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Certification of inflight loss-of-control recovery is complicated by the highly

nonlinear flight dynamics beyond stall. In lieu of extensive Monte-Carlo simu-

lations for flight control certification, sum-of-squares programming techniques

provide an algebraic approach to the problem of nonlinear control synthesis and

analysis. However, reliance on polynomial models has hitherto limited applica-

bility to aeronautical control problems. Taking advantage of recently proposed

piecewise polynomial models, this paper revisits sum-of-squares techniques for

recovery of an aircraft from deep-stall conditions using a realistic yet tractable

aerodynamic model. Local stability analysis of classical controllers is presented

as well as synthesis of polynomial feedback laws with the objective of enlarging

their nonlinear region of attraction. A newly developed synthesis algorithm for

infinite-horizon backwards-reachability facilitates the design of recovery control

laws, ensuring stable recovery by design. The paper’s results motivate future

research in aeronautical sum-of-squares applications.

Nomenclature
α Angle of attack (rad);

α0 Low-angle of attack boundary (α0 = 16.2949°);

γA Flight-path angle relative to air (rad);

η Elevator deflection (rad), negative if leading to positive pitch moment;
*Now with the University of Michigan, Ann Arbor, Michigan 48109, USA, e-mail: tcunis@umich.edu; Member AIAA.
†Assistant Professor, Drones Research Group, e-mail: jean-philippe.condomines@enac.fr
‡Assistant Professor, Department of Mechanical & Aerospace Engineering, e-mail: laurent.burlion@rutgers.edu

tcunis@umich.edu
jean-philippe.condomines@enac.fr
laurent.burlion@rutgers.edu


ϑ Signed distance ratio (ϑ ∈ R);

λ Level set (λ ∈ R+);

ρ Pseudo-radius (ρ ∈ R+);

ϕ(·) Boundary condition function (ϕ : Rm → R);

dη Change of elevator deflection (rad/s);

K Feedback control law (K : Rn → Rp);

n Number of states; system degree;

p Number of inputs;

P Positive-definite, polynomial shape function (P : Rn → R≥0, P ∈ R [x]);

q Pitch rate (rad/s);

VA Aircraft speed relative to air (m/s), positive along xa-axis;

x∗, η∗ State vector and elevator deflection at trim condition;

x̃, η̃ Scaled state vector and elevator deflection;

(·)post Domain of high angle of attack;

(·)pre Domain of low angle of attack;

E (Quasi)-Ellipsoidal set (E =
{
x �� P(x) ≤ ρ

}
) with shape function P and pseudo-radius ρ;

Σ [x] Polynomial sum-of-squares cone (Σ [x] ⊂ R [x]);

R [x] Set of polynomials in x with real-valued coefficients;

I. Introduction

Prediction and prevention of inflight loss-of-control (LOC-I) commonly requires prior knowledge

of the aircraft’s dynamics, often given by a reliable and representative aerodynamic model. However,

establishing a satisfactory model is rarely straightforward and ensuring sufficient representation of every

aspect of the operational envelope of the true vehicle is extremely challenging. Indeed, dynamics beyond the

nominal flight envelope are highly nonlinear and often unstable. Flight control certification for commercial

airliners therefore relies today on simple but extensive Monte-Carlo simulations of high-fidelity models [1] in

2



order to analyse the viable subset of the flight envelope; this demands significant investment of time and

computational power. Yet, more sophisticated tools based on nonlinear stability theory have been applied in

the literature. Mathematical continuation and bifurcation analysis establishes trim conditions and periodic

orbits as well as their stability [2, 3]; however, attraction or reachability of a stable solution is not determined

quantitatively by the continuation methodology. Reachability analysis, on the other hand, numerically evolves

reachable subsets of the state-space over time, identifying possible violations of predefined constraints [4, 5].

An alternative formulation of the reachability problem is the algebraic notion of controlled invariant sets,

or safe sets [6, 7]. Defined as the largest set such that the aircraft can be kept within the state constraints

subject to control input limitations, the safe set determines bounds for prevention and recoverability from

LOC-I events. The idea of a safe set as defined by the existence of an admissible control sequences is thus

contrasted by the set of converging state trajectories subject to an a priori specified control law, namely, the

region of attraction of the closed-loop system.

Determining the region of attraction of a given system up to a desired accuracy is, in general, a non-trivial

task [8]. Recently, Lyapunov stability theory and LaSalle’s later extension have been turned into a systematic

analysis approach employing sum-of-squares (SOS) programming techniques [9, 10]. Relaxed to semi-definite

problems [11], SOS provides global stability proofs [12] as well as provable under-estimates for the region

of attraction of systems defined by polynomial dynamics [13]. Those methods for stability analysis can be

further extended to synthesis of control feedback laws ensuring or enlarging a region of attraction subject to

input constraints [14, 15].

Sum-of-squares techniques have been exploited to analyze the short-period motion of an F/A-18 aircraft

model [16]. A special iteration technique, called V-s-iteration, was applied to estimate the region of attraction

of the longitudinal motion of the Generic Transport Model [17]. In [18], this technique was employed to

validate a revised control law for the F/A-18 falling-leaf mode. Note that this work used a reduced six-state

polynomial aircraft model of 3rd order, which was derived by sampling the equations of motion rather than

the aerodynamic coefficients. However, this model assumes a constant airspeed. Despite SOS techniques

being a powerful tool to generate Lyapunov functions for suitable models, few works on SOS for aircraft

dynamics have been published since. Mere polynomials are often unsuitable to fit full-envelope aerodynamics

accurately, whereas advanced modeling techniques, such as multivariate splines [19], are too computationally

heavy to analyze using SOS. Simple piecewise-defined models, as proposed by the authors in [20], have the

potential of bridging this gap; namely, these models accurately describe aircraft dynamics in the domains

of low and high angles of attack while only slightly increasing the computational load for sum-of-squares

programming.

In this article, we synthesize controllers for and verify deep-stall recovery of a small unmanned aircraft
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using SOS programming and a piecewise, 5th-order polynomial model. The choice of aircraft, a fixed-wing

capable of stable deep-stall transition, descent, and recovery [21], allows us to isolate longitudinal dynamics.

Continuing our work in [20], we present an extended V-s-iteration for piecewise-defined aircraft dynamics

in order to obtain feedback control laws subject to state and inputs constraints. In particular, we focus on

two aspects: Analysis of an aircraft model with separately modelled, high angle-of-attack dynamics; and the

synthesis of a control feedback to specifically recover from a deep-stall trim condition. While we initially rely

on common polynomial surfaces to govern the estimate (cf. [13, 14, 17, 18]), we later replace it by a single

deep-stall reachability condition. We thus provide a systematic analysis by SOS beyond polynomial aircraft

models.

The paper is organized as follows: Section II introduces the aircraft, its piecewise polynomial model and

recalls the basics of SOS analysis. Section III analyzes stable recovery of a linear-quadratic regulator and

synthesizes polynomial controllers subject to an enlarged region of attraction. Section IV concludes the article

with a revised formulation of control synthesis specifically for deep-stall recovery.

Note on polynomial surfaces For sum-of-squares analysis and control synthesis, we make use of geometric

objects defined by polynomial functions on the state-space, i.e., E =
{
x ��, P(x) ≤ ρ

}
, where P is a polynomial in

x and ρ > 0 determines the size of E. The most common examples are ellipsoids (in three dimensions) and the

related hyper-ellipsoidal surfaces, which are governed by quadratic functions P = xTQx with positive-definite

matrix Q. For simplicity, we call both ellipsoids and hyper-ellipsoids ellipsoidal surfaces. The concept of

(hyper)-ellipsoids can be further extended to positive polynomial surfaces of order larger than two, which we

will refer to as quasi-ellipsoids.

II. Methodology
We consider an autonomous, 1.65 m-wingspan, unmanned aircraft that, instead of landing gear, is intended

to land vertically by descending using a deliberate deep-stall maneuver. In this maneuver, the drag of the

wings counteract the gravitational force, leading to a stable trim condition, and the horizontal distance

covered during the landing is minimized. For the purpose of stable deep-stall flight, the elevator is designed

to exceed the usual range and reach deflections of up to −60°. The parameters of the aircraft used in this

study are given by Tab. 1.

The aircraft is considered to be laterally stable due to its dihedral wings. We therefore neglect the lateral

dynamics for the analysis of stability and, consequently, assume that the side-slip angle β vanishes. In

deep-stall flight and transition, the aircraft is further unthrottled, i.e., the thrust force is zero (F = 0).

We will refer mainly to the international standard air-path axis system (xa, ya, za) oriented along the
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Table 1 Parameters of the aircraft.

flight mass m 1.55 kg
wing span b 1.66 m

mean chord ca 0.174 m
wing area S 0.277 m2

air density % 1.25 kg/m3

gravitational constant g 9.81 m/s2

xg

xa

xf

zg
za

zf
mg

L

F

D

VA
Θ

γA

α

Fig. 1 Longitudinal axes with angles and vectors for β = 0.

aircraft’s velocity vector with respect to air (VA) [22]. Lift and drag forces are defined along these axes and

denoted L and D; angle of attack α, flight-path angle γA, and pitch angle Θ are given by rotations into the

body axis system (xf, yf, zf) as well as the earth-fixed axis system (xg, yg, zg), defined by the aircraft’s fuselage

and the ground. (Fig. 1). If not stated otherwise, all variables are in SI-units; angles are however given in

degrees where convenient.

A polynomial g ∈ R [x] is a sum of squares (SOS) if g =
∑

i gi(x)
2 for some (gi)i ⊂ R [x]; the set of

sum-of-squares polynomials is denoted by Σ [x]. It can be proven that g ∈ Σ [x] if and only if there is a

positive semidefinite matrix M such that g = zTM z, where z is a vector of monomials in x [10]. This relation

reduces the problem of finding SOS polynomials to semidefinite programming [11], given that the objective

is linear in the SOS variables. Bilinear problems are generally NP-hard; however, the problem of a single,

scalar decision variable entering bilinearly into the objective can be efficiently solved as a quasi-convex SOS

program [10]. Notwithstanding that any SOS polynomial is nonnegative, the opposite does not hold.
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A. Equations of motion

The longitudinal equations of motion without thrust are given as nonlinear 4-state, ordinary differential

equations [17, 23, 24]:

V̇A =−
1

2
%V2

ASm−1CD(α, η) − g sin γA (1)

VA γ̇A =
1

2
%V2

ASm−1CL(α, η) − g cos γA (2)

Iy q̇ =
1

2
%V2

AScaCm(α, η) − kq̇qq (3)

Θ̇ = q (4)

with the pitch angle

Θ = γA + α (5)

and the air speed VA equal to the norm of the velocity relative to air. CL, CD, Cm are dimensionless coefficients

connected to lift force, drag force, and pitching moment. The elevator deflection η is, by convention, negative

when causing a positive pitching moment. The linear damping coefficient kq̇q accounts for non-static

aerodynamics (see [21]).

The aerodynamic coefficients of the body, wing, and surfaces have been modeled by piecewise polynomial

functions

C�(α, · · · ) =




Cpre
� (α, · · · ) if α ≤ α0

Cpost
� (α, · · · ) otherwise,

(6)

with Cpre
� (α0, ·) ≡ Cpost

� (α0, ·) and α0 = 16.2949°. Fig. 2 shows the piecewise model and their polynomial

segments. Defined as piecewise polynomials, we are able to account for full-envelope characteristics both of

the lift and drag coefficients as well as the coefficients in body axes [20]. The resulting models are continuous

over the entire domain but not necessarily differentiable in its joint. The pitch-moment coefficient Cm is

modeled likewise. The full aircraft model is detailed in [25].

B. Region of attraction estimation

In the following, we use SOS programming to compute a region of attraction estimate for a piecewise

polynomial system under constrained control inputs. We then extend this framework to find a control law

that enlarges the region of attraction of the controlled system. In order to resolve the resulting bilinear terms,
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CFD data piece-wise fit low-α domain high-α domain
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(b) Aerodynamic CX coefficient.

Fig. 2 Piecewise model of aerodynamic coefficients with polynomial segments [21].

we will make use of the V-s-iteration [17].

Let a piecewise polynomial system be defined as

f(x, u) =




f1(x, u) if ϕ(x) ≤ 0

f2(x, u) otherwise,
(7)

with state vector x ∈ X ⊂ Rn, input vector u ∈ U ⊂ Rp, submodels f1, f2 ∈ R [x, u]nand boundary ϕ ∈ R [x];

assume further f(x∗, u∗) = 0. The equilibrium (x∗, u∗) is asymptotically stable if there exists a non-empty set

of initial conditions R, the region of attraction, such that the trajectories converge to x∗ and are contained in

R, and R contains x∗ in its interior. Now, Ωλ =
{
x ��V(x) ≤ λ

}
is an invariant subset of R if, for V : X → R

continuous and positive definite, V(0) = 0, and λ ∈ R+,

∀x ∈ Ωλ, ∇Vf(x, u∗) < 0 (8)

and Ωλ is bounded [8]. Moreover, we call Ωλ invariant under control K(·) if Ωλ is an invariant set of the

closed-loop system fK : x 7→ f(x,K(x)) for some control law u = K(x) and K(x) ∈ U for all x ∈ Ωλ.

As Lyapunov functions are non-unique, alternative V(·) give rise to different estimates of the region

of attraction. For comparison of the size of an invariant subset, the V-s-iteration introduces a surface

Eρ =
{
x �� P(x) ≤ ρ

}
with P ∈ R [x] positive (quadratic) chosen as parameter of the estimation [13]. The
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estimation of a maximal invariant subset of the region of attraction is then subject to the optimization

problem

max
V∈R[x]
λ>0

ρ > 0 s.t. Ωλ ⊂
{
x ��∇Vf(x, u∗) < 0

}
and Eρ ⊂ Ωλ

as well as V(x) > 0 if x , 0 and V(0) = 0.

1. Piecewise region of attraction

Recall that Ωλ bounded is an invariant subset of R under control K if V(·) is a continuous and positive

definite function and ∇VfKi(x) < 0 for any x ∈ Ωλ and i ∈ {1, 2} such that fKi is active. For V1,2 ∈ R [x], we

have the sufficient SOS constraint [20] (see also [13, Lemma 10])

V1,2(x) − `a ∈ Σ [x] (9)

−∇V1fK1 − `b + (V1 − λ) s1,λ + ϕ s1,ϕ ∈ Σ [x] (10)

−∇V2fK2 − `b + (V2 − λ) s2,λ + ϕ s2,ϕ ∈ Σ [x] , (11)

where si,λ, si,ϕ ∈ Σ [x], i ∈ {1, 2} relax negativity of ∇Vifi to the respective partitions defined by Ωλ and ϕ(·)

and `a,b ∈ R [x] are positive definite terms [13], e.g., `a = `b = εxTx with some small ε > 0. As V(·) is

defined piecewise itself, i.e., V(x) = V1(x) if ϕ(x) ≤ 0; otherwise V(x) = V2(x); we ensure continuity along

the boundary ϕ ≡ 0 by the additional SOS constraint

−V1 +V2 + ϕ sϕ,1 − ϕ s−ϕ,1 ∈ Σ [x] (12)

−V2 +V1 + ϕ sϕ,2 − ϕ s−ϕ,2 ∈ Σ [x] , (13)

where sϕ,i, s−ϕ,i ∈ Σ [x] with i ∈ {1, 2} enforce that both V1(x) ≤ V2(x) and V2(x) ≤ V1(x) if ϕ(x) = 0.

2. Invariant sets under control

The definition (7) and subsequent constraints (9)–(11) apply equally to closed-loop controlled systems

fK where K(·) is linear or polynomial in x. This observation alone, however, is insufficient to guarantee

invariance under control as we have defined it above. We might now assume U to be defined as conjunction

U =
{
u �� p1(u) ≤ 0, . . . , pm(u) ≤ 0

}
with (pl)1≤l≤m ⊂ R [u]; if, furthermore K ∈ R [x]p, we can state a necessary

8



SOS constraint for invariance of Ωλ under control K as

− (pl ◦K) + (V − λ) sl,λ′ ∈ Σ [x] , (14)

where (pl ◦K)(x) = pl(K(x)), with sl,λ′ ∈ Σ [x] for all 1 ≤ l ≤ m. The constraints (9)–(11) and (14), in fact,

hold independently of each other and can be evaluated separately. As the subset-relation ⊂ on the level sets

(Ωλ)λ>0 constitutes a total order, ΩλK with λK = min{λ, λ ′} is an invariant subset of the region of attraction

of fK(·) under control K.

3. V-s-iteration

The ellipsoid Eρ can be fitted inside the invariant set Ωλ if

− (Vi − λ) + (P − ρ) si,P ∈ Σ [x] (15)

with si,P ∈ Σ [x] for i ∈ {1, 2}.

Note that we require V1,2 to be of some fixed degree. However, some constraints involve bilinear terms

of the form Vi s(·) once V1,2 become decision variables. The V-s-iteration uses a bisection approach of

iteratively-alternating steps; a detailed discussion of the basic V-s-iteration has been given by Chakraborty

et al. [17]. We extend the approach in order to incorporate control input constraints for a K(·) given a priori

and, later on, synthesize an optimal control feedback:

1a) Find λ� maximal such that (10)–(11) hold for V1,2 fixed;

1b) Find λ∗ maximal such that (14) holds for V1,2 fixed;

2) Find ρ� maximal such that (15) holds for V1,2 and λ† = min{λ�, λ∗} fixed;

3) Find V1,V2 ∈ R [x] of fixed degree such that (9)–(15) hold for ρ� and λ† fixed.

The purpose of Eρ here is twofold: first, to quantify the size of the provable invariant subset Ωλ for each

iteration; and second, to prevent the last step from yielding a smaller estimate than hitherto achieved.

C. Control synthesis

Until now, we have considered the control law to be given and fixed. Yet, we can further adapt our

approach to find a suitable K in the attempt to enlarge the (estimated) region of attraction within the bounds

imposed by the control input constrains. As the SOS constraints must be linear in the prospective control

function, we require the control system to be in the companion form affine in u, viz. ẋ = fx(x) + fu(x)u with

fx ∈ R [x]n , fu ∈ R [x]n×p, such that fK(x) = fx(x) + fu(x)K(x). The input constraints (pl)1≤l≤m, too, must be
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linear in u, that is, pl(u) = pT
l

u with pl ∈ R
p, and K guarantees control-invariance of Ωλ′ if

−pT
l K + (V − λ ′) sl,λ′ ∈ Σ [x] (16)

with sl,λ′ ∈ Σ [x] for all 1 ≤ l ≤ m.

Remark The formulation of (16) as sum-of-squares constraints allows us to synthesize feedback laws of

polynomial nature instead of feedback matrices, since both ∇fK and pTK are linear in the coefficients of K

regardless of the polynomial order.

In order to circumvent bilinearities, we execute again steps 1) and 2) for K fixed and incorporate a

supplementary second-to-last step:

3a) Find K ∈ R [x] of fixed degree such that (10)–(11) and (16) hold for V1,2 as well as ρ� and λ† fixed.

The old and new last step is once more computed for K fixed. The thus augmented iteration is performed by

Algorithm 1.

Remark Algorithm 1 could be modified by removing lines 11–14 and subsequently replacing the constraint

(15) in line 4 by

−
(
VN,i − λ

†
)
+
(
VN−1,i − λ

†
)

si,V ∈ Σ [x]

with si,V ∈ Σ [x] for all i ∈ [1, 2]. The thus modified algorithm, to which we will refer as Algorithm 1b, does not

need an ellipsoidal shape as input. Similar approaches have recently been employed for analysis of reachable

sets of polynomial systems [26] and the region of attraction of hybrid systems [27]. While Algorithm 1b

allows the region-of-attraction estimate to grow in all directions rather than the one given by E, we will see

later that is unsuitable for the purpose of deep-stall recovery. Algorithm 1 and 1b are implemented in [28].
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Algorithm 1 Extended V-s-iteration for control synthesis under state and input constraints.
1: for N = 1 to Nmax
2: if N > 1 then
3: find KN ∈ R [x] s.t. for all l ∈ [1,m], i ∈ {1, 2},

−pT
l KN +

(
VN,i − λ

†
)

sil,λ′ ∈ Σ [x]

−∇VN,ifKN i − `b +
(
VN,i − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

4: find VN,1,VN,2 ∈ R [x] s.t. sϕ,i, s−ϕ,i ∈ Σ [x] and for all l ∈ [1,m], i ∈ {1, 2},

VN,i(x) − `a ∈ Σ [x]

−
(
VN,i − λ

†
)
+ (P − ρ�) si,P ∈ Σ [x]

−∇VN,ifKN i − `b +
(
VN,i − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

−pT
l KN +

(
VN,i − λ

†
)

sil,λ′ ∈ Σ [x]

−VN,i +VN,3−i + ϕ sϕ,i − ϕ s−ϕ,i ∈ Σ [x]

5: end
6: for i ∈ {1, 2}
7: find λ�i := maxλ≥0 λ s.t. si,λ, si,ϕ ∈ Σ [x] and

−∇VN,ifKN i − `b + (VN,i − λ) si,λ + ϕ si,ϕ ∈ Σ [x]

8: find λ∗i := maxλ′≥0 λ
′ s.t. sil,λ′ ∈ Σ [x] and for all l ∈ [1,m],

−pT
l KN + (VN,i − λ

′) sil,λ′ ∈ Σ [x]

9: end
10: λ† := min

{
λ�1, λ

�
2, λ
∗
1, λ
∗
2

}

11: for i ∈ {1, 2}
12: find ρi := maxρ≥0 s.t. si,P ∈ Σ [x] and

−
(
VN,i − λ

†
)
+ (P − ρ) si,P ∈ Σ [x]

13: end
14: ρ� = min{ρ1, ρ2}
15: end
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D. Preliminary stability analysis

In [21], we applied bifurcation theory as well as optimization techniques to derive the linear pitch-damping

model in Eq. (3). We identified an optimal coefficient Cmq ≈ 1.96. In consequence, Fig. 3 shows the location

and stability of longitudinal trim conditions (note that the choice of Cmq does not affect the location of

stationary solutions as q = 0 is a necessary conditions for trim), parametrized by the elevator deflection

η. The black dot in Fig. 3 indicates the largest deflection, η = 6.5°, for which the aircraft enters a steep,

nose-down descent; the minimal elevator deflection is −60°. Shortly after stall, the aircraft encounters an

unstable regime of stationary solutions with a family of limit cycles (Hopf bifurcation).
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Fig. 3 Trim conditions of longitudinal motion with unstable regimes (dashed) [21].

III. Region of Attraction at Trim Point
Where classical control synthesis relies upon linearized models, the region of attraction estimation provides

knowledge about the limitations of the chosen control implementation. Unlike the safe set [see, e.g., 6, 7],

which provides an exploratory study in order to estimate the abilities of the aircraft to be controlled, we

study a region of attraction in the context of a given controller and the respective trim condition [20]. For

the latter we choose a low-inclination gliding descent trim at η∗glide = −5° (see Appendix A).

This section investigates the capability of various controllers to stably recover the aircraft from a deep-stall

trim condition. We first consider a linear quadratic regulator, which could have been derived by classical

control techniques. Later, we apply the SOS tools in order to derive a polynomial control law that improves

stability and recovery of the vehicle. For both analysis and control synthesis, we scale the state vector

xT =

[
VA γA q α

]
by diag(10 m/s, 45°, 150 °/s, 45°)−1 and the input η by (80°)−1 in order to normalize
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states and inputs. The scaled variables are henceforth denoted by x̃, η̃, etc. The viable (unscaled) elevator

inputs are given to U = [−60°, 20°] and represent the physical limits of the aircraft elevator. We further

approximate the non-polynomial functions (sine, cosine, inverse) by Taylor series expansions and truncate

high-order polynomial terms (Appendix A) in order to facilitate the resulting SOS problems [17].

Remark In [18], analysis of a six-state polynomial aircraft model has been considered, omitting inter

alia the aircraft’s speed from the state vector. Since deep-stall transition maneuvers span a large range of

airspeeds [21], this approach would not be applicable here. Instead, we restrict this study to the four-state

longitudinal motion (later, we will include the elevator deflection as a fifth state); however, as we consider

piecewise-defined polynomial equations of motion of higher order, this model is in fact more complex than [18].

The aircraft longitudinal motion is commonly divided into short-period dynamics involving pitch rate

and angle of attack as well as the long-period phugoid oscillation of airspeed and flight-path angle and often

discussed separately, as if uncoupled. When discussing the region of attraction, we take into account the

full, coupled 4-state model of Eqs. (1)–(4) but display the estimates as projections into either the phugoid

VA-γA plane or short-period α-q plane. Details for all SOS computations are given in Appendix B.

A. Analysis of the Linear Quadratic Regulator

A further but more advanced element of the classical linear toolbox is the renown linear quadratic regulator

(LQR). Here, we minimize the quadratic cost function J̃ =
∫ ∞
0

x̃(t)T Q̃ x̃(t) + R̃ η̃(t)2 dt taking into account

the linearized dynamics f̃(x̃∗ + δx̃, η̃∗ + δη̃) ≈ Ãδx̃ + b̃δη̃ in order to find a linear feedback. We obtain the

optimal cost-to-go for an initial condition x̃0 = x̃(0) as J̃opt = x̃T0 S̃ x̃0, where S̃ denotes the solution to the

general Riccati equation with
(
Ã, b̃, Q̃, R̃

)
and the LQR feedback is given as η̃ = K̃LQR = −

[
R̃−1b̃T S̃

]
x̃. For

weights Q̃ = I4×4, R̃ = 10, the LQR feedback is synthesized to

K̃LQR = −0.1163ṼA + 0.3881γ̃A + 0.2412q̃ + 0.0007α̃. (17)

The control-invariant estimate of the region of attraction for K̃LQR is presented in Fig. 4 with the ellipsoidal

shape E governed by P̃ = 4Ṽ2
A+4γ̃2A+ q̃2 + α̃2. Both E and the control inputs returned by the LQR feedback

are illustrated in Fig. 4 as well.

Even after descaling, the LQR gain on the angle of attack is significantly smaller, diminishing its

contribution to the overall control feedback. With the additional gains on airspeed and path inclination, the

estimated region of attraction contains the aircraft’s high-angle of attack conditions in the lower-left corner
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invariant subset (α ≤ α0) ellipsoidal shape trim condition
invariant subset (α > α0) 0 elevator deflection (°)
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(b) Projection into short-period plane.

Fig. 4 Estimated control-invariant region of attraction of the linear quadratic regulator.

of the phugoid plane. Consequently, the depicted LQR feedback is able to stably recover from deep-stall.

In Fig. 5, we further compare this result with the estimated region of attraction obtained by Algorithm 1b,

that is, without a predefined ellipsoidal shape. Black squares designate deep-stall trim conditions that

are contained within the estimated invariant set of Algorithm 1 but not in the estimate of Algorithm 1b,

corresponding to elevator deflections from −44° to −50°.

B. Synthesis of polynomial control laws

Until now, we have considered the control input to be determined by an a priori obtained state feedback

law, which might have been designed by any means of control engineering. Synthesis of such a control law

is subject to various objectives including desired closed-loop dynamics, disturbance rejection, and optimal

reference tracking. From here on, we treat the feedback law as decision variables of sum-of-squares analysis

rather than as part of the initial problem formulation. Thus, the feedback control is synthesized with the

aim of enlarging the region of attraction, again quantified by the size of the ellipsoidal shape E, towards

deep-stall flight conditions. In the following, we subsequently derive a linear feedback, a polynomial feedback,

and piecewise feedback comparable to gain-scheduling control approaches. Further details can be found in

Appendix B.

In order to reformulate the dynamics of Section II into the companion form, we take the elevator deflection
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Fig. 5 Comparison with the estimate by Alg. 1b (dashed) for the linear quadratic regulator.

η to be a state and introduce the rate of the actuator, dη, as new input:



ẋ

η̇



=



fEOM(x, η)

0



+



0

1



dη, (18)

where fEOM are the system dynamics of the previous sections. The thus extended state vector is denoted by

xη and scaled by diag(10 m/s, 45°, 150 °/s, 45°, 20°)−1; the new input dη is scaled by (100 °/s)−1. The viable

(unscaled) actuator rate inputs are constrained to |dη | ≤ 200 °/s in order to ensure realistic actuator dynamics.

The role of the ellipsoid E and, in particular, the polynomial P governing its shape for control synthesis

deserves a further discussion. In the last step of the extended V-s-iteration that is employed for both analysis

and control synthesis, the ellipsoid
{
x �� P(x) ≤ ρ�

}
serves as lower bound for the region of attraction estimate,

both in size and shape. Recall further that each estimate
{
x ��V(x) ≤ λ�

}
is itself invariant; if the feedback

law is chosen prior to analysis, as in the preceding section, all invariant sets of the aircraft are predetermined

by the closed-loop system dynamics. That is, we find a certain invariant set by guessing a Lyapunov function

and computing its largest stable level set. With the feedback law being a decision variable of the control

synthesis now, the selection of a control feedback actively shapes the resulting invariant set. Consequently, we

expect the estimated region of attraction to follow the chosen ellipsoidal shape more closely and, therefore,

we must carefully select its shape.

We will initially choose a polynomial P of second order that results in an ellipsoid that is rotated with

respect to the normal vector of the phugoid plane, in order to enhance recovery from deep-stall trim conditions,

where air speed is exceptionally low and the path inclination is oriented steeply downwards. As the elevator

15



deflection constitutes a state of Eq. (18), the constraints η ∈ [−60°; 20°] form asymmetric boundaries. Hence,

to ensure recovery from deep-stall trim of conditions with large negative elevator deflections is challenging. We

will therefore employ an asymmetrically defined quasi-ellipsoidal shape governed by a fourth-order polynomial.

1. Linear feedback control

We start with synthesizing a linear feedback law dη = Klin = G x, where G ∈ R5×5 is a decision variable

of the sum-of-squares program. Fig. 6 shows the estimated region of attraction for the synthesized linear

control feedback. The ellipsoidal shape E is governed by

P̃ = 220Ṽ2
A − 360ṼAγ̃A + 100α̃2 + 25η̃2 + 220γ̃2A + 100q̃2

and rotated with respect to the phugoid plane. The synthesized linear feedback law is illustrated in Fig. 6 as

contour plots with respect to states and elevator deflection.
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Fig. 6 Region of attraction of the synthesized linear control feedback matrix.

The synthesized linear feedback maintains a region of attraction that contains initial conditions of a

wide range of airspeeds, path inclination, and angles of attack. In the phugoid and short-period plane, the

invariant set only loosely follows the ellipsoidal shape, leading to an enlarged region of attraction. However,

the ellipsoidal shape starkly affects the elevator deflection, as the dynamics of the actuator are decoupled,

and the upper bound constrains both positive and negative deflections. Thus, negative elevator deflections
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Fig. 7 Comparison with the result of Alg. 1b (dashed) for linear control synthesis.

observed in deep-stall flight are not contained by the estimated region of attraction of this linear feedback

controller. Nor are those flight conditions contained by the estimated region of attraction with a feedback

synthesized by Algorithm 1b, as shown in Fig. 7. Here, black squares correspond to deep-stall trim conditions

with elevator deflections ranging from −38° to −50°. In the following, we will use quasi-ellipsoids of higher

order in order to shape the synthesized controller and the estimated region of attraction towards deep-stall

conditions. Given the asymmetric elevator constraints, we propose a new algorithm for deep-stall recovery

synthesis.

2. Polynomial feedback control

Indeed, sum-of-squares control synthesis benefits from its ability to synthesize polynomial feedback laws

that are not represented by linear matrices. Whereas the candidate Lyapunov function is conveniently

represented by a polynomial without linear coefficients and of even degree to facilitate positivity of the

Lyapunov function, it seems reasonable to have a polynomial feedback law without constant terms and of

odd degree. Here, we choose a polynomial dη = Kpoly with linear, quadratic, and cubic terms. Furthermore,

to maintain a region of attraction including large negative elevator deflections, we select an asymmetric

quasi-ellipsoidal shape E that is governed by P̃poly given in Appendix C. The estimated region of attraction

for the synthesized third-order control feedback is shown in Fig. 8.

The differences between third-order (cubic) and first-order (linear) feedback laws can well be obtained

from the isolines, that is, the contour lines of equal actuator rate inputs. While the input increases (or

decreases) faster with increasing distance to the trim point, the course of the isolines also varies starkly within

different sections of the state space. Moreover, the invariant set seems to be embedded into the contour lines
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Fig. 8 Region of attraction of the synthesized polynomial control feedback law.

of equal feedback.

The asymmetric quasi-ellipsoid pushes the boundary of the invariant set towards larger negative elevator

deflections, without violating the upper constraint. However, deep-stall trim conditions with their angles of

attack of ≥ 30° are not contained by the estimated region of attraction.

3. Piecewise feedback control

It seems desirable to have alternative control laws for high and low angles of attack in order to adapt for

changed dynamics beyond stall. With the aerodynamic model defined piecewise, it is convenient to synthesize

a piecewise polynomial control law for the same regions, that is,

dη = Kpw(x) =




Kpre if α ≤ α0;

Kpost otherwise,
(19)

where Kpre,Kpost are third-order polynomials in x. Note that we don’t require a boundary condition, as

we command a change of deflection, but could enforce equality of Kpre and Kpost along α ≡ α0 similar to

(12)–(13). When synthesizing polynomial feedbacks for a control-invariant region of attraction spanning

both low and high angles of attack, neither may violate state and input constraints within their respective

domains. Fig. 9 shows the estimated region of attraction for the synthesized piecewise third-order control
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feedback. The ellipsoidal shape E is extended towards the section of high angles of attack and large negative

elevator deflections and therefore governed by P̃pw detailed in Appendix C. For the sake of legibility of the

phugoid-plane projection, we only show the contour lines of equal control feedback for the low angle of attack

law.

invariant subset (α ≤ α0) ellipsoidal shape 0 actuator rate (°/s, α ≤ α0)
invariant subset (α > α0) trim condition 0 actuator rate (°/s, α > α0)
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Fig. 9 Region of attraction of the synthesized piecewise polynomial control feedback law.

C. Discussion

We employed the sum-of-squares framework in order to synthesize linear, polynomial, and piecewise

polynomial control feedback laws that, by design, grant an enlarged region of attraction subject to constraints

on the deflection and rate of change of the elevator. In Algorithm 1, as discussed in the beginning, the choice

of the shape P proves to be crucial for the form of the synthesized feedback law and thus for the shape

of the resulting provable invariant set. Alternatively proposed iteration schemes, such as Algorithm 1b,

aimed to increase the volume of the region-of-attraction estimate directly rather than enlarging an inscribing

polynomial shape function [26, 27, 29, 30]. In particular, Algorithm 1b replaces the ellipsoidal shape by a

constraint enforcing that each prior estimate is nested in the next estimate, thus removing the necessity of

choosing a shape function. However, as demonstrated in Figs. 5 and 7, a control feedback that maximizes

the region of attraction in a general sense is not necessarily able to recover from the particular deep-stall

flight conditions. We want instead to specifically enlarge the region of attraction towards the desired states.

Therefore, we need sufficient directional information to shape the region of attraction.
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Remark During the iteration the surface Eρ and the input constraints form lower and upper bounds,

respectively, for the computation of a new feedback law K. As the deflection constraint has been particularly

asymmetric (−60° to 20°), we made use of increasingly complicated, asymmetrically shaped quasi-elliposidal

surfaces.

We were able to synthesize feedback laws for recovery from flight conditions at increasingly steep descents

and low airspeeds without violating the elevator deflection constraint. However, if the generated invariant

sets do not contain the deep-stall flight conditions, which is the case, this is due to the choice of P as a

parameter of the V-s-iteration rather than the form of the control feedback. Despite a large number of

iterations, when these bounds finally converge and the iteration terminates (see Table 2 in Appendix B),

we have not succeeded in reaching the deep-stall flight conditions with the resulting invariant set under the

synthesized control. In the next section, we will therefore propose an alternative algorithm that directly

formulates the SOS control synthesis as an infinite-horizon reachability problem.

Remark Sum-of-squares programming is in practice limited by the size of the resulting semidefinite

problems, which in turn is a function of both the number of state variables and polynomial degree, and scales

badly with increasing degree [31]. A further partitioning of the state-space into piecewise defined polynomials

could help reduce the polynomial degree necessary to accurately represent aircraft dynamics and thus the

underlying matrix size. Analysis of such multi-variate spline models requires additional decision variables in

Eqs. (10)–(11). In [32], we proposed an efficient algorithm for multi-variate splines that detects the active

boundaries in line 7 of Algorithm 1 and thus reduces the total number of decision variables. On the other

hand, the number of constraints in line 4 of the same algorithm, that is, the number of conditions (12)–(13),

increases with the number of active boundaries, too. Hence, the partitioning into polynomial submodules is

subject to this trade-off.

IV. Deep-stall Recovery
Stabilization of deep-stall trim conditions via SOS control synthesis, as the previous section revealed,

remains subject to careful selection of the ellipsoidal shape E. Defining a polynomial surface, in particular

in higher dimensions and larger-than-quadratic order, is a nontrivial task (see also Appendix C for a sum-

of-squares procedure for quasi-ellipsoids based on a selection of points). On the other hand, deep-stall

recovery is often formulated as finite-horizon problem, namely, as part of a multi-mode paradigm where the

flight controller switches to a local feedback after recovery. In this section, we modify the control synthesis

into a simplified backwards reachability scheme, where the ellipsoidal shape is replaced by a target state

whence recovery is to be ensured. An alternative approach for a finite-horizon backwards reachability analysis
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was presented in [26]. As Algorithm 1b, this approach lacks any directional information for enlarging the

closed-loop reachable set under the control law to be synthesized. We further provide a numerical comparison

of deep-stall recovery by all presented feedback laws in the time domain.

A. Infinite-horizon reachability control synthesis

Denote the target state by x1 and the distance vector from the nominal trim by x̄ = x1 − x∗. The target

state is contained in the region of attraction of the nominal trim condition with control feedback K (i.e., x1 is

backwards reachable from x∗ in infinite time), if there is a function V(·) and level set λ such that Ωλ is a

control-invariant region of attraction estimate (cf. Eqs. (10)–(14)) and x1 ∈ Ωλ, that is, V(x̄) ≤ λ. Obtaining

such K, V(·), and λ requires again bisection: Given V(·) and λ such that (10)–(14) hold, we define the

degree of reachability ϑ� as the maximal distance ratio ϑ such that

V(ϑx̄) ≤ λ (20)

and observe that x1 can be recovered if ϑ� ≥ 1. For robustness, it might be desirable to have x1 well inside

the interior of Ωλ, that is, the degree of reachability is strictly larger than one or even satisfies a chosen

margin. The V-s-iteration for backwards reachability is then formulated as follows:

1) Find λ�, λ∗ maximal such that (10)–(11) as well as (14) hold for V and K fixed;

2) Find ϑ� maximal such that (20) holds for V and K as well as λ ′ = min{λ�, λ∗} fixed;

3a) Find K ∈ R [x] of fixed degree such that (10)–(11) and (16) hold for V as well as ϑ� and λ ′ fixed;

3b) Find V ∈ R [x] of fixed degree such that (9)–(14) and (20) hold for K as well as ϑ� and λ ′ fixed.

Instead of Eρ before, the degree of reachability ϑ� ensures that, in the last step, the region of attraction

estimate grows towards the target state x1, that is, the degree of reachability increases. The thus modified

V -s-iteration is performed by Algorithm 2. Note that, unlike finite-horizon reachability the obtained feedback

law K stabilizes the target trim condition beyond recovery, too. Line 11 of Algorithm 2 cannot be solved

as the sum-of-squares problem (20) is not linear in ϑ for functions V(·) of mixed polynomial degree, but is

efficiently obtained using a nonlinear solver such as MATLAB’s fmincon.

We choose now one of the stable deep-stall trim conditions as target state, namely, that at η1 = −40° (see

Appendix A). Again, states and inputs are scaled to x̃, d̃η, etc. and subject to state and input constraints.

For the sake of a demonstration here, we choose a single function-candidate V(·) as well as a linear control

feedback. Fig. 10 illustrates the estimated region of attraction, a five-dimensional surface, as slices projected

into the phugoid plane; for this purpose, we assign the free parameters as α = tᾱ, q = tq̄, and η = tη̄ and use

the ratio t for the out-of-plane drawing axis.
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Algorithm 2 Modified V-s-iteration for backwards reachability of target x̄ = x1 − x∗.
1: for N = 1 to Nmax
2: if N > 1 then
3: find KN ∈ R [x] s.t. for all l ∈ [1,m], i ∈ {1, 2},

−pT
j KN +

(
VN − λ

†
)

sl,λ′ ∈ Σ [x]

−∇VN fKN i − `b +
(
VN − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

4: find VN ∈ R [x] s.t. for all l ∈ [1,m], i ∈ {1, 2},

VN (x) − `a ∈ Σ [x]

−∇VN fKN i − `b +
(
VN − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

−pT
l KN +

(
VN − λ

†
)

sil,λ′ ∈ Σ [x]

VN (ϑ
�x̄) ≤ λ†

5: end
6: for i ∈ {1, 2}
7: find λ�i := maxλ≥0 λ s.t. si,λ, si,ϕ ∈ Σ [x] and

−∇VN fKN i − `b + (VN − λ) si,λ + ϕ si,ϕ ∈ Σ [x]

8: end
9: find λ∗ := maxλ′≥0 λ

′ s.t. sl,λ′ ∈ Σ [x] and for all l ∈ [1,m],

−pT
l KN + (VN − λ

′) sl,λ′ ∈ Σ [x]

10: λ† := min
{
λ�1, λ

�
2, λ
∗
}

11: find ϑ� := maxϑ≥0 s.t.

VN (ϑx̄) ≤ λ†

12: end
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Fig. 10 Region of attraction of a linear control feedback law, synthesized by backwards reach-
ability of the deep-stall target.

With a terminal degree of reachability of ϑ� = 1.3027, the synthesized feedback law robustly recovers

the aircraft from the deep-stall target into nominal flight. Note that the invariant subset is shaped mainly

around the trajectory from x1 to x∗, according to the objective, rather than growing as large as possible. This

outcome is further illustrated in Fig. 11, which depicts the estimated regions of attraction in the course of

the 39 iterations. With increasing iterations, the region of attraction estimate stretches towards the target

flight condition until it contains x1 (i.e., ϑ� ≥ 1).
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(a) 5 iterations (ϑ�5 = 0.2179).
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(b) 15 iterations (ϑ�15 = 0.5486).
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(c) 25 iterations (ϑ�25 = 1.1841).

Fig. 11 Region of attraction estimates during iteration of the backwards-reachability control
synthesis.

B. Numerical comparison

We consider recovery from the deep-stall trim condition x1, given in Appendix A, and simulate the

closed-loop behaviour for the feedback laws discussed in this study. Fig. 12 compares recovery under the
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control synthesized for reachability to the previous synthesized linear, polynomial, and piecewise polynomial

feedback laws, as well as to the LQR feedback. In addition, the closed-loop response is compared to a

single-rate damping law, η̃ = k̃ηq q̃, where k̃ηq = 1 is a positive, proportional gain on the (scaled) pitch rate.

All trajectories have been computed using the non-polynomial longitudinal equations of motion given in

Eqs. (1)–(4) rather than the polynomial approximations employed for the SOS iterations.
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Fig. 12 Comparison of time responses starting in x1.

The LQR controller, as described in Section III, recovers stably and fast; the pitch-damper (dashed)

eventually recovers though delayed and with large oscillations. As for the control laws of Section B,

the objective of synthesis has been an enlarged region of attraction rather than closed-loop performance;

consequently, the recovery is performed rather slowly and with considerable overshoot (in particular for the

polynomial and piecewise polynomial feedback laws). The control law synthesized for reachability of the

deep-stall condition also leads to a slow but straight recovery.

Remark An extended SOS control synthesis improving performance measures in addition to enlarging the

region of attraction and/or ensuring backwards reachability could be achieved by further maximizing an

exponential stability gain in Eqs. (10) and (11), viz.

−∇VfK − ζV ∈ Σ [x] ,

where ζ > 0 is subject to maximization once the region of attraction is sufficiently enlarged.
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(a) Linear control law.
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(b) Polynomial control law.
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(c) Piecewise control law.
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(d) Reachability-synthesis law.
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(e) LQR feedback law.

Fig. 13 Time responses and region of attraction estimates in the phugoid plane.
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In Fig. 13, we detail trajectories starting in various deep-stall flight conditions in the phugoid plane and

additionally show projections of the respective region-of-attraction estimates. The response for the trim

condition x1 is drawn in solid; the other responses (dashed) have been computed for non-trim conditions

given in Appendix A. In addition, for each trajectory, the point it enters the region of attraction estimate is

marked by a black square (due to the projection into the phugoid plane, these points might not necessarily

appear inside the ellipsoid). For the feedback law synthesized by backwards reachability, further out-of-plane

slices of the estimated region of attraction are projected into the phugoid plane as well. Except for one

trajectory (dotted) of the LQR feedback, all controllers are able to recover from each deep-stall condition

into the gliding trim condition. However, for the high-inclination conditions x6 and x7 this has partially led

to saturations of the elevator deflection and its rate of change. Therefore, even though the saturation has not

prevented recovery, these conditions could not have been included in any region of attraction estimate subject

to the imposed constraints in the methodology presented in this paper. In the other cases, the fact that stable

recovery trajectories lie outside the estimates highlights the inevitable conservatism of any sum-of-squares

analysis approach.

V. Conclusion
Sum-of-squares techniques provide exact certificates for stability and the region of attraction, but the

application to accurate, full-envelope aircraft models such as multivariate splines is computationally demanding.

Simple piecewise polynomial models, on the other hand, accommodate the aerodynamic coefficients well in

both domains of low and high angles of attack, while only moderately increasing the costs of sum-of-squares

analysis. In this paper, we have applied sum-of-squares techniques to a fixed-wing aircraft model in order to

verify stable recovery from deep-stall. As an intermediate result, we verified that classical LQR feedback

control of the elevator deflection is sufficient for recovery without violation of input constraints. We then

further extended the sum-of-squares analysis for control synthesis, using the actuator rate instead of deflection.

Here, the choice of an ellipsoidal shape function for the sum-of-squares program turned out to be crucial,

yet the selection was challenged by asymmetric constraints on the elevator deflection. Although none of

the synthesized linear, polynomial, and piecewise polynomial feedback laws could be verified to recover

the aircraft from its deep-stall trim conditions, this does not imply that such a control feedback would

not exist. Concluding our study, we proposed a reformulated sum-of-squares control synthesis based on

infinite-horizon backwards-reachability of a target trim condition without the necessity of an ellipsoidal

shape. Indeed, a simple linear control feedback could thus be verified to recover the aircraft. We conclude

that sum-of-squares programming combined with piecewise polynomial models is a powerful tool for aircraft

analysis and verification.
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Appendix
We provide details of the polynomial aircraft model, the sum-of-squares computations, and the computation

of quasi-ellipsoidal surfaces using SOS programming.

A. Details on the polynomial aircraft model

The low-angle of attack trim condition x∗ for gliding descent in Section III is given by

V ∗A = 11.3631 m/s, γ∗A = −2.2834°, q∗ = 0 °/s, α∗ = 3.2240°, η∗ = −5°,

and the deep-stall target trim condition x1 in Section IV, by

VA1 = 8.3131 m/s, γA1 = −35.5372°, q1 = 0 °/s, α1 = 31.6781°, η1 = −40°.

The additional deep-stall conditions are given by

VA2 = 5.0000 m/s, γA2 = −57.2958°, q2 = 0 °/s, α2 = 29.8081°, η2 = −38°;

VA3 = 18.3333 m/s, γA3 = −44.5634°, q3 = 0 °/s, α3 = 32.5836°, η3 = −41°;

VA4 = 16.6667 m/s, γA4 = −19.0986°, q4 = 0 °/s, α4 = 35.1836°, η4 = −44°;

VA5 = 15 m/s, γA5 = 6.3662°, q5 = 0 °/s, α5 = 37.6092°, η5 = −47°;

VA6 = 13.3333 m/s, γA6 = 31.8310°, q6 = 0 °/s, α6 = 39.8574°, η6 = −50°;

VA7 = 11.6667 m/s, γA7 = 57.2958°, q7 = 0 °/s, α7 = 41.9214°, η7 = −53°.

The piecewise model of Eqs. (1)–(4) is not immediately suitable for sum-of-squares analysis. The non-

polynomial sine and cosine functions in γA and α are therefore approximated by 5th-order and 4th-order

Taylor series expansions,

sin a ≈ a −
a3

3!
+

a5

5!
; cos a ≈ 1 −

a2

2
+

a4

4!
;

respectively, which have an error of less than ±0.02 for γA, α ∈ ]−90°; +90°[. The inversion of VA in Eq. (2) is

likewise replaced by

a−1 ≈ a−10 − a−20 (a − a0) + 2a−30 (a − a0)
2 − 3!a−40 (a − a0)

3,
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where a0 denotes the airspeed in trim. The approximation of the inverse is less accurate than the approximation

of the trigonometric functions, however, simulations of the resulting piecewise polynomial equations of motion

indicated that the polynomial diverges where the nonlinear model converges, rather than the opposite; that

is, analysis of the piecewise polynomial model allows for a conservative stability estimate.

The uncontrolled piecewise polynomial model with the polynomial approximations above is of order 13.

In order to ease the complexity of the SOS computation, we have removed any polynomial term of 6th order

or higher or with coefficients absolutely smaller than 10−6.

B. Details on the SOS computations

We provide details about the sum-of-squares computations, polynomial degrees of the problems, and the

decision variables involved, respectively. Table 2 details the results of the different SOS computations in

Sections III and IV in terms of the pseudo-radii ρ� of the ellipsoidal shapes Eρ and degree of reachability ϑ�,

respectively, as well as the level sets for invariance and invariance under control, λ� and λ∗. The number

of involved states is further given as well as the number of repetitions of the (extended) V-s-iteration and

the total computation time. Table 3 reports the polynomial degrees of control system, Lyapunov functions,

positive terms la,b, ellipsoidal shape functions, and constraints. In addition, Table 4 gives the chosen degrees

for the sum-of-squares multipliers in Eqs. (9)–(16).

C. Computing quasi-ellipsoids with SOS

If the Cartesian dimension, that is, the number of variables, or the desired polynomial order of a quasi-

ellipsoid grows, so does the number of independent coefficients. Thus, selecting an ellipsoidal manually

becomes increasingly difficult. In order to obtain the asymmetric shapes in Sections III.B-2 and III.B-3, we

have solved the following sum-of-squares problem given a sequence of points x◦1, . . . , x
◦
k
∈ Rn, k ∈ N finite: find

P ∈ R [x] such that P is positive-definite and

P(x◦i ) = 1 (21)

for all 1 ≤ i ≤ k. As the degree of P is predefined, the equality constraints in (21) are linear in the decision

variables (the coefficients of P).

The 4th-order, asymmetric shape functions P̃poly and P̃pw are thus derived to (coefficients are subject to
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Table 2 Results of SOS computations.

(a) Stability analysis (Intel Core i7, 3 GHz, 16 GB).

Section Alg. n ρ� λ� λ∗ Iterations Time
Sec. III.A 1 4 54.5349 1.0513 1.0513 135 3.8295 h

(b) Control synthesis (Intel Core E5, 3 GHz, 16 GB).

Section Alg. n ρ� λ� λ∗ Iterations Time

Sec. III.B.
1

1 5
39.0320 38.7939 38.5986 109 36.4526 h

2. 251.9531 35.3516 38.6230 70 18.4957 h
3. 295.6543 17.7979 19.1650 73 21.1351 h

(c) Modified implementation without ellipsoidal shape (Intel Core i7, 3 GHz, 16 GB).

Section Alg. n ρ� λ� λ∗ Iterations Time
Sec. III.A 1b 4 – 0.2906 0.2906 21 0.4176 h
Sec. III.B 1. 5 – 0.6965 0.6965 26 5.0432 h

(d) Deep-stall recovery (Intel Core i7, 3 GHz, 16 GB).

Section Alg. n ϑ� λ� λ∗ Iterations Time
Sec. IV 2 5 1.3027 57.5684 99.9023 29 4.5832 h

Table 3 Polynomial degrees of SOS problems.

Section f K fK V1,2 la,b P pη
Sec. III.A 5 1 5 4 2 2 2

Sec. III.B
1

5
1

5 4 2 2 22 3
3 3

Sec. IV 5 1 5 4 2 – 2

Table 4 Polynomial degrees of SOS multipliers.

Section si,λ si,ϕ sϕ,i s−ϕ,i si,P sη,λ′

Sec. III.A 2 2 2 2 1 1

Sec. III.B
1

2 2 2 2 1 12
3

Sec. IV 2 2 2 2 – 1
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rounding; coefficients < 10−3 are omitted):

P̃poly = 5.37 × 102Ṽ4
A − 2.90 × 101Ṽ3

Aγ̃A − 1.48 × 10−3Ṽ3
Aq̃ + 5.42 × 102Ṽ2

Aα̃
2 + 2.41 × 102Ṽ2

Aη̃
2

+ 4.11 × 102Ṽ2
Aγ̃

2
A + 5.42 × 102Ṽ2

Aq̃2 − 2.51 × 10−3ṼAα̃2η̃ − 2.84 × 10−3ṼAα̃q̃2 − 2.61 × 102ṼAγ̃3A

+ 1.09 × 10−3ṼAγ̃Aq̃2 + 5.00 × 102α̃4 − 1.33 × 10−3α̃3γ̃A − 2.65 × 10−3α̃3q̃ + 2.41 × 102α̃2η̃2

− 1.89 × 10−3α̃2η̃γ̃A + 5.42 × 102α̃2γ̃2A − 1.93 × 10−3α̃2γ̃Aq̃ + 5.42 × 102α̃2q̃2 + 2.04 × 101η̃4

+ 2.41 × 102η̃2γ̃2A + 2.41 × 102η̃2q̃2 + 1.35 × 10−3η̃γ̃Aq̃2 + 1.38 × 10−3η̃q̃3 + 1.50 × 102γ̃4A

+ 5.42 × 102γ̃2Aq̃2 − 2.46 × 10−3γ̃Aq̃3 + 5.00 × 102q̃4 − 4.93 × 10−3α̃2η̃ − 2.34 × 10−3α̃q̃2

+ 1.17 × 102η̃3 + 5.04 × 102Ṽ2
A − 2.24 × 102ṼAγ̃A + 5.00 × 102α̃2 + 6.63 × 10−3α̃q̃

+ 2.23 × 102η̃2 + 2.06 × 102γ̃2A + 5.00 × 102q̃2;

P̃pw = 5.41 × 102Ṽ4
A − 2.93 × 101Ṽ3

Aγ̃A − 1.21 × 10−3Ṽ3
Aq̃ + 5.46 × 102Ṽ2

Aα̃
2 + 2.07 × 10−3Ṽ2

Aα̃q̃

+ 2.43 × 102Ṽ2
Aη̃

2 − 1.44 × 10−3Ṽ2
Aη̃q̃ + 4.15 × 102Ṽ2

Aγ̃
2
A + 1.69 × 10−3Ṽ2

Aγ̃Aq̃ + 5.46 × 102Ṽ2
Aq̃2

− 1.12 × 10−3ṼAα̃2q̃ − 2.02 × 10−3ṼAα̃η̃q̃ + 1.32 × 10−3ṼAα̃γ̃2A − 2.63 × 102ṼAγ̃3A − 2.86 × 10−3ṼAγ̃Aq̃2

− 1.33 × 10−3ṼAq̃3 + 5.24 × 102α̃4 + 1.51 × 101α̃3η̃ + 1.10 × 10−3α̃3γ̃A + 1.11 × 10−3α̃3q̃

+ 1.91 × 102α̃2η̃2 + 1.05 × 10−3α̃2η̃γ̃A + 5.46 × 102α̃2γ̃2A + 4.00 × 10−3α̃2γ̃Aq̃ + 5.46 × 102α̃2q̃2

+ 7.84 × 101α̃η̃3 − 1.58 × 10−3α̃η̃q̃2 − 1.32 × 10−3α̃γ̃2Aq̃ + 1.05 × 10−3α̃γ̃Aq̃2 + 2.89 × 101η̃4

+ 2.43 × 102η̃2γ̃2A + 2.43 × 102η̃2q̃2 − 2.17 × 10−3η̃q̃3 + 1.51 × 102γ̃4A + 5.46 × 102γ̃2Aq̃2

+ 3.83 × 10−3γ̃Aq̃3 + 5.00 × 102q̃4 + 1.69 × 10−3ṼAα̃η̃ − 1.86 × 10−3ṼAγ̃Aq̃ − 1.15 × 10−3ṼAq̃2

− 4.61 × 101α̃3 + 3.65 × 101α̃2η̃ + 1.58 × 10−3α̃2γ̃A + 2.24 × 10−3α̃2q̃ − 8.84 × 101α̃η̃2

+ 1.57 × 10−3α̃q̃2 + 1.06 × 102η̃3 + 1.07 × 10−3γ̃Aq̃2 + 5.08 × 102Ṽ2
A − 2.27 × 102ṼAγ̃A

+ 1.19 × 10−3ṼAq̃ + 5.22 × 102α̃2 + 2.25 × 101α̃η̃ + 2.21 × 102η̃2 + 2.05 × 102γ̃2A

+ 1.06 × 10−3γ̃Aq̃ + 5.00 × 102q̃2;

shape functions are defined in scaled variables.
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