonlinear and switched systems[END_REF][START_REF] Chesi | Establishing robust stability of discrete-time systems with time-varying uncertainty: The Gram-SOS approach[END_REF] systems as well as proving dissipativity properties [START_REF] Ebenbauer | Analysis and design of polynomial control systems using dissipation inequalities and sum of squares[END_REF][START_REF] Faulwasser | Turnpike and dissipativity properties in dynamic real-time optimization and economic MPC[END_REF]. Further, an SOS-based stability analysis for general MPC strategies is presented in [START_REF] Korda | Automatica Stability and performance verification of optimization-based[END_REF]. However, computational issues and the restriction of SOS programming to polynomial functions conflict with the need for accurate aerodynamic models.

Our contributions are fourfold: (i) We design an LOA minimizing EMPC controller using a piecewise polynomial model of the aircraft dynamics that is suitable for both accurate control and application of SOS techniques; (ii) we illustrate how SOS techniques can be applied to systems with piecewise dynamics in order to rigorously prove the stability of our EMPC controller; (iii) we propose an adaptive regularization scheme using SOS to determine minimal regularization gains that ensure dissipativity; (iv) we provide a comparison between linear, nonlinear, and economic MPC for LOA-minimal recovery. In this work, we restrict ourselves to terminal state constraints.

The layout of the paper is as follows: In II, we discuss the upset recovery problem. In III, we recall the theories of EMPC and SOS programming; we then provide the optimal control formulation in IV. In V, we show using SOS programming that the synthesized closed-loop system satisfies the conditions for asymptotic stability. Finally, VI compares different MPC strategies.

Notation: Real-valued variables and functions are designated in italic, finite sequences in bold, polynomials in Fraktur. x[i] is the i-th element of a sequence x. x is the difference between x and a reference x * . R [x] is the set of polynomials with real coefficients. For a function p (polynomial p) and a ∈ R, denote Ω p≤a = {x | p(x) ≤ a } and O p=a = {x | p(x) = a }. Superscripts pre and post denote low and high-angle of attack dynamics.

II. Problem Formulation

In the context of aviation, the term upset can be used to describe a variety of abnormal situations. In a technical sense, an upset can be understood as an undesired yet often attractive mode of the nonlinear dynamics that shows significantly altered steady-state responses and usually immediately precedes wing stall and departure of the aircraft (e.g., deep-stall flight, gyroscopic spins, or spirals). Input saturation, inversion and tight state constraints make designing recovery approaches challenging.

In this paper, we develop an MPC strategy to minimize loss-of-altitude using only the elevator η, i.e., thrust F = 0, in accordance with governmental procedures for manual recovery [START_REF]Airplane Flying Handbook[END_REF]. LOA is a crucial metric for both collision avoidance and operating envelope recovery post stabilization [START_REF] Sparks | Optimal Aircraft Control Upset Recovery With and Without Component Failures[END_REF][START_REF] Bunge | Automatic Spin Recovery with Minimal Altitude Loss[END_REF]. We will adopt the convention that the aircraft has recovered when it returns to a stable trim condition within the region of attraction of a nominal flight controller which subsequently reinstates level flight.

We consider only the longitudinal aircraft dynamics, which are given by

m V = F cos α -(qC D (α, η) + mg sin γ) , (1a) 
mV γ = F sin α + (qC L (α, η) -mg cos γ) , (1b) Θ = q, (1c)

I y q = (c A qC m (α, η) -C Mq q) , (1d) 
with airspeed V , inclination γ, pitch rate q, angle of attack α, pitch angle Θ = γ + α, and elevator deflection η, where q = 1 2 SV 2 and C Mq > 0 is a linear damping parameter. The aircraft's descent rate is then

żg = -V sin γ. ( 2a 
)
The aerodynamic coefficients C L , C D , C m are given as continuous piecewise polynomial models

C (α, η) = C pre if α ≤ α 0 ; C post else; (3) 
with α 0 = 16.29°and C pre , C post ∈ R [α, η].
The polynomials and remaining parameters are provided in [START_REF] Cunis | Piecewise Polynomial Model of the Aerodynamic Coefficients of the Cumulus One Unmanned Aircraft[END_REF].

The elevator deflection is physically restricted to values between -60°to 20°. In this work, we treat the elevator rate η, rather than the deflection, as a control input, the state is thus x = (V, γ, q, α, η) and the control input is u = ( η, F ). The underlying aerodynamic models are defined on the following regions of the state-space

X = [5 m/s; 30 m/s]×[-60°; +60°]×[-150 °/s; +150 °/s]× [-10°; +75°] × [-60°; +20°]. The control inputs are re- stricted to U = [-200 °/s; +200 °/s] ×R ≥0 ;
III. Methodology Consider a nonlinear system which represents (1),

ẋ = f (x, u) , (4) 
subject to the constraints x ∈ X ⊆ R n , u ∈ U ⊆ R m , and its discrete time representation

x + = f + (x, u) = x + τ f (x, u) (5) 
with sampling period τ > 0. For some u ∈ U N and

x 1 = x, write x N +1 = f N (x, u); let Z = X × U
and denote the set of trim conditions as

Z trim = {(x, u) ∈ Z | x = f + (x, u) }. Definition 1: A set X ⊂ X is called a stable set for x 0 ∈ X and κ : X → U if and only if f N κ (x) ∈ X , ( 6a 
) |x 0 -f ∞ κ (x)| → 0, (6b) 
with

f + κ = f + (•, κ(•)
) for all x ∈ X and N > 0. The region of attraction R then is the largest * stable set. The stable sets of (4) can be characterized using Lyapunov's stability theory:

Theorem 1: [32] Let V(•) be positive-definite with V(0) = 0 and λ > 0; if ∇V • (f κ (x) -x * ) < 0 (7) for all x = x * with V(x) ≤ λ, then Ω V≤λ is a stable set for f κ (x * ) = 0.
Stability of (4) follows under some mild conditions [START_REF] Grüne | Nonlinear Model Predictive Control: Theory and Algorithms[END_REF].

A. Model predictive control

The model-predictive feedback law is defined by the solution of the following OCP:

Given a measured state x 0 ∈ X and target (x f , u f ) ∈ Z trim ; solve the constrained nonlinear program

min x,u N -1 i=1 (x i , u i ) , (8a) 
x i+1 = f + (x i , u i ), i = 0, . . . , N -1, (8b) 
x

N = x f , x ∈ X N , u ∈ U N (8c)
Here, : Z → R is called the stage cost. The MPC feedback law is then

u(t) = û[1](x(t)) (9) 
where (x, û) is a minimizer of (8) with x 0 = x(t). The set of recoverable conditions is further defined as

Z N = (x 0 , u) ∈ X × U N f N (x 0 , u) = x f and ∀k ≤ N. f k x 0 , u k ∈ X , (10) 
where u k are the first k elements of u, and X N denotes the projection of Z N onto X . We assume that [START_REF] Angeli | On Average Performance and Stability of Economic Model Predictive Control[END_REF]: Assumption 1: Z is compact, and f + are continuous and X N contains x f in its interior.

The following Theorem provides sufficient conditions for closed-loop stability of EMPC.

Theorem 2: [START_REF] Angeli | On Average Performance and Stability of Economic Model Predictive Control[END_REF] Let (x f , u f ) ∈ Z trim satisfy: † 1) f + is strictly dissipative with respect to (w.r.t.) the supply rate ‡ ς : (x, u) → (x, u) -(x f , u f ); 2) (x f , u f ) ≤ (x, u) for all (x, u) ∈ Z trim ; then x f is an asymptotically stable equilibrium of ( 5), [START_REF] Schuet | Stall Recovery Guidance Using Fast Model Predictive Control[END_REF] with region of attraction X N as defined above. Recall that:

Definition 2: The control system ( 5) is called strictly dissipative w.r.t. a supply rate ς : Z → R if and only if there exists a storage function Λ : X → R such that

Λ x + -Λ(x) ≤ -ρ(x -x f ) + ς(x, u) (11) 
for a ρ : X → R ≥0 positive definite § and all (x, u) ∈ Z.

Note that unlike conventional MPC, may not necessarily be positive definite around the target equilibrium.

B. Sum-of-squares programming

We make extensive use of sum-of-squares (SOS) programming to prove dissipativity and to estimate the region of attraction of the nominal controller. A polynomial

f ∈ R [x] is a sum of squares, f = i f 2 i with (f i ) i ⊂ R [x], if and only if f = z(x)
T Qz(x), where Q 0 and z is a vector of monomials in x [START_REF] Seiler | Quasiconvex sum-of-squares programming[END_REF]; the set of sum-of-squares polynomials is denoted Σ [x]. This equivalence reduces the problem "f ∈ Σ [x]" to a semi-definite programming problem [START_REF] Parillo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. Since sum-of-squares polynomials are nonnegative, the following lemma can be proven.

Lemma 1:

[23] Let f, g 1 , . . . , g k , h ∈ R [x]; we have i Ω gi≤0 ∩ O h=0 ⊆ Ω f≤0 . ( 12 
) if i s i g i + ph -f ∈ Σ [x] for s 1 , . . . , s k ∈ Σ [x] and p ∈ R [x].
If the sufficient condition holds, we write (s, h)

i Ω gi≤0 ∩ O h=0 ⊆ Σ Ω f≤0 with s = (s 1 , . . . , s k ), saying that (s, h) proves the set inclusion.

IV. Controller Design

In this section, we devise an EMPC strategy for LOA minimal recovery and a corresponding regularization scheme to ensure dissipativity. No thrust is applied during recovery and we consider only the elevator rate as an input, i.e., u = η. In level flight a nominal flight controller κ lvl stabilizes the aircraft. Thus, the nominal trim condition is unattainable for the elevator-only recovery strategy; instead, we choose a target steady-state (x f , u f ) for EMPC that is contained in the interior of the control-invariant nominal stable set, viz.

x f = (10.8 m/s, -2.28°, 0 °/s, 4.15°, -6.80°) , (13a)

u f = 0 °/s, ( 13b 
) † Assumption 2 of [17] is fulfilled if f + is locally controllable in an open environment of x f .
‡ We write hereafter "dissipative w.r.t. the cost ." § A continuous function φ is said to be positive definite (p.d.) if φ(•) > 0 everywhere except at the origin and φ(0) = 0.

the unique gliding trim condition with minimal descend speed [START_REF] Cunis | Dynamic Stability Analysis of Aircraft Flight in Deep-stall[END_REF]. We want the EMPC controller to minimize the positive loss-of-altitude, ∆z g = z gN -z g0 , which corresponds to the altitude-loss stage cost

∆ (x) = z + g -z g = -τ V sin γ. (14) 
We denote by * ∆ the steady-state loss of altitude, which satisfies * ∆ = ∆ (x f , u f ) ≤ ∆ (x, u) for all (x, u) ∈ Z trim . Without propulsion, the aircraft descends in steady-state in order to convert potential into kinetic energy and * ∆ > 0. However, ( 14) is not positive definite on Z; the loss of altitude becomes negative (i.e., the aircraft ascends) for any positive inclination γ. To ensure that the dissipativity condition in Theorem 2 holds we add quadratic regularization terms to the stage cost:

R (x, u) = ∆ (x) + 1 2 x -x f 2 Qx + 1 2 u -u f 2 
Qu , (15) where Q x ∈ R n×n , Q u ∈ R m×m are positive diagonal matrices. In the next section we illustrate how to determine minimal gains Q x and Q u which ensure dissipativity.

We also investigate the performance of a nonlinear tracking MPC controller which uses the stage cost

T (x, u) = 1 2 x -x f 2 Qx + 1 2 u -u f 2 Qu ; (16) 
where Q x and Q u are positive definite weighting matrices. The stability of the tracking NMPC can be established using [START_REF] Grüne | Nonlinear Model Predictive Control: Theory and Algorithms[END_REF]Theorem 5.5]. All controllers enforce the box constraints (x, u) ∈ X × U.

V. Analysis

As our main result, we use SOS programming to synthesize a suitable storage-candidate function L and regularization gains satisfying the conditions of Theorem 2. We further estimate the region of attraction of the nominal level-flight trim condition to ensure that the target steady-state for recovery lies within reach of the nominal flight controller. In order to transform the nonlinear aircraft dynamics model ( 1)-( 2) into a piecewise polynomial form, we replace sine and cosine by their 3rd-order Taylor polynomials, providing sufficient accuracy within the chosen ranges of γ and α. Likewise, within the stable neighbourhood the inversion V -1 is well approximated by a 5th-order Taylor polynomial. The resulting polynomial functions are denoted by f V , f γ , etc. and

x + = f pre ( ẋ = f pre ) if α ≤ α 0 , x + = f post ( ẋ = f post ) else.
For tractability, any terms of f pre , f post with degree larger than 5 or coefficients smaller than 10 -6 are removed with negligible loss of accuracy. The cost supply rate is likewise approximated by S ∈ R [x, u].

A. Dissipativity & Regularization

To prove that the EMPC feedback law is stabilizing, the system dynamics must be strictly dissipative w.r.t. the stage cost . Proving this condition requires a suitable storage function Λ : X → R satisfying [START_REF] Sparks | Optimal Aircraft Control Upset Recovery With and Without Component Failures[END_REF]. With an analytical search for Λ being intractable in general, a polynomial storage function proving dissipativity can be synthesized by solving a sum-of-squares feasibility problem. However, it is often unknown a-priori if there exists a sum-of-squares polynomial storage function of a given degree which proves dissipativity of the dynamics w.r.t. the chosen stage cost. This can be remedied with a regularization. It has been established in [START_REF] Jäschke | Fast economic model predictive control based on NLP-sensitivities[END_REF] that if the gains 15) are chosen sufficiently large, then the dynamics are dissipative w.r.t. the stage cost. There, the authors propose a procedure based on Gershgorin's circle theorem which is computationally simple but prone to conservative (large) regularization gains.

Q = diag(Q x , Q u ) in (
Instead, we propose to use min-trace SOS programming to search simultaneously for a polynomial storagecandidate L and diagonal gains Q that directly prove the dissipativity condition [START_REF] Sparks | Optimal Aircraft Control Upset Recovery With and Without Component Failures[END_REF], by solving the problem min

Q 0 s1,s2⊂Σ[z] L∈R[x] tr(Q) s.t. s 1 Z ∩ Ω α≤α0 ⊆ Σ Ω pre L,Q s 2 Z ∩ Ω α≥α0 ⊆ Σ Ω post L,Q (17) 
where

Ω (•) L,Q denotes the set of all z ∈ R m+n where L • f (•) (z) -L(z) -S (z) ≤ 1 2 z -z f 2 Q -x 2 2 (18) 
for some small > 0 and x + = f (•) ∈ {f pre , f post }. This approach is guaranteed to have a feasible solution, allows the choice of L as a polynomial of arbitrary order, while ensuring that Q → 0 if the system is dissipative and L is a polynomial of suitable order. For a linear storage-candidate, solving Eq. ( 17) yields

Q 1 = diag(0.0014, 0.39, ˜ 1 , ˜ 2 , ˜ 3 , ˜ 4 ) , (19) 
where ˜ i < . For a quadratic storage however, we get regularization gains Q 2 ≺ I 5 , indicating that the discrete aircraft system is almost dissipative.

B. Nominal region of attraction

The MPC recovery controllers do not use thrust; we rely on a nominal flight controller κ lvl to return the aircraft to steady level flight. To ensure safety we switch from the MPC to the nominal control law only once the system state is within the region of attraction of κ lvl . As an example we choose the nominal flight trim condition

x lvl = (13 m/s, 0°, 0 °/s, 1.35°, -1.51°) , (20a) 
u lvl = (0 °/s, 0.835 N) , (20b) 
with κ lvl given as continuous LQR feedback for the linearized dynamics around (x lvl , u lvl ). The controlled dynamics are given by ẋ = f

(•) κ . Using a polynomial Lyapunov-candidate function V ∈ R [x],
we can reformulate (7) into a sum-of-squares optimization problem in order to estimate the region of attraction of (x lvl , u lvl ) in nominal flight. An arbitrarily chosen ellipsoidal shape function p is used to determine the size of the stable set. As sum-of-squares are limited to non-negativity, we use the relaxed condition

∇V • f (•) κ (x) ≤ -x 2 2 (21) 
with > 0 small; let Ω (•)

V denote the set of states x such that [START_REF] Tan | Nonlinear Control Analysis and Synthesis using Sum-of-Squares Programming[END_REF] 

holds for ẋ = f (•) κ ∈ {f pre κ , f post κ }. The optimization problem is then given as max λ,ρ>0 s0∈Σ[x] s1,s2⊂Σ[x] V p.d. λ s.t.      s 0 Ω p≤ρ ⊆ Σ Ω V≤λ s 1 Ω V≤λ ∩ Ω α≤α0 ⊆ Σ Ω pre V s 2 Ω V≤λ ∩ Ω α≥α0 ⊆ Σ Ω post V (22) 
which is a bilinear program. We therefore employ the iterative bisection strategy described in [START_REF] Topcu | Local stability analysis using simulations and sum-of-squares programming[END_REF][START_REF] Chakraborty | Nonlinear region of attraction analysis for flight control verification and validation[END_REF]. After 49 iterations, the provable stable set in Fig. 1 is obtained with λ * = 0.6859 and ρ * = 28.8696; p is given in the appendix. A larger ROA may be computable using multiple Lyapunov function-candidates V pre , V post .

VI. Numerical Results

We placed an NMPC controller (NMPC, T ), a linear MPC (LMPC) controller ¶ , an EMPC controller with regularization gains Q 1 (r-EMPC, R ) and the unregularized EMPC controller (EMPC, ∆ ) in closed-loop ¶ The LMPC controller was designed using the same stage cost and constraints as the NMPC controller but using (5) linearized about the target equilibrium as the prediction model. with the nonlinear model. The regularization gains Q 2 are small enough that the closed-loop traces of r-EMPC using Q 2 were indistinguishable from un-regularized EMPC. All MPC simulations utilize Euler integration with a sampling rate τ = 50 ms, horizon length N = 120, and simulation time T = 20 s. The optimal control problem (8) was solved using Ipopt [START_REF] Wächter | On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[END_REF]. Further details of the computations are given in the appendix (Tab. I). The initial condition was (8.26 m/s, -36.4°, 0 °/s, 32.6°, -41°).

Fig. 2 shows the closed-loop trajectories for all four strategies; only LMPC fails to recover the aircraft due to elevator inversion in deep-stall. Of the remaining three, pure EMPC provides the most aggressive approach, partially regaining height by ascent, leading to a slower transition back to normal flight, whereas the regularization gains cause r-EMPC to transition faster. Both economic strategies noticeably overshoot ‖ the target airspeed and path inclination in order to regain altitude.

Recall that the MPC controllers guide the aircraft to a stable gliding conditions and a nominal flight controller is used to resume level flight. The nominal controller takes over if the state enters its ROA, which was estimated in Section V, (but not earlier than 5 s into the recovery). The resulting recovery trajectories are shown in Fig. 3. The tracking NMPC recovery shows by far the largest LOA (8.4 m), while non-regularized and regularized EMPC are similar (7.5 m and 7.4 m), with r-EMPC encountering a slightly reduced LOA due to the later switching point of the non-regularized scheme.

VII. Conclusion

Economic MPC is a promising tool for LOA-minimal recovery of an aircraft from upset conditions; however, providing certifiable guarantees of closed-loop stability is nontrivial. In this paper, we applied polynomial SOS programming to a piecewise longitudinal aerodynamics model to prove stability of a deep-stall recovery EMPC strategy, proposed an SOS based regularization scheme ‖ Overshoot is acceptable in this application except during very low-altitude flight. that computes minimal regularization gains needed to ensure dissipativity and illustrated that the gains approach zero as the order of the storage function-candidate is increased. To guarantee stability for all (admissible) states, even very small gains help to avoid undesirable closed-loop behaviour such as periodic oscillations. Finally, we presented a numerical comparison of different MPC strategies for recovery of nominal flight. Our investigations revealed EMPC offers significant performance advantages compared nonlinear tracking MPC and that regularized EMPC is also compatible with recovery of level flight. Future work includes reduction of computation and application to NASA's GTM. E5, 2.4 GHz, 44 GB). The ellipsoidal shape for Eq. ( 22) is defined as p = d -1 x x T diag(0.50, 0.50, 1, 1, 0.50) d -1

x x ; the computation took 6.0 h on a personal computer (Intel Core i7, 3 GHz, 16 GB). All SOS problems were constructed and solved by sosopt/SeDuMi. As the piecewise model is not differentiable in α 0 due to Eq. ( 3), we approximate the aerodynamics by H(α -α 0 ) C pre + (1 -H(α -α 0 )) C post , where H(α) = 1 1+e -2α/µ , and Problem 8 is solved while iteratively decreasing µ. Further details of the simulations are given in Tab. I. The implemented controllers are not yet real-time capable and need efforts to optimize their computational footprint.

Fig. 1 :

 1 Fig. 1: Provable stable set under nominal LQR control inputs.

Fig. 2 :

 2 Fig. 2: Economic and tracking MPC for deep-stall recovery in airspeed V , inclination γ, and angle of attack α.

Fig. 3 :

 3 Fig. 3: Upset recovery strategies with switching to nominal control. The full MPC trajectories are shown dotted.

TABLE I :

 I Simulation details & results. Computation time accuracy ± 10 ms (Intel Core i7, 3 GHz, 16 GB).

		EMPC	r-EMPC	NMPC
	average time OCP	1.74 s	0.768 s	0.674 s
	comp. time (MPC)	951 s	503 s	486 s
	comp. time (to level)	522 s	362 s	309 s
	optimal cost (k = 1)	4.76	6.65	9.89
	residual norm	<3×10 -5	<1×10 -5	<9×10 -4

Partly supported by ONERA, and NSF Award No. CMMI 1562209.

Appendix

The aircraft states and inputs, were scaled by d V = 10 m/s, d γ = 45°, d q = 150 °/s, d α = 45°, d η = 80°, d dη = 100 °/s, and d F = 25 N. The gains for linear and nonlinear tracking MPC were Q x = I 5 and Q dη = 0.010 and for nominal LQR feedback, Q x = I 5 and Q u = I 2 (all gains with respect to the scaled states and inputs).

Eq. ( 17) for Q 2 has been solved on a single node of the University of Michigan HPC cluster in 3 h (Intel Xeon