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Introduction

Recently, several works on polynomial fitting have been led and provide a constructive method for determining models based on analytical computation due to their continuous and differentiable nature. Computing the exact region of attraction for this kind of nonlinear dynamics is very hard if not impossible. Therefore, researchers have focused on determining polynomial Lyapunov functions for polynomial systems building upon sum-of-squares [START_REF] Topcu | Local stability analysis using simulations and sum-of-squares programming[END_REF][START_REF] Topcu | Robust Region-of-Attraction Estimation[END_REF][START_REF] Khodadadi | Estimation of region of attraction for polynomial nonlinear systems: A numerical method[END_REF] including extensions to rational and composite Lyapunov-functions [START_REF] Valmorbida | Region of attraction estimation using invariant sets and rational Lyapunov functions[END_REF][START_REF] Tan | Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming[END_REF][START_REF] Chesi | Rational Lyapunov functions for estimating and controlling the robust domain of attraction[END_REF]. However, when polynomials are unsuitable to represent system dynamics, piecewise defined polynomials such as splines [START_REF] Coen | A new approach to linear regression with multivariate splines[END_REF] provide more tractable models, requiring extended effort when determining local stability: it is well known for example, that stability of the subsystems does not guarantee stability of the entire system [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF]. Therefore, approximation techniques have been developed for the estimation of the region of attraction of piecewise systems. Early work was limited to a priori given, multiple quadratic Lyapunov functions [START_REF] Amato | Estimation of the domain of attraction for a class of hybrid systems[END_REF] and could only provide very rough estimates of the region of attraction. In [START_REF] Chen | Stability Analysis and Region-of-Attraction Estimation Using Piecewise Polynomial Lyapunov Functions: Polynomial Fuzzy Model Approach[END_REF] though, analysis of polynomial fuzzy models is considered employing again composite Lyapunov functions; taking each the point-wise extremum, this approach This paper was not presented at any IFAC meeting. Corresponding author T. Cunis.
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provides directly a continuous function. It is worth noting that this might come at the cost of a large number of decision variables and that there are no relaxations with respect to the respectively active subdomains. [11] proposes a further approach using multiple Lyapunov functions for switching hybrid systems with polyhedral subdomains which share a boundary in the origin. Sum-of-squares complexity was discussed [START_REF] Chesi | On the Complexity of SOS Programming and Applications in Control Systems[END_REF]; where subdomains are considered for stability, the complexity increases with the number of bounding constraints.

The present paper focuses on a new formulation of the region of attraction estimation for large piecewise systems of local polynomial dynamics and polynomial domains, such as switching systems and multivariate splines, within the sum-of-squares framework. We present preliminary results and extend previous work to switching systems (in Sec. 2). The main result, an algorithm for splines, is discussed in Sec. 3, and is applied to an engineering example in Sec. 4. The appendix illustrates an extension to multiple Lyapunov functions. For the implementation of the constraints, in particular the polynomial containment problem (Lemma 1), we rely on the semidefinite programming techniques of [START_REF] Topcu | Local stability analysis using simulations and sum-of-squares programming[END_REF][START_REF] Parillo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. A concise discussion of the V-s-iteration is given in [START_REF] Chakraborty | Nonlinear region of attraction analysis for flight control verification and validation[END_REF].

Preliminaries

Consider the autonomous system ẋ = f (x) given by the k ∈ N ordinary differential equations

ẋ = f i (x) , if x ∈ Φ i (1) for 1 ≤ i ≤ k, where x ∈ R n , f i ∈ R [x]
n , and Φ 1 , . . . , Φ k are intersections of polynomial inequalities Assumptions f (0) = 0, i.e., the origin is a stationary point of f . Lemma 1 Let p, q 1 , . . . , q k ∈ R [x]; we have

Ω ϕ≤x0 = def {x ∈ R n | ϕ(x) ≤ x 0 } with ϕ ∈ R [x], x 0 ∈ R n ,
Ω q1≤0 ∩ • • • ∩ Ω q k ≤0 ⊆ Ω p≤0 if there exist s 1 , . . . , s k ∈ Σ [x] such that k i=1 s i q i -p ∈ Σ [x].
Lemma 1 is an explicit formulation of [1, Lemma 2]. We then write with s = (s 1 , . . . , s k ),

s i Ω qi≤0 ⊆ Σ Ω p≤0 (2) 
and say "s proves" the inclusion. We also say that "q i , p solve" the inclusion.

Problem 2 Let p ∈ Σ [x]; solve the optimisation max β ,γ ∈R V∈R[x] β such that Ω p≤β ⊆ Ω V≤γ (3) Ω * V≤γ ⊆ {x | ∇V(x) f (x) < 0 } (4)
with V(•) positive definite 2 and V(x) = 0.

If (V, β , γ ) solve Problem 2 for p, then Ω V≤γ is an invariant subset of the region of attraction [1, Lemma 1] and admits the largest inscribing region Ω p≤β . Simultaneously searching for an optimal function V(•) while proving invariance of

Ω V≤γ involves bilinear terms. If the degree of V ∈ R [x] is restricted and f ∈ R [x]
, the V-s-iteration [START_REF] Topcu | Local stability analysis using simulations and sum-of-squares programming[END_REF][START_REF] Chakraborty | Nonlinear region of attraction analysis for flight control verification and validation[END_REF] solves Problem 2 by alternatingiteratively searching for V, γ , and β maximal such that s 1 , s 2 prove (3) and ( 4).

Remark 3

The sum-of-squares formulation is limited to nonnegativity; we thus make use of that p(x

) < 0 if p(x) ≤ -|x| 2 2 for p ∈ R [x],
x = 0, and > 0.

1 A1, . . . , A k form a set partition of a body K if and only if they are pairwise interior-disjunct and i Ai = K.

2 A continuous function ϕ is said to be positive definite (p.d.) if ϕ(•) > 0 everywhere except the origin and ϕ(0) = 0.

We write

Ω V,f, = def x ∇Vf (x) ≤ -x T x for V ∈ R [x], f ∈ R [x]
m , and > 0.

If there exists a single function V : R m → R p.d. such that ∇Vf i (x) < 0 for all x ∈ A * and all 1 ≤ i ≤ k, then A is also invariant for the piecewise system and V is a Lyapunov function of the switching dynamics. However, this requirement is unnecessary strict when it comes to the subsystems that are not active [START_REF] Johansson | Computation of piecewise quadratic Lyapunov functions for hybrid systems[END_REF]; indeed, the following suffices:

Corollary 4 Let V : R m → R be continuous p.d. with V(0) = 0 and A = Ω V≤α for some α ∈ R; if ∀x ∈ A * . (x ∈ Φ i ⇒ ∇Vf i (x) < 0) (5)
for all

1 ≤ i < j ≤ k, then A = i (A ∩ Φ i ) is invariant. Lemma 1 encodes (5) into a polynomial sum-of-squares problem, recalling Φ i is an intersection of polynomial inequalities. Now, i (Ω V≤γ ∩ Φ i ) is invariant if s 2,i Ω * V≤γi ∩ Φ i ⊆ Σ Ω V,fi, , (6) 
s 2,i ⊂ Σ [x], for all 1 ≤ i ≤ k and γ = min{γ 1 , . . . , γ k }.

Remark 5

The idea of Corollary 4, and of the paper, can be extended to piecewise defined functions

V(x) = V i (x) , if x ∈ Φ i , for 1 ≤ i ≤ k.
We further illustrate this in the appendix.

Spline systems

While we have not taken further assumptions on the Φ i , in the present literature the invariant set is commonly assumed to cover all domains. 3 For large spline systems with bounded domains and only local stability, each subdomain taken into account whilst not part of the invariant set adds an inactive boundary to the computational load. We therefore present an adapted algorithm to efficiently compute a region of attraction estimation for spline systems. 

h ij = E(i, j) is defined and h ij (x) > 0. 4
We define some further notation: for i ∈ I, let adj[i] = def j h ij = E(i, j) is defined be the set of adjacent domains of Φ i , that is,

Φ i = j∈adj[i] {x | h ij (x) ≤ 0 }; V K (•)
denotes the function-candidate in the K-th iteration and I K ⊂ I will denote the set of domains covered by the invariant set With this notation, we can state Algorithm 1 computing the optimal estimate Ω V≤γ for a spline structure: If, for any iteration K, the invariant set Ω V K ≤γ is contained in the subdomains I K , it suffices to check invariance only of these subdomains and with respect to the boundaries in between, instead of proving Eq. ( 6) for all i ∈ I. Now, in order to examine whether an i ∈ I is covered by the optimal invariant set of V K , we preliminary compute the invariant set for some I ⊂ I -{i } and evaluate the distance of i ; only if i is "closer" than the boundary of the preliminary invariant set, i ∈ I K .

Ω V K ≤γ ; for i ∈ I, dist K [i ] is the distance of Φ i with respect to V K , defined as dist K [i ] = sup{γ | Ω V K ≤γ ∩ Φ i = ∅ } ; (7 
The algorithm consists of three cascaded loops; the outer for loop over K of the basic V-s-iteration ("K-iteration"), an inner repeat-until loop determining I K ("I K -loop"), and inner-most for loops over the elements of I K . While the restriction to I K in line 8 reduces the problem size, the I K -loop itself adds to the run time. On the other hand, if V K and adj[i] ∩ I K remain unchanged, Eq. ( * i ) yields the same value γ i ; that is, after each i next added to I K , it suffices to re-execute line 8 for any i ∈ I K ∩ adj[i next ]. We refer to the thus modified algorithm as Algorithm 1b.

Proposition 7

After each repetition of the K-iteration in Algorithm 1(b), the following hold:

(1)

Ω V K ≤γ ⊂ i∈I K Φ i ; (2) Ω V K ≤γ is invariant.
PROOF. After each iteration of the I K -loop, we have that

∀i ∈ I K Ω * V K ≤γpre ∩ Φ i ⊆ {x | ∇Vf i (x) < 0 } ; (8) as Φ i ⊆ j∈I Ω hij ≤0 for any I ⊂ adj[i], adj[i] ∩ I K ⊂ adj[i],
γ pre ≤ γ i , and s 2,i proves ( * i ), 5 for all i ∈ I K ; and

Ω V K ≤γmin ⊂ i∈I K Φ i ; (9) 5 Using A1 ∩ A2 ⊆ A 1 ∩ A 2 for A1,2 ⊆ A 1,2 . Algorithm 1 Estimate invariant set Ω V≤γ ⊂ i∈I Φ i with I = I Kmax and V = V Kmax . 1: for K = 1 to K max 2: if K > 1 then 3: find V K p.d. solving s 1 Ω p≤β ⊆ Σ Ω V K ≤γ ( † †) ∀i ∈ I K . s 2,i Ω V K ≤γi ∩ ( * * ) j∈adj[i]∩I K Ω hij ≤0 ⊆ Σ Ω V K ,fi, 4: end 5: 
I K := I K-1 6: repeat 7:
for i ∈ I K 8:

find γ i := max γ≥0 γ s.t. s 2,i ⊂ Σ [x] solves s 2,i Ω V K ≤γ ∩ ( * i ) j∈adj[i]∩I K Ω hij ≤0 ⊆ Σ Ω V K ,fi, 9:
end 10:

γ pre := min{γ i | i ∈ I K } 11: for i ∈ adj[I K ] 12: compute dist K [i ] as min γ≥0,x V K (x)=γ γ s.t. j∈adj[i ] h i j (x) ≤ 0 ( ‡ i ) 13:
end 14:

γ min := min i ∈adj[I K ] dist K [i ] 15:
if γ pre ≥ γ min then 16: for i ∈ I K 22: [START_REF] Coen | A new approach to linear regression with multivariate splines[END_REF]. Since γ pre < γ min for termination of the I K -loop, [START_REF] Amato | Estimation of the domain of attraction for a class of hybrid systems[END_REF] implies

i next := arg min i ∈adj[I K ] dist K [i ]
find β := max β≥0 s.t. s 1 ∈ Σ [x] solves s 1 Ω p≤β ⊆ Σ Ω V K ≤γ ( †) 23: end 24: end as γ min ≤ dist K [i ] for i ∈ I K and ( ‡ i ) implies
Ω V K ≤γ ⊂ i∈I K Φ i with γ = γ pre . Thus, Ω V K ≤γ ∩ Φ i = ∅ for all i ∈ I -I K 6 and therefore, Ω V K ≤γ = i∈I (Ω V K ≤γ ∩ Φ i ) is invariant by Corollary 4 for (8) holds. 2
As all loops are limited by either the number of elements in I or K max , Algorithm 1b terminates and Ω V≤γ is an invariant set of the given spline system. Initially, we have I 0 = {i ∈ I | 0 ∈ Φ i }, and, assuming a singleton I 0 = {i 0 }, V 1 = x T P x as solution to the polynomial Lyapunov equation for f i0 . 7

Asymptotic run time estimation

In order to compare the run time of the proposed approach for splines to the basic approach of the previous section, we count the total number of executions of line 8 and the number of decision variables s 2,i involved each time. 8 Here, we assume that the spline structure SP has k subdomains; every domain has (in average) M adjacent cells; the resulting invariant set covers R subdomains; and the number of iterations is chosen as K max = R. Consider now the following, distinct cases: in the worst case, the initial invariant set Ω V1≤γ covers all R subdomains; whereas in the average case, Ω V K ≤γ grows in each repetition of the K-iteration into one further subdomain i next . In both cases, I 0 is taken as singleton. Clearly, the asymptotic run time of the basic approach in both cases is equivalent to

T basic M (k) = R k(M + 1).
Algorithm 1b, in the worst case, repeats line 8 in the first iteration for R times, afterwards once each iteration: proving ( * i ) requires a single decision variable the first time (adj[i 0 ] ∩ {i 0 } = ∅) and m * + 1 decision variables from there on, where m * is the number of adjacent domains of i in I 1 and each repetition of the I K -loop adds one i next ; in the following R -1 iterations, line 8 is executed R times each with M + 1 decision variables; that is,

T worst M (R) = 1 + R M m * =1 (m * + 1) + (R -1) R (M + 1) .
In the average case, Algorithm 1b executes line 8 once in every iteration for each of the r * domains in I K with m * ≤ M decision variables; additionally, since I K+1 = I K ∪ {i next }, line 8 is executed for every adjacent subdomain of i next in I K (i.e., at most M times) with m * + 1 decision variables; that is,

T avg M (R) = 1 + R r * =2 r * (M + 1) + R M m * =1
(m * + 1) . 7 If I0 is not a singleton, P can be found as solution to

A T i P + P Ai < j∈adj[i]∩I 0 hij(x) ∀i ∈ I0
with Ai = ∂fi/∂x. 8 Line 8, being inside of all three loops, is the major difficulty if line 12 is efficiently computed using MATLAB's fmincon or a similar numerical method.

If M = 3 (M = 4), 9 the worst-case asymptotic run time is less than T basic M for R < 0.987 k (R < 0.981 k) and the average-case is less than 1 2 T basic M for R < 0.944 k (R < 0.933 k).

Application example

The short-period motion of a transport aircraft might be given as autonomous system

ẋ1 = x 2 (10) ẋ2 = f M (x 1 , x 2 ) , (11) 
where x 1 is the angle of attack, x 2 is the pitch rate, and f M (•) is a 3rd-order piecewise polynomial model of the aerodynamic pitch coefficient defined as 5-by-5 rectangular spline (boundaries depicted in Fig. 1) with f M (0, 0) = 0. 10 After scaling the system to x = Dx with D ∈ R 2×2 , we compute the invariant set of the origin using Algorithm 1b. Such a problem has been discussed in [START_REF] Chakraborty | Nonlinear region of attraction analysis for flight control verification and validation[END_REF] for a polynomial model and in [START_REF] Cunis | Piecewise Polynomial Modeling for Control and Analysis of Aircraft Dynamics beyond Stall[END_REF] for a once-piecewise polynomial model. Algorithm 1b finds the optimal invariant set shown in Fig. 1, covering 20 of 25 domains, after 124 repetitions of the K-iteration and a run time equivalent of T = 10 098. The basic approach runs the same number of repetitions with a run time equivalent of T basic = 13 020.

In each repetition of the K-iteration, line 8 is executed multiple times subject to both the elements already in I K-1 and those added to I K during the inner I K -loop. The number of linear matrix inequality (LMI) variables to solve the sum-of-squares problems ( * i ) then varies with the number of elements in adj[i] ∩ I K . Table 1 gives details of the computations, including the number of 9 M = 3 and M = 4 are tantamount to planar systems with triangular and rectangular domains, respectively. 

Conclusion

Extensions of sum-of-squares techniques such as the V-s-iteration for piecewise polynomial systems quickly grow infeasible for large systems, which spline models embody. In this article, we therefore presented an adapted algorithm for splines, relaxing the problem to the subdomains that are actually covered by the region of attraction estimate. We have proven correctness of our approach and demonstrated a worst case run time superior to the basic approach for regions of attractions spanning more than 90 % of the subdomains of a regular planar spline system. While this ratio will shrink for higher dimensions, so does the number of subdomains increase.

1 Notation

 1 forming a set partition of R m . The interior, boundary, and closure of A ⊆ R m are notated by intA, ∂A, and clA, respectively. A * = def A -{0}. The set of sum-of-squares polynomials is notated by Σ [x].

Definition 6 A

 6 spline system is a triple SP = I, f (•) , E , where I ⊂ N are the domains, f : I×R m are the piecewise nonlinear dynamics, and E : I × I → {R m → R} is the weighted switching relation, where the dynamics switch from f i to f j with i, j ∈ I for x ∈ R m if and only if

  ) at last, we extend adj[•] to 2 I with adj[I] = def i∈I adj [i] -I for I ⊂ I.

17 :I

 17 K := I K ∪ {i next } 18: end 19: until I K = I or γ pre < γ min 20: γ := γ pre 21:

Fig. 1 .

 1 Fig.1. Invariant set after K fin = iterations for aircraft short-period motion (solid: invariant set Ω V K ≤γ ; dotted: inscribing ellipsoid Ω p≤β ; dashed: subdomain boundaries).

Table 1

 1 LMI variables in ( * i ) averaged for each repetition K, comparing Algorithm 1b and the basic approach. 11 Details of the application example: number of elements in IK ⊆ I; run time equivalent; number of executions of line 8; and average number of LMI variables.

			Alg. 1b			basic	
	K	#I K	T K	#l8	LMI	#I K	T K	#l8	LMI
	1	12	86	28	208	25	105	25	250
	2	12	44	12	356	25	105	25	378
	3	13	56	15	359	25	105	25	378
	4	14	60	16	360	25	105	25	378
	5	15	65	17	363	25	105	25	378
	6	20	111	29	365	25	105	25	378
	7	20	86	20	374	25	105	25	378
	. . .	. . .	. . .	. . .	. . .	. . .	. . .	. . .	. . .
	K fin	20	86	20	374	25	105	25	378

10 

See

[START_REF] Cunis | Piecewise Polynomial Model of the Aerodynamic Coefficients of the Generic Transport Model and its Equations of Motion[END_REF] 

for details.

Either by looking for global stability[START_REF] Papachristodoulou | Robust Stability Analysis of Nonlinear Hybrid Systems[END_REF] or choosing boundaries crossing the origin[START_REF] Amato | Estimation of the domain of attraction for a class of hybrid systems[END_REF] 11].

For a spline structure to behave like a spline, we tacitly understand that E(•, •) is irreflexive as well as symmetric with hij = E(i, j) = -hji if defined for i, j ∈ I.

Assuming that intΦi,j are disjunct if i = j.
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A Appendix

The proposed algorithm can be modified for multiple Lyapunov functions:

Then, Eq. (3) holds if

The continuity condition (A.2) cannot be represented by sum-of-squares immediately. Papachristodoulou and Prajna [START_REF] Papachristodoulou | Robust Stability Analysis of Nonlinear Hybrid Systems[END_REF] suggested to add an equality constraint for each polynomial boundary, however leading to increased conservativeness for large systems.

Proposition 9 Eq. (A.2) holds if and only if

for Φ i , Φ j pairwise disjunct.

PROOF. Follows directly from clΦ

In line 3 of Algorithm 1(b), Eq. (A.4) holds for

Now, when adding a subdomain i next to the current I K (line 17), we search for

Remark 10 Instead of (A.3), we might require

for all 1 ≤ i ≤ k when searching for V 1 , . . . , V k .

Eq. (A.6) imposes a less strict constraint on those V i with β i > β .