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In lieu of extensive Monte-Carlo simulations for flight control verification,

sum-of-squares programming techniques provide an algebraic approach to the

problem of nonlinear control synthesis and analysis. However, their reliance on

polynomial models has hitherto limited the applicability to aeronautical control

problems. Taking advantage of recently proposed piecewise polynomial models,

this paper revisits sum-of-squares techniques for recovery of an aircraft from

deep-stall conditions using a realistic yet tractable aerodynamic model. Local

stability analysis of classical controllers is presented as well as synthesis of poly-

nomial feedback laws with the objective of enlarging their nonlinear region of

attraction. A newly developed synthesis algorithm for backwards-reachability

facilitates the design of recovery control laws, ensuring stable recovery by design.

The paper’s results motivate future research in aeronautical sum-of-squares ap-

plications.

Nomenclature
α Angle of attack (rad);

α0 Low-angle of attack boundary (α0 = 16.2949°);

γA Flight-path angle relative to air (rad);

η Elevator deflection (rad), negative if leading to positive pitch moment;

ϑ Signed distance ratio (ϑ ∈ R);
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λ Level set (λ ∈ R+);

ρ Pseudo-radius (ρ ∈ R+);

ϕ(·) Boundary condition function (ϕ : Rm → R);

dη Change of elevator deflection (rad/s);

K Feedback control law (K : Rn → Rp);

n Number of states; system degree;

p Number of inputs;

P Positive-definite, polynomial shape function (P : Rn → R≥0, P ∈ R [x]);

q Pitch rate (rad/s);

VA Aircraft speed relative to air (m/s), positive along xa-axis;

x∗, η∗ State vector and elevator deflection at trim condition;

x̃, η̃ Scaled state vector and elevator deflection;

(·)post Domain of high angle of attack;

(·)pre Domain of low angle of attack;

E (Quasi)-Ellipsoidal set (E =
{
x �� P(x) ≤ ρ

}
) with shape function P and pseudo-radius ρ;

Σ [x] Polynomial sum-of-squares cone (Σ [x] ⊂ R [x]);

R [x] Set of polynomials in x with real-valued coefficients;

I. Introduction

Prediction and prevention of inflight loss-of-control (LOC-I) commonly requires prior knowledge of

the aircraft’s dynamics using a reliable and representative aerodynamic model. However, establishing

a satisfactory model is rarely straightforward, and ensuring sufficient representation of every aspect of the

operational envelope of the true vehicle is extremely challenging. Indeed, dynamics beyond the nominal

flight envelope are highly nonlinear and often unstable. Flight control certification for commercial airliners

therefore relies today on simple but extensive and cumbersome Monte-Carlo simulations of high-fidelity

models [1] in order to analyse the viable subset of the flight envelope, which demands significant investment

of time and computational power. Yet, more sophisticated tools based on nonlinear stability theory have
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been applied in the literature. Mathematical continuation and bifurcation analysis establishes trim conditions

and periodic orbits as well as their stability [2, 3]; however, attraction or reachability of a stable solution

cannot be determined quantitatively using the continuation methodology. Reachability analysis, on the other

hand, numerically evolves reachable subsets of the state-space over time, identifying possible violations of

predefined constraints [4, 5]. An alternative formulation of the reachability problem is the algebraic notion

of controlled invariant sets, or safe sets [6, 7]. Defined as the largest set such that the aircraft can be kept

within the state constraints subject to control input limitations, the safe set determines bounds for prevention

and recoverability from LOC-I events. The idea of a safe set as defined by the existence of an admissible

control sequences is thus contrasted by the set of converging state trajectories subject to an a priori specified

control law, namely, the region of attraction of the closed-loop system.

Determining the region of attraction of a given system up to a desired accuracy is, in general, a non-trivial

task [8]. Recently, Lyapunov stability theory and LaSalle’s later extension have been turned into a systematic

analysis approach employing sum-of-squares (SOS) programming techniques [9, 10]. Relaxed to semi-definite

problems [11], SOS provides global stability proofs [12] as well as provable under-estimates for the region of

attraction of systems defined by polynomial dynamics [13]. Those methods for stability analysis can further

extended for synthesis of control feedback laws ensuring or enlarging a region of attraction subject to input

constraints [14, 15].

Sum-of-squares techniques have been exploited to analyze the short-period motion of an F/A-18 aircraft

model [16]. A special iteration technique, called V-s-iteration, was applied to estimate the region of attraction

of the longitudinal motion of the Generic Transport Model [17]. In [18], this technique was employed to

validate a revised control law for the F/A-18 “falling-leaf” mode. It is worth noting that this work used a

reduced six-state polynomial aircraft model that was derived by sampling the equations of motion rather than

the aerodynamic coefficients. Despite SOS techniques being a powerful tool to generate Lyapunov functions

for suitable models, few work on SOS for aircraft dynamics has been published since. Simple polynomials

are often unsuitable to fit full-envelope aerodynamics accurately, whereas advanced modeling techniques,

such as multivariate splines [19], are computationally heavy to analyse using SOS. Simple piecewise-defined

models, as proposed by the authors in [20], have the potential of bridging this gap, since they both describe

accurately aircraft dynamics in the domains of low and high angles of attack while only slightly increasing

the computational load for sum-of-squares programming.

In this article, we synthesize controllers for and verify deep-stall recovery of a small unmanned aircraft

using SOS programming and a piecewise polynomial model. The choice of aircraft, a fixed-wing capable of

stable deep-stall transition, descent, and recovery [21], allows us to isolate longitudinal dynamics. Continuing

our work in [20], we present an extended V-s-iteration for piecewise-defined aircraft dynamics in order to
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obtain feedback control laws subject to state and inputs constraints. While we initially rely on common

polynomial surfaces to govern the estimate (cf. [13, 14, 17, 18]), we later replace it by a single deep-stall

condition. We thus provide a systematic analysis by SOS beyond polynomial aircraft models. The present

paper is organised as follows: In Section II, we introduce the aircraft, its piecewise polynomial model and

recall the basics of SOS analysis. Section III analyzes stable recovery of a linear-quadratic regulator and

synthesizes polynomial controllers subject to an enlarged region of attraction. Section IV concludes the article

by a revised formulation of control synthesis specifically for deep-stall recovery.

Note on polynomial surfaces For sum-of-squares analysis and control synthesis, we make use of geometric

objects defined by polynomial functions on the state-space, i.e., E =
{
x ��, P(x) ≤ ρ

}
for some polynomial P in

x and ρ > 0. The most common examples are ellipsoids (in three dimensions) and the related hyper-ellipsoidal

surfaces, which are governed by quadratic functions P = xTQx with positive-definite matrix Q. For simplicity,

we call both ellipsoids and hyper-ellipsoids ellipsoidal surfaces. The concept of (hyper)-ellipsoids can be further

extended to positive polynomial surfaces of order larger than two, of which we will refer as quasi-ellipsoids.

II. Methodology
We consider an autonomous, 1.65 m-wingspan, unmanned aircraft that, instead of landing gear, is intended

to land vertically descending by a deliberate deep-stall manoeuvre. In this manoeuvre, the drag of the wings

counteract the gravitational force, leading to a stable trim condition, and the horizontal distance covered

during the landing is minimised. For the purpose of stable deep-stall flight, the elevator is designed to exceed

the usual range and reach deflections of up to −60°. The parameters of the aircraft used in this study are

given by Tab. 1.

Table 1 Parameters of the aircraft.

flight mass m 1.55 kg
wing span b 1.66 m

mean chord ca 0.174 m
wing area S 0.277 m2

air density % 1.25 kg/m3

gravitational constant g 9.81 m/s2

The aircraft is considered to be laterally stable due to its dihedral wings. We therefore neglect the lateral

dynamics for the analysis of stability and, consequently, assume the side-slip angle β to vanish. In deep-stall

flight and transition, the aircraft is further unthrottled, i.e., the thrust force is zero (F = 0).

We will refer mainly to the international standard air-path axis system (xa, ya, za) oriented along the
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Fig. 1 Longitudinal axes with angles and vectors for β = 0.

aircraft’s velocity vector with respect to air (VA) [22]. Lift and drag forces are defined along these axes and

denoted L and D; angle of attack α, flight-path angle γA, and pitch angle Θ are given by rotations into body

axis system (xf, yf, zf) as well as earth-fixed axis system (xg, yg, zg), defined by the aircraft’s fuselage and the

ground, and between. (Fig. 1). If not stated otherwise, all variables are in SI-units; angles are however given

in degrees where convenient.

A polynomial g ∈ R [x] is a sum of squares (SOS) if g =
∑

i gi(x)
2 for some (gi)i ⊂ R [x]; the set of

sum-of-squares polynomials is denoted by Σ [x]. It can be proven that g ∈ Σ [x] if and only if there is a

positive semidefinite matrix M such that g = zTM z, where z is a vector of monomials in x [10]. This relation

reduces the problem of finding SOS polynomials to semidefinite programming [11], given that the objective is

linear in the SOS variables. However, the problem of a single decision variable entering bilinearly into the

objective, although bilinear problems are generally NP-hard, can efficiently be solved as quasi-convex SOS

program [10]. Notwithstanding that any SOS polynomial is positive semidefinite, the opposite does not hold.
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A. Equations of motion

The longitudinal equations of motion without thrust are given as nonlinear 4-state, ordinary differential

equations [17, 23, 24]:

V̇A =−
1

2
%V2

ASm−1CD(α, η) − g sin γA; (1)

VA γ̇A =
1

2
%V2

ASm−1CL(α, η) − g cos γA; (2)

Iy q̇ =
1

2
%V2

AScaCm(α, η) − kq̇qq; (3)

Θ̇ = q; (4)

with the pitch angle

Θ = γA + α (5)

and the air speed VA as norm of the velocity vector relative to air. Then, CL, CD, Cm are dimensionless

coefficients connected to lift force, drag force, and pitching moment. The elevator deflection η is, by convention,

negative when causing a positive pitching moment. The linear damping coefficient kq̇q accounts for non-static

aerodynamics (see [21]).

The aerodynamic coefficients of the body, wing, and surfaces have been modeled by piecewise polynomial

functions

C�(α, · · · ) =




Cpre
� (α, · · · ) if α ≤ α0;

Cpost
� (α, · · · ) else;

(6)

with Cpre
� (α0, ·) ≡ Cpost

� (α0, ·) and α0 = 16.2949°. Fig. 2 shows the piecewise model and their polynomial

segments. Defined as piecewise polynomials, we are able to account for full-envelope characteristics both of

the lift and drag coefficients as well as the coefficients in body axes [20]. The resulting models are continuous

over the entire domain but not necessarily differentiable in its joint. The pitch-moment coefficient Cm is

modeled likewise. The full aircraft model is detailed in [25].

B. Region of attraction estimation

In the following, we develop a region of attraction estimation for piecewise polynomial systems under

constrained control inputs using SOS programming and extend this framework to find a control law that

enlarges the region of attraction of the controlled system. In order to resolve the resulting bilinear terms, we
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Fig. 2 Piecewise model of aerodynamic coefficients with polynomial segments [21].

will make use of the V-s-iteration [17].

Let a piecewise polynomial system be defined as

f(x, u) =




f1(x, u) if ϕ(x) ≤ 0;

f2(x, u) else;
(7)

with state vector x ∈ X ⊂ Rn, input vector u ∈ U ⊂ Rp, submodels f1, f2 ∈ R [x, u]nand boundary ϕ ∈ R [x];

assume further f(x∗, u∗) = 0. The equilibrium (x∗, u∗) is stable if there exists a non-empty set of initial

conditions such that the trajectories converge, the region of attraction R, and R contains x∗ in its interior.

Now, Ωλ =
{
x ��V(x) ≤ λ

}
is an invariant subset of R if, for V : X → R continuous and positive definite,

V(0) = 0, and λ ∈ R+,

∀x ∈ Ωλ. ∇Vf(x, u∗) < 0 (8)

and Ωλ is bounded [8]. Moreover, we call Ωλ invariant under control K(·) if Ωλ is an invariant set of the

closed-loop system fK : x 7→ f(x,K(x)) for some control law u = K(x) and K(x) ∈ U for all x ∈ Ωλ.

As Lyapunov functions are non-unique, alternative V(·) give rise to different estimates of the region

of attraction. For comparison of the size of an invariant subset, the V-s-iteration introduces a surface

Eρ =
{
x �� P(x) ≤ ρ

}
with P ∈ R [x] positive (quadratic) chosen as parameter of the estimation [13]. The
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estimation of a maximal invariant subset of the region of attraction is then subject to the optimisation

problem

max
V,∈R[x]
λ>0

ρ > 0 s.t. (8) and Eρ ⊂ Ωλ.

as well as V(x) > 0 if x , 0 and V(0) = 0.

1. Piecewise region of attraction

Recall that Ωλ bounded is an invariant subset of R under control K if V(·) is a continuous and positive

definite function and ∇VfKi(x) < 0 for any x ∈ Ωλ and i ∈ {1, 2} such that fKi is active. For V1,2 ∈ R [x], we

have the sufficient SOS constraint [20] (see also [13, Lemma 10])

V1,2(x) − la ∈ Σ [x] (9)

−∇V1fK1 − lb + (V1 − λ) s1,λ + ϕ s1,ϕ ∈ Σ [x] (10)

−∇V2fK2 − lb + (V2 − λ) s2,λ + ϕ s2,ϕ ∈ Σ [x] , (11)

where si,λ, si,ϕ ∈ Σ [x], i ∈ {1, 2} relax negativity of ∇Vifi to the respective partitions defined by Ωλ and ϕ(·)

and la,b ∈ R [x] are positive definite terms [13], e.g., la = lb = εxTx with some small ε > 0. As V(·) is

defined piecewise itself—i.e., V(x) = V1(x) if ϕ(x) ≤ 0; V(x) = V2(x) else;—, we ensure continuity along the

boundary ϕ ≡ 0 by the additional SOS constraint

−V1 +V2 + ϕ sϕ,1 − ϕ s−ϕ,1 ∈ Σ [x] (12)

−V2 +V1 + ϕ sϕ,2 − ϕ s−ϕ,2 ∈ Σ [x] , (13)

where sϕ,i, s−ϕ,i ∈ Σ [x] with i ∈ {1, 2} enforce that both V1(x) ≤ V2(x) and V2(x) ≤ V1(x) if ϕ(x) = 0.

2. Invariant sets under control

The definition (7) and subsequent constraints (9)–(11), as is easy to see, apply equally to closed-loop

controlled systems fK where K(·) is linear or polynomial in x. This alone, however, is insufficient for

invariance under control as we have defined it above. We might now assume U to be defined as conjunction

U =
{
u �� p1(u) ≤ 0, . . . , pm(u) ≤ 0

}
with

(
pj

)
1≤ j≤m

⊂ R [u]; if furthermore K ∈ R [x]p, we can state a necessary
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SOS constraint for invariance of Ωλ under control K as

−
(
pj ◦K

)
+ (V − λ) s j,λ′ ∈ Σ [x] , (14)

where
(
pj ◦K

)
(x) = pj(K(x)), with s j,λ′ ∈ Σ [x] for all 1 ≤ j ≤ m. The constraints (9)–(11) and (14), in fact,

hold independently of each other and can be evaluated separately. As the subset-relation “⊆” on the level

sets Ω(·) constitutes a total order, ΩλK with λK = min{λ, λ ′} is an invariant subset of the region of attraction

of fK(·) under control K.

3. V-s-iteration

The ellipsoid Eρ can be fitted inside the invariant Ωλ if

− (Vi − λ) + (P − ρ) si,P ∈ Σ [x] (15)

with si,P ∈ Σ [x] for i ∈ {1, 2}.

Note that we require V1,2 to be of some fixed degree. However, some constraints involve bilinear terms

of the form Vi s(·) once V1,2 become decision variables. The V-s-iteration uses a bisection approach of

iteratively-alternating steps; a detailed discussion of the basic V-s-iteration has been given by Chakraborty

et al. [17]. We extend here the approach in order to incorporate control input constraints for a K(·) given a

priori and, later on, synthesize an optimal control feedback:

1a) Find λ� maximal such that (10)–(11) hold for V1,2 fixed;

1b) Find λ∗ maximal such that (14) holds for V1,2 fixed;

2) Find ρ� maximal such that (15) holds for V1,2 and λ† = min{λ�, λ∗} fixed;

3) Find V1,V2 ∈ R [x] of fixed degree such that (9)–(15) hold for ρ� and λ† fixed.

The purpose of Eρ here is twofold: first, to quantify the size of the provable invariant subset Ωλ for each

iteration; and second, to prevent the last step from yielding a smaller estimate than hitherto achieved.

C. Control synthesis

Until now, we have considered the control law to be given and fixed. Yet, we can further adapt our

approach to find a suitable K in the attempt to enlarge the (estimated) region of attraction within the bounds

imposed by the control input constrains. As the SOS constraints must be linear in the prospective control

function, we require the control system to be in the companion form affine in u, viz. ẋ = fx(x) + fu(x)u with

fx ∈ R [x]n , fu ∈ R [x]n×p, such that fK(x) = fx(x) + fu(x)K(x). The input constraints
(
pj

)
j
, too, must be

9



linear in u, pj(u) = pT
j u with pj ∈ R

p, and K guarantees control-invariance of Ωλ′ if

−pT
j K + (V − λ ′) s j,λ′ ∈ Σ [x] (16)

with s j,λ′ ∈ Σ [x] for all j.

Then, in order to circumvent bilinearities, we execute again steps 1) and 2) for K fixed and incorporate a

supplementary second-to-last step

3a) Find K ∈ R [x] of fixed degree such that (10)–(11) and (16) hold for V1,2 as well as ρ� and λ† fixed.

The old and new last step is once more computed for K fixed. The thus augmented iteration is performed by

Algorithm 1.

D. Preliminary stability analysis

In [21], we have applied bifurcation theory as well as optimization techniques in order to derive the linear

pitch-damping model in Eq. (3). We have thus identified an optimal coefficient Cmq ≈ 1.96. In consequence,

Fig. 3 shows the location and stability of longitudinal trim conditions (note that the choice of Cmq does not

affect the location of stationary solutions as q = 0 is a necessary conditions for trim), parametrized by the

elevator deflection η. The black dot in Fig. 3 indicates the largest deflection, η = 6.5°, for which the aircraft

enters a steep, nose-down descent; the minimal elevator deflection is −60°. Shortly after stall, the aircraft

encounters an unstable regime of stationary solutions with a family of limit cycles (Hopf bifurcation).

10 20 30 40

0

10

20

30

40

air speed (m/s)

an
gl

e
of

at
ta

ck
(°

)

(a) Angle of attack α over air speed V .

−60 −40 −20 0

0

−45

−90

−135

elevator deflection (°)

pi
tc

h
an

gl
e

(°
)

(b) Pitch angle Θ over elevator deflection η.

Fig. 3 Trim conditions of longitudinal motion with unstable regimes dashed [21].
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Algorithm 1 Extended V-s-iteration for control synthesis under state and input constraints.
1: for N = 1 to Nmax
2: if N > 1 then
3: find KN ∈ R [x] s.t. for all j ∈ [1,m], i ∈ {1, 2},

−pT
j KN +

(
VN,i − λ

†
)

si j,λ′ ∈ Σ [x]

−∇VN,ifKN i − lb +
(
VN,i − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

4: find VN,1,VN,2 ∈ R [x] s.t. sϕ,i, s−ϕ,i ∈ Σ [x] and for all j ∈ [1,m], i ∈ {1, 2},

VN,i(x) − la ∈ Σ [x]

−
(
VN,i − λ

†
)
+ (P − ρ�) si,P ∈ Σ [x]

−∇VN,ifKN i − lb +
(
VN,i − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

−pT
j KN +

(
VN,i − λ

†
)

si j,λ′ ∈ Σ [x]

−VN,i +VN,3−i + ϕ sϕ,i − ϕ s−ϕ,i ∈ Σ [x]

5: end
6: for i ∈ {1, 2}
7: find λ�i := maxλ≥0 λ s.t. si,λ, si,ϕ ∈ Σ [x] and

−∇VN,ifKN i − lb + (VN,i − λ) si,λ + ϕ si,ϕ ∈ Σ [x]

8: find λ∗i := maxλ′≥0 λ
′ s.t. si j,λ′ ∈ Σ [x] and for all j ∈ [1,m],

−pT
j KN + (VN,i − λ

′) si j,λ′ ∈ Σ [x]

9: end
10: λ† := min

{
λ�1, λ

�
2, λ
∗
1, λ
∗
2

}

11: for i ∈ {1, 2}
12: find ρi := maxρ≥0 s.t. si,P ∈ Σ [x] and

−
(
VN,i − λ

†
)
+ (P − ρ) si,P ∈ Σ [x]

13: end
14: ρ� = min{ρ1, ρ2}
15: end
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III. Region of Attraction at Trim Point
Where classical control synthesis relies upon linearized models, the region of attraction estimation provides

knowledge about the limitations of the chosen control implementation. Unlike the safe set [see, e.g., 6, 7],

that provides an exploratory study in order to estimate the abilities of the aircraft to be controlled, we must

study a region of attraction in the context of a given controller and the respective trim condition [20]. For

the latter we choose a low-inclination gliding descent trim at η∗glide = −5° (see Appendix A).

In this section, we investigate the capability of different controllers to stably recover the aircraft from a

deep-stall trim condition. We first consider a linear quadratic regulator, which could have been derived by

classical control techniques. Later on however, we apply the SOS tools in order to derive a polynomial control

law that improves stability and recovery of the vehicle. For both analysis and control synthesis, we scale the

state vector xT =

[
VA γA q α

]
by diag(10 m/s, 45°, 150 °/s, 45°)−1 and the input η, by (80°)−1, in order to

normalize states and inputs. The scaled variables are henceforth denoted by x̃, η̃, etc. The viable (unscaled)

elevator inputs are given to U = [−60°; +20°] and represent the physical limits of the aircraft elevator. We

further approximate the non-polynomial functions (sine, cosine, inverse) by Taylor series expansions and

truncate high-order polynomial terms (Appendix A) in order to facilitate the resulting SOS problems [17].

The aircraft longitudinal motion is commonly divided into short-period dynamics involving pitch rate

and angle of attack as well as the long-period phugoid oscillation of airspeed and flight-path angle and often

discussed separately, as-if uncoupled. When discussing the region of attraction, we take into account the full,

coupled 4-state model of Eqs. (1)–(4) but display the estimates as projections into either phugoid VA-γA plane

or short-period α-q plane. Details for all SOS computations are given in Appendix B.

A. Analysis of the Linear Quadratic Regulator

A further but more advanced element of the classical linear toolbox is the renown linear quadratic regulator

(LQR). Here, we minimize the quadratic cost function J̃ =
∫ ∞
0

x̃(t)T Q̃ x̃(t) + R̃ η̃(t)2 dt taking into account

the linearized dynamics f̃(x̃∗ + δx̃, η̃∗ + δη̃) ≈ Ãδx̃ + b̃δη̃ in order to find a linear feedback. We obtain the

optimal cost-to-go for an initial condition x̃0 = x̃(0) as J̃opt = x̃T0 S̃ x̃0, where S̃ denotes the solution to the

general Riccati equation with
(
Ã, b̃, Q̃, R̃

)
and the LQR feedback is given as η̃ = K̃LQR = −

[
R̃−1b̃T S̃

]
x̃. For

weights Q̃ = I4×4, R̃ = 10, the LQR feedback is synthesized to

K̃LQR = −0.1163ṼA + 0.3881γ̃A + 0.2412q̃ + 0.0007α̃. (17)

The control-invariant estimate of the region of attraction for K̃LQR is presented in Fig. 4 with the ellipsoidal

shape E governed by P̃ = 4Ṽ2
A + 4γ̃2A + q̃2 + α̃2. Again, E and the control inputs returned by the LQR
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feedback are illustrated in Fig. 4, too.
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Fig. 4 Estimated control-invariant region of attraction of the linear quadratic regulator.

Even after descaling, the LQR gain on the angle of attack is significantly smaller, diminishing its

contribution to the overall control feedback. With the additional gains on airspeed and path inclination, the

estimated region of attraction contains the aircraft’s high-angle of attack conditions in the lower-left corner

of the phugoid plane. Consequently, the depicted LQR feedback is able to stably recover from deep-stall.

B. Synthesis of polynomial control laws

Until now, we have considered the control input to be determined by an a priori obtained state feedback

law, which might have been designed by any means of control engineering. Synthesis of such a control law

is subject to various objectives including desired closed-loop dynamics, disturbance rejection, and optimal

reference tracking. From this section on, we treat the feedback law as decision variables of sum-of-squares

analysis rather than as part of the initial problem formulation. Thus, the feedback control is synthesized

with the aim of enlarging the region of attraction, again quantified by the size of the ellipsoidal shape E. In

the following, we subsequently derive a linear feedback similar to laws discussed in the previous section, a

polynomial feedback, and piecewise feedback comparable to gain-scheduling control approaches. Further

details can be found in Appendix B.

In order to reformulate the dynamics of section II into the companion form, we take the elevator deflection

13



η to be a state and introduce the rate of the actuator, dη, as new input:



ẋ

η̇



=



fEOM(x, η)

0



+



0

1



dη, (18)

where fEOM are the system dynamics of the previous sections. The thus extended state vector is denoted by

xη and scaled by diag(10 m/s, 45°, 150 °/s, 45°, 20°)−1; the new input dη is scaled by (100 °/s)−1. The viable

(unscaled) actuator rate inputs are constrained to |dη | ≤ 200 °/s in order to ensure realistic actuator dynamics.

The role of the ellipsoid E, and in particular the polynomial P governing its shape, for control synthesis

deserves a further discussion. In the last step of the extended V-s-iteration that is employed for both analysis

and control synthesis, the ellipsoid
{
x �� P(x) ≤ ρ�

}
serves as lower bound for the region of attraction estimate,

both in size and shape. Recall further that each estimate
{
x ��V(x) ≤ λ�

}
is itself invariant; if the feedback

law is chosen prior analysis, as in the preceding section, all invariant sets of the aircraft are predetermined by

the closed-loop system dynamics. That is, we “find” a certain invariant set by guessing a Lyapunov function

and computing its largest stable level set. With the feedback law being a decision variable of the control

synthesis now, the selection of a control feedback actively “shapes” the resulting invariant set. In consequence,

we expect the estimated region of attraction to follow the chosen ellipsoidal shape more closely and therefore,

we must carefully select its shape.

We will initially choose a polynomial P of second order that results in an ellipsoid which is rotated with

respect to the normal vector of the phugoid plane, in order to enhance recovery from deep-stall trim conditions,

where air speed is exceptionally low and the path inclination is oriented steeply downwards. As the elevator

deflection constitutes a state of Eq. (18), the constraints η ∈ [−60°; 20°] form asymmetric boundaries. Hence,

to ensure recovery from deep-stall trim of conditions of largely negative elevator deflections is challenging. We

will therefore employ an asymmetrically defined quasi-ellipsoidal shape governed by a fourth-order polynomial.

1. Linear feedback control

We start with synthesizing a linear feedback law dη = Klin = G x, where G ∈ R5×5 is a decision variable

of the sum-of-squares program. Fig. 5 shows the estimated region of attraction for the synthesized linear

control feedback. The ellipsoidal shape E is governed by

P̃ = 220Ṽ2
A − 360ṼAγ̃A + 100α̃2 + 25η̃2 + 220γ̃2A + 100q̃2

and rotated with respect to the phugoid plane. The synthesized linear feedback law is illustrated in Fig. 5 as

contour plots with respect to states and elevator deflection.
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Fig. 5 Region of attraction of the synthesized linear control feedback matrix.

The synthesized linear feedback maintains a region of attracting that contains initial conditions of a wide

range of airspeed, path inclination, and angle of attack. In phugoid and short-period plane, the invariant set

only loosely follows the ellipsoidal shape, leading to an enlarged region of attraction. However, the ellipsoidal

shape starkly affects the elevator deflection, as the dynamics of the actuator are decoupled, and the upper

bound constraints both positive and negative deflections. Thus, negative elevator deflections observed in

deep-stall flight are not contained by the estimated region of attraction of this linear feedback controller.

2. Polynomial feedback control

Indeed, sum-of-squares control synthesis benefits from its ability to synthesized polynomial feedback laws

which are not represented by linear matrices. Whereas the Lyapunov function-candidate is conveniently

represented by a polynomial without linear coefficients and of even degree to facilitate positivity of the

Lyapunov function, it seems reasonable to have a polynomial feedback law without constant terms and of

odd degree. Here, we choose a polynomial dη = Kpoly with linear, quadratic, and cubic terms. Furthermore,

to maintain a region of attraction including large negative elevator deflections, we select an asymmetric

quasi-ellipsoidal shape E that is governed by P̃poly given in Appendix C. The estimated region of attraction

for the synthesized third-order control feedback is shown in Fig. 6.

The differences between third-order (cubic) and first-order (linear) feedback laws can well be obtained

from the isolines, that is, the contour lines of equal actuator rate inputs. Not only decreases the distance
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Fig. 6 Region of attraction of the synthesized polynomial control feedback law.

between two isolines with increasing distance from the trim condition, their course varies starkly between

different sections of the state-space. Moreover, the invariant set seems to be “embedded” into the contour

lines of equal feedback.

The asymmetric quasi-ellipsoid pushes the boundary of the invariant set towards larger negative elevator

deflections, without violating the upper constraint. However, deep-stall trim conditions with their angles of

attack of ≥ 30° are not contained by the estimated region of attraction.

3. Piecewise feedback control

It seems desirable to have alternative control laws for high and low angles of attack in order to adapt for

changed dynamics beyond stall. With the aerodynamic model defined piecewise, it is convenient to synthesize

a piecewise polynomial control law for the same regions, that is,

dη = Kpw(x) =




Kpre if α ≤ α0;

Kpost else;
(19)

where Kpre,Kpost are third-order polynomials in x. Note that we don’t require a boundary condition, as

we command a change of deflection, but could enforce equality of Kpre and Kpost along α ≡ α0 similar to

(12)–(13). When synthesizing polynomial feedbacks for a control-invariant region of attraction spanning both
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low and high angles of attack, both must not violate state and input constraints within their respective

domains. Fig. 7 shows the estimated region of attraction for the synthesized piecewise third-order control

feedback. The ellipsoidal shape E is extended towards the section of high angles of attack and large negative

elevator deflections and therefore governed by P̃pw detailed in Appendix C. For the sake of legibility of the

phugoid-plane projection, we only show the contour lines of equal control feedback for the low angle of attack

law.

invariant subset (α ≤ α0) ellipsoidal shape 0 actuator rate (°/s, α ≤ α0)
invariant subset (α > α0) trim condition 0 actuator rate (°/s, α > α0)
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Fig. 7 Region of attraction of the synthesized piecewise polynomial control feedback law.

C. Discussion

We employed the sum-of-squares framework in order to synthesize linear, polynomial, and piecewise

polynomial control feedback laws that, by design, grant an enlarged region of attraction subject to constraints

on the deflection and rate of change of the elevator. Here, as discussed in the beginning, the choice of its shape

P turns out to be crucial for the shape of the resulting provable invariant set and thus the synthesized feedback

law. Alternative iteration approaches which remove the necessity of a shape function by a set-inclusion

constraint of the estimates likewise lack the directional information to effectively synthesize a control feedback

that enlarges the region of attraction towards the desired states. On the other hand, during the iteration

the surface Eρ and the input constraints form lower and upper bounds, respectively, for the computation

of a new feedback law K. As the deflection constraint has been particularly asymmetric (−60° to 20°), we

made use of increasingly complicated, asymmetrically shaped quasi-elliposidal surfaces. Thus we were able to
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synthesize feedback laws for recovery from flight condition at increasingly steep descents at low airspeeds

without violating the elevator deflection constraint. However, if the generated invariant sets do not contain

the deep-stall flight conditions (which is the case), this is rather due to the choice of P as parameter of the

V-s-iteration then to the form of the control feedback. Despite a large number of iterations, when these

bounds finally converge and the iteration terminates (see Table 2 in Appendix B), we have not succeeded in

reaching the deep-stall flight conditions with the resulting set invariant under the synthesized control. In the

next section, we will therefore propose an alternative algorithm that directly formulates the SOS control

synthesis as reachability problem.

Sum-of-squares programming is notoriously limited by the size of the resulting matrices for the semidefinite

problems, which in turn is a function of both the number of state variables and polynomial degree and scales

badly [26]. A further partitioning of the state-space into piecewise defined polynomials could help reduce the

necessary polynomial degree to accurately represent aircraft dynamics, thus also the underlying matrix size,

but increases the number of decision variables in Eq. (10) and must be subject to a careful trade-off.

IV. Deep-stall Recovery
Reachability of deep-stall trim conditions via SOS control synthesis, as the previous section revealed,

remains subject of a careful selection of the ellipsoidal shape E. Defining a polynomial surface, in particular

in higher dimensions and larger-than-quadratic order, is a nontrivial task (see also Appendix C for a sum-of-

squares procedure for quasi-ellipsoids based on a selection of points). On the other hand, deep-stall recovery

is often formulated as finite-horizon problem, namely, as part of a multi-mode paradigm where the flight

controller switches to a local feedback after recovery. In this section, we modify the control synthesis into a

simplified backwards reachability scheme, where the ellipsoidal shape is replaced by a target state whence

recovery is to be ensured. An alternative approach for a finite-horizon backwards reachability analysis was

presented in [27]; here, the ellipsoidal shape is replaced by a constraint enforcing that each prior estimate is

nested in the next. However, this approach lacks any directional information for enlarging the closed-loop

reachable set under the control law to be synthesized. We further provide a numerical comparison of deep-stall

recovery by all presented feedback laws in the time domain.

A. Backwards reachability control synthesis

Denote the target state by x1 and the distance vector from the nominal trim by x̄ = x1 − x∗. The target

state can be recovered into the nominal trim condition by a control feedback K (i.e., x1 is backwards reachable

from x∗), if there is a function V(·) and level set λ such that Ωλ is a control-invariant region of attraction

estimate (cf. Eqs. (10)–(14)) and x1 ∈ Ωλ, that is, V(x̄) ≤ λ. Obtaining such K, V(·), and λ requires again
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bisection: Given V(·) and λ such that (10)–(14) hold, we define the degree of reachability ϑ� as the maximal

distance ratio ϑ such that

V(ϑx̄) ≤ λ (20)

and observe that x1 can be recovered if ϑ� ≥ 1. For robustness, it might be desirable to have x1 well inside

the interior of Ωλ, that is, the degree of reachability is strictly larger than one or even satisfies a chosen

margin. The V-s-iteration for backwards reachability is then formulated as follows:

1) Find λ�, λ∗ maximal such that (10)–(11) as well as (14) hold for V and K fixed;

2) Find ϑ� maximal such that (20) holds for V and K as well as λ ′ = min{λ�, λ∗} fixed;

3a) Find K ∈ R [x] of fixed degree such that (10)–(11) and (16) hold for V as well as ϑ� and λ ′ fixed;

3b) Find V ∈ R [x] of fixed degree such that (9)–(14) and (20) hold for K as well as ϑ� and λ ′ fixed.

Instead of Eρ before, the degree of reachability ϑ� ensures that, in the last step, the region of attraction

estimate grows towards the target state x1, that is, the degree of reachability increases. The thus modified

V -s-iteration is performed by Algorithm 2. Note that, unlike finite-horizon reachability the obtained feedback

law K stabilizes the target trim condition beyond recovery, too. Line 11 of Algorithm 2 cannot be solved as

the sum-of-squares problem (20) is not linear in ϑ in general, but is efficiently obtained using a nonlinear

solver such as MATLAB’s fmincon.

We choose now one of the stable deep-stall trim conditions as target state, namely, that at η1 = −40° (see

Appendix A). Again, states and inputs are scaled to x̃, d̃η, etc. and subject to state and input constraints.

For the sake of a demonstration here, we choose a single function-candidate V(·) as well as a linear control

feedback. Fig. 8 illustrates the estimated region of attraction, a five-dimensional surface, as slices projected

into the phugoid plane; for this purpose, we assign the free parameters as α = tᾱ, q = tq̄, and η = tη̄ and use

the ratio t for the out-of-plane drawing axis.

With a terminal degree of reachability of ϑ� = 1.3027, the synthesized feedback law robustly recovers

the aircraft from the deep-stall target into nominal flight. Note that the invariant subset is shaped mainly

around the trajectory from x1 to x∗, as this has been the objective, rather than growing as large as possible.

This is further illustrated in Fig. 9, which depicts the estimated regions of attraction in the course of the 39

iterations. With increasing iterations, the region of attraction estimate it stretched towards the target flight

condition x1 until contained (ϑ� ≥ 1).
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Algorithm 2 Modified V-s-iteration for backwards reachability of target x̄ = x1 − x∗.
1: for N = 1 to Nmax
2: if N > 1 then
3: find KN ∈ R [x] s.t. for all j ∈ [1,m], i ∈ {1, 2},

−pT
j KN +

(
VN − λ

†
)

s j,λ′ ∈ Σ [x]

−∇VN fKN i − lb +
(
VN − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

4: find VN ∈ R [x] s.t. for all j ∈ [1,m], i ∈ {1, 2},

VN (x) − la ∈ Σ [x]

−∇VN fKN i − lb +
(
VN − λ

†
)

si,λ + ϕ si,ϕ ∈ Σ [x]

−pT
j KN +

(
VN − λ

†
)

si j,λ′ ∈ Σ [x]

VN (ϑ
�x̄) ≤ λ†

5: end
6: for i ∈ {1, 2}
7: find λ�i := maxλ≥0 λ s.t. si,λ, si,ϕ ∈ Σ [x] and

−∇VN fKN i − lb + (VN − λ) si,λ + ϕ si,ϕ ∈ Σ [x]

8: end
9: find λ∗ := maxλ′≥0 λ

′ s.t. s j,λ′ ∈ Σ [x] and for all j ∈ [1,m],

−pT
j KN + (VN − λ

′) s j,λ′ ∈ Σ [x]

10: λ† := min
{
λ�1, λ

�
2, λ
∗
}

11: find ϑ� := maxϑ≥0 s.t.

VN (ϑx̄) ≤ λ†

12: end
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Fig. 8 Region of attraction of a linear control feedback law, synthesized by backwards reach-
ability of the deep-stall target.
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(a) 5 iterations (ϑ�5 = 0.2179).
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(c) 25 iterations (ϑ�25 = 1.1841).

Fig. 9 Region of attraction estimates during iteration of the backwards-reachability control
synthesis.

B. Numerical comparison

We consider recovery from the deep-stall trim condition x1, given in Appendix A, and simulate the

closed-loop behaviour for the feedback laws discussed in this study. Fig. 10 compares recovery under control

synthesized for reachability to the previous synthesized linear, polynomial, and piecewise polynomial feedback

laws as well as to the LQR feedback. In addition, the closed-loop response with a single-rate damping law,

η̃ = k̃ηq q̃, where k̃ηq = 1 is a positive, proportional gain on the (scaled) pitch rate. All trajectories have been

computed against the non-polynomial longitudinal equations of motion given in Eqs. (1)–(4) rather than the

polynomial approximations employed for the SOS iterations.

The LQR controller, as bespoken in Section III, recovers stably and fast; the pitch-damper (in dashed)

too is eventually recovering though delayed and with large oscillations. As for the control laws of Section B,
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Fig. 10 Comparison of time responses starting in x1.

the objective of synthesis has been an enlarged region of attraction rather than closed-loop performance;

consequently, the recovery is performed rather slow and with considerable overshoot (in particular for the

polynomial and piecewise polynomial feedback laws). The control law synthesized for reachability of the

deep-stall condition also leads to a slow but straight recovery. An extended SOS control synthesis improving

performance measures in addition to enlarging the region of attraction and/or ensuring backwards reachability

could be achieved by further maximizing a exponential stability gain in Eqs. (10) and (10).

In Fig. 11, we detail trajectories starting in various deep-stall flight conditions in the phugoid plane

and additionally show projections of the respective region of attraction estimates. The response for the

trim condition x1 is drawn in solid; the other responses (in dashed) have been computed for non-trim

conditions given in Appendix A. In addition, for each trajectory the point it enters the region of attraction

estimate is marked by a black square (due to the projection into the phugoid plane, these points might

not necessarily appear inside the ellipsoid). For the feedback law synthesized by backwards reachability,

further out-of-plane slices of the estimated region of attraction are projected into the phugoid plane as well.

Except for one trajectory of the LQR feedback (drawn dotted), all controllers are able to recover from each

deep-stall condition into the gliding trim condition. However, for the high-inclination conditions x6 and

x7 this has partially led to saturations of the elevator deflection and its rate of change. Therefore, even

though the saturation has not prevented recovery, these conditions could not have been included in any region

of attraction estimate subject to the imposed constraints in the methodology presented in this paper. In
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(a) Linear control law.
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(b) Polynomial control law.
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(c) Piecewise control law.
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(d) Reachability-synthesis law.
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(e) LQR feedback law.

Fig. 11 Time responses and region of attraction estimates in the phugoid plane.
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the other cases, the fact that stable recovery trajectories lie outside the estimates highlights the inevitable

conservatism of any sum-of-squares analysis approach.

V. Conclusion
Sum-of-squares techniques provide exact certificates for stability and the region of attraction, but the

application to accurate, full-envelope aircraft models such as multivariate splines is computationally demanding.

Simple piecewise polynomial models, on the other hand, accommodate the aerodynamic coefficients well in

both domains of low and high angles of attack, while only moderately increasing the costs of sum-of-squares

analysis. In this note, we have applied sum-of-squares techniques to a fixed-wing aircraft model in order to

verify stable recovery from deep-stall. As an intermediate result, we verified that a classical LQR feedback

law onto the elevator deflection is sufficient for recovery without violation of input constraints. We then

further extended the sum-of-squares analysis for control synthesis, using the actuator rate instead of deflection.

Here, the choice of an ellipsoidal shape function for the sum-of-squares program turned out to be crucial,

yet a selection was challenged by asymmetric constraints on the elevator deflection. Despite all three of the

synthesized linear, polynomial, and piecewise polynomial feedback laws could not be verified to recover the

aircraft from its deep-stall trim conditions, this does not imply no such control feedback exist. Concluding

our study, we proposed a reformulated sum-of-squares control synthesis based on backwards-reachability of a

target trim condition without the necessity of an ellipsoidal shape. Indeed, a simple linear control feedback

could thus be verified to recover the aircraft. We therefore held sum-of-squares programming combined with

piecewise polynomial models a powerful tool for aircraft analysis and verification.

Appendix
We provide details of the polynomial aircraft model, the sum-of-squares computations, and the computation

of quasi-ellipsoidal surfaces using SOS programming.

A. Details on the polynomial aircraft model

The low-angle of attack trim condition x∗ for gliding descent in Section III is given by

V ∗A = 11.3631 m/s, γ∗A = −2.2834°, q∗ = 0 °/s, α∗ = 3.2240°, η∗ = −5°,

and the deep-stall target trim condition x1 in Section IV, by

VA1 = 8.3131 m/s, γA1 = −35.5372°, q1 = 0 °/s, α1 = 31.6781°, η1 = −40°.
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The additional deep-stall conditions are given by

VA2 = 5.0000 m/s, γA2 = −57.2958°, q2 = 0 °/s, α2 = 29.8081°, η2 = −38°;

VA3 = 18.3333 m/s, γA3 = −44.5634°, q3 = 0 °/s, α3 = 32.5836°, η3 = −41°;

VA4 = 16.6667 m/s, γA4 = −19.0986°, q4 = 0 °/s, α4 = 35.1836°, η4 = −44°;

VA5 = 15 m/s, γA5 = 6.3662°, q5 = 0 °/s, α5 = 37.6092°, η5 = −47°;

VA6 = 13.3333 m/s, γA6 = 31.8310°, q6 = 0 °/s, α6 = 39.8574°, η6 = −50°;

VA7 = 11.6667 m/s, γA7 = 57.2958°, q7 = 0 °/s, α7 = 41.9214°, η7 = −53°.

The piecewise model of Eqs. (1)–(4) is not immediately suitable for sum-of-squares analysis. The non-

polynomial sine and cosine functions in γA and α are therefore approximated by 5th-order and 4th-order

Taylor series expansions,

sin a ≈ a −
a3

3!
+

a5

5!
; cos a ≈ 1 −

a2

2
+

a4

4!
;

respectively, which have an error of less than ±0.02 for γA, α ∈ ]−90°; +90°[. The inversion of VA in Eq. (2) is

likewise replaced by

a−1 ≈ a−10 − a−20 (a − a0) + 2a−30 (a − a0)
2 − 3!a−40 (a − a0)

3,

where a0 denotes the airspeed in trim. This approximation is less accurate, however, the resulting piecewise

polynomial seems to be conservative, that is, it diverges rather than the nonlinear model.

The uncontrolled piecewise polynomial model with the polynomial approximations above is of order 13.

In order to ease the complexity of the SOS computation, we have removed any polynomial term of 6th order

or higher or with coefficients absolutely smaller than 10−6.

B. Details on the SOS computations

We provide details about the sum-of-squares computations, polynomial degrees of the problems, and the

decision variables involved, respectively. Table 2 details the results of the different SOS computations in

Sections III and IV in terms of the pseudo-radii ρ� of the ellipsoidal shapes Eρ and degree of reachability ϑ�,

respectively, as well as the level sets for invariance and invariance under control, λ� and λ∗. The number

of involved states is further given as well as the number of repetitions of the (extended) V-s-iteration and
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Table 2 Results of SOS computations.

(a) Stability analysis (Intel Core i7, 3 GHz, 16 GB).

Section n ρ� λ� λ∗ Iterations Time
Sec. III.A 4 54.5349 1.0513 1.0513 135 3.8295 h

(b) Control synthesis (Intel Core E5, 3 GHz, 16 GB).

Section n ρ� λ� λ∗ Iterations Time

Sec. III.B
1

5
39.0320 38.7939 38.5986 109 36.4526 h

2 251.9531 35.3516 38.6230 70 18.4957 h
3 295.6543 17.7979 19.1650 73 21.1351 h

(c) Deep-stall recovery (Intel Core i7, 3 GHz, 16 GB).

Section n ϑ� λ� λ∗ Iterations Time
Sec. IV 5 1.3027 57.5684 99.9023 29 4.5832 h

Table 3 Polynomial degrees of SOS problems.

Section f K fK V1,2 la,b P pη
Sec. III.A 5 1 5 4 2 2 2

Sec. III.B
1

5
1

5 4 2 2 22 3
3 3

Sec. IV 5 1 5 4 2 – 2

Table 4 Polynomial degrees of SOS multipliers.

Section si,λ si,ϕ sϕ,i s−ϕ,i si,P sη,λ′

Sec. III.A 2 2 2 2 1 1

Sec. III.B
1

2 2 2 2 1 12
3

Sec. IV 2 2 2 2 – 1
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the total computation time. Table 3 reports the polynomial degrees of control system, Lyapunov functions,

positive terms la,b, ellipsoidal shape functions, and constraints. In addition, Table 4 gives the chosen degrees

for the sum-of-squares multipliers in Eqs. (9)–(16).

C. Computing quasi-ellipsoids with SOS

If the cartesian dimensions, that is, number of variables, or the desired polynomial order of a quasi-

ellipsoid grow, so does the number of independent coefficients. Thus, selecting an ellipsoidal manually becomes

increasingly difficult. In order to obtain the asymmetric shapes in Sections III.B-2 and III.B-3, we have

solved the following sum-of-squares problem given a sequence of points x◦1, . . . , x
◦
k
∈ Rn, k ∈ N finite: find

P ∈ R [x] such that P is positive-definite and

P(x◦i ) = 1 (21)

for all 1 ≤ i ≤ k. As the degree of P is predefined, the equality constraints in (21) are linear in the decision

variables (the coefficients of P).

The 4th-order, asymmetric shape functions P̃poly and P̃pw are thus derived to (coefficients are subject to

rounding; coefficients < 10−3 are omitted):

P̃poly = 5.37 × 102Ṽ4
A − 2.90 × 101Ṽ3

Aγ̃A − 1.48 × 10−3Ṽ3
Aq̃ + 5.42 × 102Ṽ2

Aα̃
2 + 2.41 × 102Ṽ2

Aη̃
2

+ 4.11 × 102Ṽ2
Aγ̃

2
A + 5.42 × 102Ṽ2

Aq̃2 − 2.51 × 10−3ṼAα̃2η̃ − 2.84 × 10−3ṼAα̃q̃2 − 2.61 × 102ṼAγ̃3A

+ 1.09 × 10−3ṼAγ̃Aq̃2 + 5.00 × 102α̃4 − 1.33 × 10−3α̃3γ̃A − 2.65 × 10−3α̃3q̃ + 2.41 × 102α̃2η̃2

− 1.89 × 10−3α̃2η̃γ̃A + 5.42 × 102α̃2γ̃2A − 1.93 × 10−3α̃2γ̃Aq̃ + 5.42 × 102α̃2q̃2 + 2.04 × 101η̃4

+ 2.41 × 102η̃2γ̃2A + 2.41 × 102η̃2q̃2 + 1.35 × 10−3η̃γ̃Aq̃2 + 1.38 × 10−3η̃q̃3 + 1.50 × 102γ̃4A

+ 5.42 × 102γ̃2Aq̃2 − 2.46 × 10−3γ̃Aq̃3 + 5.00 × 102q̃4 − 4.93 × 10−3α̃2η̃ − 2.34 × 10−3α̃q̃2

+ 1.17 × 102η̃3 + 5.04 × 102Ṽ2
A − 2.24 × 102ṼAγ̃A + 5.00 × 102α̃2 + 6.63 × 10−3α̃q̃

+ 2.23 × 102η̃2 + 2.06 × 102γ̃2A + 5.00 × 102q̃2;

P̃pw = 5.41 × 102Ṽ4
A − 2.93 × 101Ṽ3

Aγ̃A − 1.21 × 10−3Ṽ3
Aq̃ + 5.46 × 102Ṽ2

Aα̃
2 + 2.07 × 10−3Ṽ2

Aα̃q̃

+ 2.43 × 102Ṽ2
Aη̃

2 − 1.44 × 10−3Ṽ2
Aη̃q̃ + 4.15 × 102Ṽ2

Aγ̃
2
A + 1.69 × 10−3Ṽ2

Aγ̃Aq̃ + 5.46 × 102Ṽ2
Aq̃2

− 1.12 × 10−3ṼAα̃2q̃ − 2.02 × 10−3ṼAα̃η̃q̃ + 1.32 × 10−3ṼAα̃γ̃2A − 2.63 × 102ṼAγ̃3A − 2.86 × 10−3ṼAγ̃Aq̃2

− 1.33 × 10−3ṼAq̃3 + 5.24 × 102α̃4 + 1.51 × 101α̃3η̃ + 1.10 × 10−3α̃3γ̃A + 1.11 × 10−3α̃3q̃
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+ 1.91 × 102α̃2η̃2 + 1.05 × 10−3α̃2η̃γ̃A + 5.46 × 102α̃2γ̃2A + 4.00 × 10−3α̃2γ̃Aq̃ + 5.46 × 102α̃2q̃2

+ 7.84 × 101α̃η̃3 − 1.58 × 10−3α̃η̃q̃2 − 1.32 × 10−3α̃γ̃2Aq̃ + 1.05 × 10−3α̃γ̃Aq̃2 + 2.89 × 101η̃4

+ 2.43 × 102η̃2γ̃2A + 2.43 × 102η̃2q̃2 − 2.17 × 10−3η̃q̃3 + 1.51 × 102γ̃4A + 5.46 × 102γ̃2Aq̃2

+ 3.83 × 10−3γ̃Aq̃3 + 5.00 × 102q̃4 + 1.69 × 10−3ṼAα̃η̃ − 1.86 × 10−3ṼAγ̃Aq̃ − 1.15 × 10−3ṼAq̃2

− 4.61 × 101α̃3 + 3.65 × 101α̃2η̃ + 1.58 × 10−3α̃2γ̃A + 2.24 × 10−3α̃2q̃ − 8.84 × 101α̃η̃2

+ 1.57 × 10−3α̃q̃2 + 1.06 × 102η̃3 + 1.07 × 10−3γ̃Aq̃2 + 5.08 × 102Ṽ2
A − 2.27 × 102ṼAγ̃A

+ 1.19 × 10−3ṼAq̃ + 5.22 × 102α̃2 + 2.25 × 101α̃η̃ + 2.21 × 102η̃2 + 2.05 × 102γ̃2A

+ 1.06 × 10−3γ̃Aq̃ + 5.00 × 102q̃2;

shape functions are defined in scaled variables.
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