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Abstract

Polynomial switching systems such as multivariate splines provide accurate fitting while retaining an algebraic representation
and offering arbitrary degrees of smoothness; yet, application of sum-of-squares techniques for local stability analysis is
computationally demanding for a large number of subdomains. This communiqué presents an algorithm for region of attraction
estimation that is confined to those subdomains actually covered by the estimate, thereby significantly reducing computation
time. Correctness of the results is subsequently proven and the run time is approximated in terms of the number of total and
covered subdomains. Application to longitudinal aircraft motion concludes the study.
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1 Introduction

Recently, several works on polynomial fitting have been
led and provide a constructive method for determining
models based on analytical computation due to their
continuous and differentiable nature. Computing the
exact region of attraction for this kind of nonlinear
dynamics is very hard if not impossible. Therefore,
researchers have focused on determining polynomial
Lyapunov functions for polynomial systems building
upon sum-of-squares [1–3] including extensions to ratio-
nal and composite Lyapunov-functions [4–6]. However,
when polynomials are unsuitable to represent system
dynamics, piecewise defined polynomials such as splines
[7] provide more tractable models, requiring extended
effort when determining local stability: it is well known
for example, that stability of the subsystems does not
guarantee stability of the entire system [8]. Therefore,
approximation techniques have been developed for the
estimation of the region of attraction of piecewise sys-
tems. Early work was limited to a priori given, multiple
quadratic Lyapunov functions [9] and could only pro-
vide very rough estimates of the region of attraction. In
[10] though, analysis of polynomial fuzzy models is con-
sidered employing again composite Lyapunov functions;
taking each the point-wise extremum, this approach
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provides directly a continuous function. It is worth not-
ing that this might come at the cost of a large number of
decision variables and that there are no relaxations with
respect to the respectively active subdomains. [11] pro-
poses a further approach using multiple Lyapunov
functions for switching hybrid systems with polyhe-
dral subdomains which share a boundary in the origin.
Sum-of-squares complexity was discussed [12]; where
subdomains are considered for stability, the complexity
increases with the number of bounding constraints.

The present paper focuses on a new formulation of
the region of attraction estimation for large piecewise
systems of local polynomial dynamics and polynomial
domains, such as switching systems and multivari-
ate splines, within the sum-of-squares framework. We
present preliminary results and extend previous work
to switching systems (in Sec. 2). The main result, an al-
gorithm for splines, is discussed in Sec. 3, and is applied
to an engineering example in Sec. 4. The appendix illus-
trates an extension to multiple Lyapunov functions. For
the implementation of the constraints, in particular the
polynomial containment problem (Lemma 1), we rely
on the semidefinite programming techniques of [1, 13].
A concise discussion of the V-s-iteration is given in [14].

2 Preliminaries

Consider the autonomous system ẋ = f(x) given by the
k ∈ N ordinary differential equations

ẋ = fi(x) , if x ∈ Φi (1)
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for 1 ≤ i ≤ k, where x ∈ Rn, fi ∈ R [x]
n, and Φ1, . . . ,Φk

are intersections of polynomial inequalities Ωϕ≤x0 =def
{x ∈ Rn |ϕ(x) ≤ x0 } with ϕ ∈ R [x], x0 ∈ Rn, forming
a set partition of Rm. 1

Notation The interior, boundary, and closure of A ⊆
Rm are notated by intA, ∂A, and clA, respectively.
A∗ =def A−{0}. The set of sum-of-squares polynomials
is notated by Σ [x].

Assumptions f(0) = 0, i.e., the origin is a stationary
point of f .

Lemma 1 Let p, q1, . . . , qk ∈ R [x]; we have

Ωq1≤0 ∩ · · · ∩ Ωqk≤0 ⊆ Ωp≤0

if there exist s1, . . . , sk ∈ Σ [x] such that
∑k

i=1 siqi − p ∈
Σ [x].

Lemma 1 is an explicit formulation of [1, Lemma 2]. We
then write with s = (s1, . . . , sk),

s `
⋂
i

Ωqi≤0 ⊆Σ Ωp≤0 (2)

and say “s proves” the inclusion. We also say that “qi, p
solve” the inclusion.

Problem 2 Let p ∈ Σ [x]; solve the optimisation

max
β�,γ�∈R
V∈R[x]

β� such that
Ωp≤β� ⊆ ΩV≤γ� (3)
Ω∗

V≤γ� ⊆ {x |∇V(x) f(x) < 0} (4)

with V(·) positive definite 2 and V(x) = 0.

If (V, β�, γ�) solve Problem 2 for p, then ΩV≤γ� is an in-
variant subset of the region of attraction [1, Lemma 1]
and admits the largest inscribing region Ωp≤β� . Simul-
taneously searching for an optimal function V(·) while
proving invariance of ΩV≤γ� involves bilinear terms. If
the degree of V ∈ R [x] is restricted and f ∈ R [x], the
V-s-iteration [1, 14] solves Problem 2 by alternating-
iteratively searching for V, γ�, and β� maximal such that
s1, s2 prove (3) and (4).

Remark 3 The sum-of-squares formulation is limited
to nonnegativity; we thus make use of that p(x) < 0 if
p(x) ≤ −ε |x|22 for p ∈ R [x], x 6= 0, and ε > 0.

1 A1, . . . ,Ak form a set partition of a body K if and only if
they are pairwise interior-disjunct and

⋃
i Ai = K.

2 A continuous function ϕ is said to be positive definite (p.d.)
if ϕ(·) > 0 everywhere except the origin and ϕ(0) = 0.

We write ΩV,f,ε =def
{
x
∣∣∇Vf(x) ≤ −εxTx

}
for V ∈

R [x], f ∈ R [x]
m, and ε > 0.

If there exists a single function V : Rm → R p.d. such
that ∇Vfi(x) < 0 for all x ∈ A∗ and all 1 ≤ i ≤ k,
then A is also invariant for the piecewise system and
V is a Lyapunov function of the switching dynamics.
However, this requirement is unnecessary strict when it
comes to the subsystems that are not active [8]; indeed,
the following suffices:

Corollary 4 Let V : Rm → R be continuous p.d. with
V(0) = 0 and A = ΩV≤α for some α ∈ R; if

∀x ∈ A∗. (x ∈ Φi ⇒ ∇Vfi(x) < 0) (5)

for all 1 ≤ i < j ≤ k, then A =
⋃

i (A ∩ Φi) is invariant.

Lemma 1 encodes (5) into a polynomial sum-of-squares
problem, recalling Φi is an intersection of polynomial
inequalities. Now,

⋃
i (ΩV≤γ� ∩ Φi) is invariant if

s2,i ` Ω∗
V≤γi

∩ Φi ⊆Σ ΩV,fi,ε, (6)

s2,i ⊂ Σ [x], for all 1 ≤ i ≤ k and γ� = min{γ1, . . . , γk}.

Remark 5 The idea of Corollary 4, and of the paper,
can be extended to piecewise defined functions

V(x) = Vi(x) , if x ∈ Φi,

for 1 ≤ i ≤ k. We further illustrate this in the appendix.

3 Spline systems

While we have not taken further assumptions on the Φi,
in the present literature the invariant set is commonly
assumed to cover all domains. 3 For large spline systems
with bounded domains and only local stability, each sub-
domain taken into account whilst not part of the in-
variant set adds an inactive boundary to the computa-
tional load. We therefore present an adapted algorithm
to efficiently compute a region of attraction estimation
for spline systems.

Definition 6 A spline system is a triple SP =
(
I, f(·),

E
)
, where I ⊂ N are the domains, f : I×Rm are the piece-

wise nonlinear dynamics, and E : I × I → {Rm → R}
is the weighted switching relation, where the dynamics
switch from fi to fj with i, j ∈ I for x ∈ Rm if and only
if hij = E(i, j) is defined and hij(x) > 0. 4

3 Either by looking for global stability [15] or choosing
boundaries crossing the origin [9, 11].
4 For a spline structure to behave like a spline, we tacitly
understand that E(·, ·) is irreflexive as well as symmetric with
hij = E(i, j) = −hji if defined for i, j ∈ I.

2



We define some further notation: for i ∈ I, let adj[i] =def{
j
∣∣hij = E(i, j) is defined

}
be the set of adjacent do-

mains of Φi, that is, Φi =
⋂

j∈adj[i] {x |hij(x) ≤ 0};
VK(·) denotes the function-candidate in the K-th itera-
tion and IK ⊂ I will denote the set of domains covered
by the invariant set ΩVK≤γ� ; for i′ ∈ I, distK [i′] is the
distance of Φi′ with respect to VK , defined as

distK [i′] = sup{γ |ΩVK≤γ ∩ Φi′ = ∅} ; (7)

at last, we extend adj[·] to 2I with adj[I] =def⋃
i∈I adj [i]− I for I ⊂ I.

With this notation, we can state Algorithm 1 computing
the optimal estimate ΩV≤γ� for a spline structure: If, for
any iteration K, the invariant set ΩVK≤γ� is contained
in the subdomains IK , it suffices to check invariance only
of these subdomains and with respect to the boundaries
in between, instead of proving Eq. (6) for all i ∈ I. Now,
in order to examine whether an i′ ∈ I is covered by the
optimal invariant set of VK , we preliminary compute the
invariant set for some I ′ ⊂ I − {i′} and evaluate the
distance of i′; only if i′ is “closer” than the boundary of
the preliminary invariant set, i′ ∈ IK .

The algorithm consists of three cascaded loops; the
outer for loop over K of the basic V-s-iteration
(“K-iteration”), an inner repeat-until loop determin-
ing IK (“IK-loop”), and inner-most for loops over the
elements of IK . While the restriction to IK in line 8
reduces the problem size, the IK-loop itself adds to the
run time. On the other hand, if VK and adj[i] ∩ IK re-
main unchanged, Eq. (∗i) yields the same value γi; that
is, after each inext added to IK , it suffices to re-execute
line 8 for any i ∈ IK ∩ adj[inext]. We refer to the thus
modified algorithm as Algorithm 1b.

Proposition 7 After each repetition of the K-iteration
in Algorithm 1(b), the following hold:

(1) ΩVK≤γ� ⊂
⋃

i∈IK
Φi;

(2) ΩVK≤γ� is invariant.

PROOF. After each iteration of the IK-loop, we have
that

∀i ∈ IK Ω∗
VK≤γpre

∩ Φi ⊆ {x |∇Vfi(x) < 0} ; (8)

as Φi ⊆
⋂

j∈I Ωhij≤0 for any I ⊂ adj[i], adj[i] ∩ IK ⊂
adj[i], γpre ≤ γi, and s2,i proves (∗i), 5 for all i ∈ IK ; and

ΩVK≤γmin ⊂
⋃

i∈IK

Φi; (9)

5 Using A1 ∩ A2 ⊆ A′
1 ∩ A′

2 for A1,2 ⊆ A′
1,2.

Algorithm 1 Estimate invariant set ΩV≤γ� ⊂
⋃

i∈I Φi

with I = IKmax and V = VKmax .
1: for K = 1 to Kmax
2: if K > 1 then
3: find VK p.d. solving

s1 ` Ωp≤β� ⊆Σ ΩVK≤γ� (††)
∀i ∈ IK . s2,i ` ΩVK≤γi

∩ (∗∗)⋂
j∈adj[i]∩IK

Ωhij≤0 ⊆Σ ΩVK ,fi,ε

4: end
5: IK := IK−1

6: repeat
7: for i ∈ IK
8: find γi := maxγ≥0 γ s.t. s2,i ⊂ Σ [x] solves

s2,i ` ΩVK≤γ∩ (∗i)⋂
j∈adj[i]∩IK

Ωhij≤0 ⊆Σ ΩVK ,fi,ε

9: end
10: γpre := min{γi | i ∈ IK }
11: for i′ ∈ adj[IK ]
12: compute distK [i′] as

min
γ≥0,x

VK(x)=γ

γ s.t.
∧

j∈adj[i′]

hi′j(x) ≤ 0 (‡i′)

13: end
14: γmin := mini′∈adj[IK ] distK [i′]
15: if γpre ≥ γmin then
16: inext := arg mini′∈adj[IK ] distK [i′]
17: IK := IK ∪ {inext}
18: end
19: until IK = I or γpre < γmin
20: γ� := γpre
21: for i ∈ IK
22: find β� := maxβ≥0 s.t. s1 ∈ Σ [x] solves

s1 ` Ωp≤β ⊆Σ ΩVK≤γ� (†)

23: end
24: end

as γmin ≤ distK [i′] for i′ 6∈ IK and (‡i′) implies (7). Since
γpre < γmin for termination of the IK-loop, (9) implies
ΩVK≤γ� ⊂

⋃
i∈IK

Φi with γ� = γpre. Thus, ΩVK≤γ� ∩
Φi = ∅ for all i ∈ I − IK

6 and therefore, ΩVK≤γ� =⋃
i∈I (ΩVK≤γ� ∩ Φi) is invariant by Corollary 4 for (8)

holds. 2

6 Assuming that intΦi,j are disjunct if i 6= j.
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As all loops are limited by either the number of elements
in I or Kmax, Algorithm 1b terminates and ΩV≤γ� is
an invariant set of the given spline system. Initially, we
have I0 = {i ∈ I | 0 ∈ Φi }, and, assuming a singleton
I0 = {i0}, V1 = xTPx as solution to the polynomial
Lyapunov equation for fi0 . 7

Asymptotic run time estimation In order to com-
pare the run time of the proposed approach for splines
to the basic approach of the previous section, we count
the total number of executions of line 8 and the number
of decision variables s2,i involved each time. 8 Here, we
assume that the spline structure SP has k subdomains;
every domain has (in average) M adjacent cells; the re-
sulting invariant set covers R subdomains; and the num-
ber of iterations is chosen as Kmax = R. Consider now
the following, distinct cases: in the worst case, the initial
invariant set ΩV1≤γ� covers all R subdomains; whereas
in the average case, ΩVK≤γ� grows in each repetition
of the K-iteration into one further subdomain inext. In
both cases, I0 is taken as singleton.
Clearly, the asymptotic run time of the basic approach
in both cases is equivalent to T basic

M (k) = Rk(M + 1).
Algorithm 1b, in the worst case, repeats line 8 in the
first iteration for R times, afterwards once each itera-
tion: proving (∗i) requires a single decision variable the
first time (adj[i0] ∩ {i0} = ∅) and m∗ + 1 decision vari-
ables from there on, where m∗ is the number of adjacent
domains of i in I1 and each repetition of the IK-loop
adds one inext; in the following R − 1 iterations, line 8
is executed R times each with M + 1 decision variables;
that is,

Tworst
M (R) = 1 +R

M∑
m∗=1

(m∗ + 1) + (R− 1)R (M + 1) .

In the average case, Algorithm 1b executes line 8 once
in every iteration for each of the r∗ domains in IK with
m∗ ≤ M decision variables; additionally, since IK+1 =
IK ∪{inext}, line 8 is executed for every adjacent subdo-
main of inext in IK (i.e., at most M times) with m∗ + 1
decision variables; that is,

T avg
M (R) = 1 +

R∑
r∗=2

r∗ (M + 1) +R

M∑
m∗=1

(m∗ + 1) .

7 If I0 is not a singleton, P can be found as solution to

AT
i P + PAi <

∑
j∈adj[i]∩I0

hij(x) ∀i ∈ I0

with Ai = ∂fi/∂x.
8 Line 8, being inside of all three loops, is the major difficulty
if line 12 is efficiently computed using MATLAB’s fmincon
or a similar numerical method.

If M = 3 (M = 4), 9 the worst-case asymptotic run
time is less than T basic

M for R < 0.987 k (R < 0.981 k)
and the average-case is less than 1

2T
basic
M for R < 0.944 k

(R < 0.933 k).

4 Application example

The short-period motion of a transport aircraft might
be given as autonomous system

ẋ1 = x2 (10)
ẋ2 = fM(x1, x2) , (11)

where x1 is the angle of attack, x2 is the pitch rate,
and fM(·) is a 3rd-order piecewise polynomial model
of the aerodynamic pitch coefficient defined as 5-by-5
rectangular spline (boundaries depicted in Fig. 1) with
fM(0, 0) = 0. 10 After scaling the system to x̃ = Dx
with D ∈ R2×2, we compute the invariant set of the ori-
gin using Algorithm 1b. Such a problem has been dis-
cussed in [14] for a polynomial model and in [17] for a
once-piecewise polynomial model.

−40 −20 0 20 40 60

−200

0

200

x1 (°)

x
2

(°
/s

)

Fig. 1. Invariant set after Kfin = 124 iterations for aircraft
short-period motion (solid: invariant set ΩVK≤γ� ; dotted:
inscribing ellipsoid Ωp≤β� ; dashed: subdomain boundaries).

Algorithm 1b finds the optimal invariant set shown in
Fig. 1, covering 20 of 25 domains, after 124 repetitions
of the K-iteration and a run time equivalent of T =
10 098. The basic approach runs the same number of
repetitions with a run time equivalent of T basic = 13 020.
In each repetition of the K-iteration, line 8 is executed
multiple times subject to both the elements already in
IK−1 and those added to IK during the inner IK-loop.
The number of linear matrix inequality (LMI) variables
to solve the sum-of-squares problems (∗i) then varies
with the number of elements in adj[i]∩IK . Table 1 gives
details of the computations, including the number of

9 M = 3 and M = 4 are tantamount to planar systems with
triangular and rectangular domains, respectively.
10 See [16] for details.
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LMI variables in (∗i) averaged for each repetition K,
comparing Algorithm 1b and the basic approach. 11

Table 1
Details of the application example: number of elements in
IK ⊆ I; run time equivalent; number of executions of line 8;
and average number of LMI variables.

Alg. 1b basic
K #IK TK #l8 LMI #IK TK #l8 LMI

1 12 86 28 208 25 105 25 250

2 12 44 12 356 25 105 25 378

3 13 56 15 359 25 105 25 378

4 14 60 16 360 25 105 25 378

5 15 65 17 363 25 105 25 378

6 20 111 29 365 25 105 25 378

7 20 86 20 374 25 105 25 378
...

...
...

...
...

...
...

...
...

Kfin 20 86 20 374 25 105 25 378

5 Conclusion

Extensions of sum-of-squares techniques such as the
V-s-iteration for piecewise polynomial systems quickly
grow infeasible for large systems, which spline mod-
els embody. In this article, we therefore presented an
adapted algorithm for splines, relaxing the problem to
the subdomains that are actually covered by the region
of attraction estimate. We have proven correctness of
our approach and demonstrated a worst case run time
superior to the basic approach for regions of attractions
spanning more than 90 % of the subdomains of a regu-
lar planar spline system. While this ratio will shrink for
higher dimensions, so does the number of subdomains
increase.
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A Appendix

The proposed algorithm can be modified for multiple
Lyapunov functions:

Corollary 8 Let Vi : Rm → R be continuous p.d. with
Vi(0) = 0 and Ai = ΩVi≤α for all 1 ≤ i ≤ k and some
α ∈ R; if

∀x ∈ A∗
i . (x ∈ Φi ⇒ ∇Vifi(x) < 0) (A.1)

∀x ∈ ∂Φi ∩ ∂Φj . Vi(x) = Vj(x) (A.2)

for all 1 ≤ i < j ≤ k, thenA =
⋃

i (Ai ∩ Φi) is invariant.

Then, Eq. (3) holds if

s1,i ` Ωp≤βi
⊆Σ ΩVi≤γ� , (A.3)

s1,i ∈ Σ [x], for all 1 ≤ i ≤ k and β� = min{β1, . . . , βk}.

The continuity condition (A.2) cannot be represented
by sum-of-squares immediately. Papachristodoulou and
Prajna [15] suggested to add an equality constraint for
each polynomial boundary, however leading to increased
conservativeness for large systems.

Proposition 9 Eq. (A.2) holds if and only if

∀x ∈ clΦi ∩ clΦj . Vi(x) ≤ Vj(x) (A.4)

for Φi,Φj pairwise disjunct.

PROOF. Follows directly from clΦi ∩ clΦj = (∂Φi ∩
∂Φj) ∪ (intΦi ∩ intΦj) with intΦi ∩ intΦj = ∅ and
(vi ≤ vj) ∧ (vj ≤ vi) ⇔ vi = vj . 2

In line 3 of Algorithm 1(b), Eq. (A.4) holds for Vi,Vj ∈
R [x] p.d. if

rij `
⋂

a∈adj[i]∩IK

Ωhia≤0 ∩
⋂

b∈adj[j]∩IK

Ωhjb≤0 ⊆Σ ΩVi≤Vj

(A.5)

with rij ⊂ Σ [x] and i ∈ IK , j ∈ adj[i] ∩ IK .

Now, when adding a subdomain inext to the current IK
(line 17), we search for Vinext ∈ R [x] p.d. such that (A.5)
holds for i = inext and all j ∈ adj[inext] ∩ IK .

Remark 10 Instead of (A.3), we might require

s1,i ` Ωp≤β� ⊆Σ ΩVi≤γ� (A.6)

for all 1 ≤ i ≤ k when searching for V1, . . . ,Vk.

Eq. (A.6) imposes a less strict constraint on those Vi

with βi > β�.
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