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Electron transport properties of mirror twin grain boundaries in molybdenum disulfide: Impact of disorder

Grain boundaries in two-dimensional transition metal dichalcogenides can strongly affect the transport properties by reducing the electron mobility or allowing gap conduction through extended grain boundary states. Here, by combining advanced modeling tools -density-functional-theorycalibrated tight-binding Hamiltonians and Green's function techniques -we investigate transport along and across mirror twin grain boundaries in MoS2. Our results show that the grain boundary conductive channels are strongly affected by sulfur vacancies, while short-range Anderson disorder has a moderate impact, which we quantitatively analyze, and long-range disorder has a very weak effect. As for transport across the grain boundaries, the system conductance turns out to be less than half that for the pristine system, and the spin-orbit coupling and intervalley scattering are found to play an important role. Our findings are beneficial to the understanding and the prediction of the impact of mirror twin grain boundaries in the transport phenomena, and could be of help in designing electronic devices based on transition metal dichalcogenides.

I. INTRODUCTION

After the discovery of graphene [START_REF] Novoselov | Electric Field Effect in Atomically Thin Carbon Films[END_REF], a plethora of new two-dimensional (2D) materials with a great variety of electronic properties [START_REF] Miró | An atlas of twodimensional materials[END_REF] have been predicted, fabricated and investigated. Among them, semiconducting 2D materials are in the limelight for their very promising electronic and optoelectronic applications [START_REF] Fiori | Electronics based on two-dimensional materials[END_REF][START_REF] Schwierz | Twodimensional materials and their prospects in transistor electronics[END_REF]. For example, field-effect transistors benefit from the few-atom thickness of 2D materials, which allows an enhanced electrostatic control, and from their self-passivated surfaces, where the absence of dangling bonds reduces the risk of traps at the interface with the oxide. Most importantly, the presence of a band gap in semiconducting 2D materials, in contrast with graphene [START_REF] Schwierz | Graphene transistors[END_REF], allows a much higher on/off current ratio in logic devices [START_REF] Schwierz | Twodimensional materials and their prospects in transistor electronics[END_REF]. It also allows the design of tunnel field-effect transistors with lateral [START_REF] Fiori | Electronics based on two-dimensional materials[END_REF] and vertical [START_REF] Giannazzo | Vertical Transistors Based on 2D Materials: Status and Prospects[END_REF] structures, as well as energy filtering steep-slope transistors [START_REF] Logoteta | A Steep-Slope MoS2-Nanoribbon MOS-FET Based on an Intrinsic Cold-Contact Effect[END_REF]. The use of MoS 2 for topological quantum transistors was also proposed [START_REF] Simchi | Phase transition and field effect topological quantum transistor made of monolayer MoS2[END_REF]. Furthermore, the van der Waals stacking of different materials [START_REF] Cui | Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[END_REF] opens unprecedented possibilities for the realization of original and complex architectures. The most comprehensively investigated 2D materials beyond graphene are the semiconducting transition metal dichalcogenides (TMDs) [START_REF] Wang | Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[END_REF]. In particular, monolayers from group VI in the trigonal prismatic phase show sizable direct band gaps. Some years after the first realization of a working MoS 2 -based transistor [START_REF] Radisavljevic | Single-layer MoS2 transistors[END_REF], transistors based on TMD van der Waals heterostructures [START_REF] Cui | Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[END_REF][START_REF] Yu | Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics[END_REF] were demonstrated, which represent a significant advance towards completely 2D microprocessors [START_REF] Wachter | A microprocessor based on a two-dimensional semiconductor[END_REF].

For applications, a large-scale fabrication of large-area TMDs is crucial. In this respect, chemical vapor deposition (CVD) [START_REF] Van Der Zande | Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide[END_REF][START_REF] Najmaei | Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[END_REF][START_REF] Zhou | Intrinsic Structural Defects in Monolayer Molybdenum Disulfide[END_REF] has emerged as a very efficient growth technique, which is promising for industrial production. However, CVD TMDs may present several kinds of defects, which are expected to significantly impact the electronic and transport properties, with possible degradation of the device performance. The most common defect is the polycrystallinity of CVD TMDs, which is inherent in the synthesis process. The grain boundaries at the interfaces between crystalline grains have been reported to strongly localize electrons [START_REF] Hsieh | Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS2[END_REF], with consequent carrier mobility degradation [START_REF] Najmaei | Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide[END_REF][START_REF] Ly | Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries[END_REF]. Therefore, understanding the impact of grain boundaries on the transport properties of TMDs is of central importance.

Among the huge variety of grains boundaries with different geometries, mirror twin grain boundaries (MTBs) are commonly observed in experiments [START_REF] Zhou | Intrinsic Structural Defects in Monolayer Molybdenum Disulfide[END_REF][START_REF] Liu | Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations[END_REF][START_REF] Lehtinen | Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe2[END_REF]]. An MTB is an inversion grain boundary that forms at the interface between two grains with a 60 • rotation angle. Interestingly, density functional theory (DFT) calculations [START_REF] Zhou | Intrinsic Structural Defects in Monolayer Molybdenum Disulfide[END_REF][START_REF] Lehtinen | Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe2[END_REF][START_REF] Zou | Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles[END_REF] reveal that a periodic MTB shows dispersive and metallic states within the bulk gap of the two-dimensional semiconducting TMDs, while most of the tilt grain boundaries induce strongly localized states [START_REF] Ly | Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries[END_REF]. Such a metallic nature has also been experimentally demonstrated by scanning tunneling spectroscopy [START_REF] Ma | Metallic Twin Grain Boundaries Embedded in MoSe2 Monolayers Grown by Molecular Beam Epitaxy[END_REF]. With regard to field-effect transistor applications, metallic MTBs along the transistor channel may result in a detrimental leakage current flowing through the TMD gap. On the other hand, metallic MTB net-works could drive opportunities for the realization of suited metallic contacts for semiconducting TMDs, as experimentally demonstrated [START_REF] Diaz | High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2[END_REF]. In the literature, however, electron transport in the presence of MTBs has been barely investigated theoretically, with existing studies mainly focusing on transport across periodic and defect-free grain boundaries [START_REF] Lehtinen | Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe2[END_REF][START_REF] Ghorbani-Asl | Defect-induced conductivity anisotropy in MoS2 monolayers[END_REF][START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF].

In this paper, by means of calculations of the Landauer-Büttiker conductance [START_REF] Büttiker | Generalized many-channel conductance formula with application to small rings[END_REF] based on the Green's function approach and a DFT-calibrated tight-binding (TB) model, we explore electron quantum transport along and across a metallic MTB in MoS 2 . In particular, we investigate the robustness of the MTB conductive channels against short-range and long-range disorders. Then, we concentrate on the conductance of 2D MoS 2 where the MTB is orthogonal to the transport direction, and provide a physical understanding of the transport degradation. Our main result is a full analysis of the impact of MTBs on the transport properties of MoS 2 . Note that low-temperature many-body effects, such as charge density wave transition [START_REF] Barja | Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2[END_REF][START_REF] Ma | Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary[END_REF] and Tomonaga-Luttinger liquid phase [START_REF] Jolie | Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS2 Mirror-Twin Boundaries[END_REF], are out of the scope of our study.

The paper is organized as follows. Section II introduces the model and details the electronic structure of the MTB. In Sects. III and IV, we investigate electron transport along and across an MTB, respectively. Section V concludes. Finally, the details of DFT simulations and TB model, as well as of the scaling analysis of the transport properties in the presence of disorder are reported in the Appendices.

II. ELECTRONIC STRUCTURE OF THE MIRROR TWIN BOUNDARY

We consider MoS 2 ribbons with a periodic MTB along their axis in the y-direction. We focus on the rather common geometry called 4|4 P [START_REF] Zhou | Intrinsic Structural Defects in Monolayer Molybdenum Disulfide[END_REF], whose relaxed structure calculated by DFT is shown in fig. 1(a). DFT calculations were carried out using the plane-wave basis set and the projector augmented-wave method, and the generalized gradient approximation of the Perdew-Burke-Ernzerhof functional form [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF], as implemented in the Vienna Ab initio Simulation Package [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[END_REF], see Appendix A for more details. Note that the MTB is along the zigzag direction, which implies that edges are along the zigzag orientation.

To describe the MTB, we make use of a TB Hamiltonian, which can take into account the atomistic details of the structure modulation induced around the grain boundary. We adopt the Slater-Koster [START_REF] Slater | Simplified LCAO method for the periodic potential problem[END_REF] TB parametrization of Ref. [START_REF] Ridolfi | A Tight-Binding Model For MoS2 Monolayers[END_REF], which considers five d orbitals for Mo atoms and three p orbitals for S atoms. This TB model has the advantage of not being based on symmetry considerations [START_REF] Dias | Band structure of monolayer transition-metal dichalcogenides and topological properties of their nanoribbons: Nextnearest-neighbor hopping[END_REF] and therefore to be able to reasonably describe geometrically distorted configurations. Moreover, it is accurate for energies within approximately 1 eV from the valence and conduction band 

edges.

We introduce the effect of spin-orbit coupling (SOC), which is known to play an important role in TMDs, by appropriate intra-atomic Hamiltonian elements [START_REF] Roldán | Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides[END_REF] 

H SOC = α λ α Lα • Ŝα , (1) 
where α is the atom index, L is the atomic orbital angular momentum operator, Ŝ is the spin operator, and λ α is the intra-atomic SOC constant with value 75 meV for Mo atoms and 52 meV for S atoms [START_REF] Roldán | Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides[END_REF]. The use of the Slater-Koster TB model allows us to consider the effect of strain, which is present in our case due to the lattice deformations close to the MTB. The two-center energy integral elements V ij between two orbitals i and j depend on the interatomic distance d as [START_REF] Chen | Electronic properties of MoS2 nanoribbon with strain using tight-binding method[END_REF] V

ij (d) = V ij (d 0 ) d 0 d γij , (2) 
where d 0 is the unstrained interatomic distance for the given couple of atoms corresponding to the i and j orbitals, and γ ij is a parameter, which can be assumed as γ ij = l i + l j + 1 with l i and l j the angular momenta of the orbitals i and j, respectively [START_REF] Rostami | Theory of Strain in Single-Layer Transition Metal Dichalcogenides[END_REF]. Together with the relaxed geometry obtained from DFT calculations, this provides an accurate description of the effect of strain induced by the MTB. The resulting Hamiltonian fairly reproduces the DFT shape of the bands corresponding to the MTB, but not their energy position. This problem is solved by a further calibration procedure, which consists in analyzing the specific orbital contributions to each band and in modifying the on-site energies of some properly selected orbitals. The result of the calibration, which is detailed in Appendix B, is a shift by +1 eV, +0.2 eV, -0.3 eV and -0.8 eV of the on-site energies of the d zx , d yz , d xy and d z 2 orbitals of the Mo atoms nearest to the MTB.

Figure 1(b) shows the band structure of a zigzag ribbon with width W = 10 nm and a periodic MTB along its axis. These results are comparable with those previously obtained in the literature by DFT calculations [START_REF] Jolie | Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS2 Mirror-Twin Boundaries[END_REF]. The electronic structure consists of bulk bands, with direct gap at the K and K' points, which appear as quantized subbands due to lateral confinement, and dispersive bands within the bulk gap. Among these latter, in addition to those corresponding to edge states, we find those (indicated by red dots) corresponding to MTB states. The two MTB spin-degenerate bands within the bulk band gap, indicated by We would like to comment on the effect of SOC, which is responsible for the anticrossing of the two MTB bands and the opening of a small gap in the order of 80 meV, see the inset of fig. 1(b). This feature is also observed in the DFT calculations, see fig. 9(b) in Appendix B, where the results with and without SOC clearly show the band anticrossing and crossing, respectively. The anticrossing is the consequence of the hybridization between two MTB bands induced by the SOC coupling of the different orbitals composing the two bands. Note that the bands are spin-degenerate, because, in contrast with the pristine MoS 2 , in the presence of the MTB the system is invariant under inversion symmetry. Together with the time-reversal symmetry, this entails the Kramers degeneracy of the bands. While for the whole ribbon the presence of the inversion symmetry requires the MTB to be exactly along the ribbon axis (as in our case), such a symmetry always holds for the region around the grain boundary itself. As a consequence, the spin-degeneracy of the MTB dispersive states within the bulk band gap is expected to be generally observed.

Let us now analyze how bulk states outside the bulk band gap are affected by the MTB. As shown in fig. 2(a), the shape and the spacing of the quantized bulk valence bands for the ribbon in the presence of the MTB are comparable to those of a pristine ribbon with a half-width, i.e., W = 5 nm. This indicates that the MTB has the effect of "cutting" the ribbon into two narrower ones. The weak coupling between these resulting two ribbons induces a small modification of the valence bands, as observed in the figure. Note that while the bands of the ribbon with the MTB are spin-degenerate, the pristine ribbon bands are spin-split due to the joint effect of SOC and absence of inversion symmetry. A more detailed physical understanding can be gained by looking at the local density of states (LDoS) displayed in fig. 2(b) as a function of the energy and of the x-position across the ribbon. The MTB is located in the center at x = 0 nm. In agreement with the band structure of fig. 1(b), the LDoS exhibits MTB states within the bulk band gap, while it vanishes away from x = 0 nm. More importantly, as shown as the dashed circle in fig. 2(b), the LDoS turns out to be relatively low in the vicinity of the MTB in the valence band, thus illustrating and confirming the effective separation of the ribbon into two narrower ribbons. This effect also significantly affects the transport properties, as we will discuss in Sec. IV.

III. TRANSPORT ALONG THE MIRROR TWIN BOUNDARY

In this section, we investigate electron transport along the MTB, i.e., along the y-axis, in the energy region of the bulk gap, where the grain boundary states are active and surrounded by an insulating bulk. To calculate the Landauer-Büttiker conductance [START_REF] Büttiker | Generalized many-channel conductance formula with application to small rings[END_REF] we make use of home-grown numerical codes based on the Green's func- tion approach, which allows us to write the transmission coefficient as [START_REF] Meir | Landauer formula for the current through an interacting electron region[END_REF] T

(E) = Tr Γ S (E) G R (E) Γ D (E) G A (E) , ( 3 
)
where Tr is the trace operator, E is the electron energy, G R and G A are the retarded and advanced Green's function matrices, Γ S and Γ D are the rate operator matrices for the source and drain contacts obtained from semi-infinite periodic prolongation of the system along the y-axis. The Green's function also provides the LDoS, i.e., the density of states on each atom as

ρ n (E) = - 1 π Im Tr G R n (E) , (4) 
where G R n is the matrix of the retarded Green's function projected on the subspace of the orbitals of the atom with index n. Additional details about the numerical methods are given elsewhere [START_REF] Cresti | Keldysh-Green function formalism for current profiles in mesoscopic systems[END_REF][START_REF] Triozon | Simulation of Transport in Nanodevices[END_REF].

More specifically, this section focuses on the study of the robustness of the MTB conductive channels against additional short-range disorder (single sulfur vacancies and Anderson disorder) and long-range (Gaussian) impurities. We will provide a quantitative scaling analysis in terms of the different (quasi-ballistic, diffusive and localized regimes) transport regimes. Before proceeding, we would like to recall that, for an infinite periodic ribbon with an MTB but no additional disorder, the transmission coefficient is quantized at values corresponding to the number of active conductive channels at given energy. To focus on the MTB transmission and suppress the contribution of the ribbon edge states, which would complicate the analysis, we introduced edge roughness with amplitude 0.25 nm over a length of at least 20 nm. For wide enough ribbons and for energies within the bulk gap, as in our case, such an edge roughness does not affect the transport along the MTB at all but completely localizes the edge states with a localization length in the order of few nanometers [START_REF] Park | Impact of edge roughness on the electron transport properties of MoS2 ribbons[END_REF]. As a result, the complete suppression of the edge transmission allows us to exclusively focus on the transmission of the MTB, see the dashed line of fig. 3

(b).

A. Sulfur vacancies

Sulfur vacancies, as one of the most common defects observed in experiments, are expected to induce localized midgap states, which can significantly affect transport [START_REF] Qiu | Hopping transport through defect-induced localized states in molybdenum disulphide[END_REF]. These vacancies could be fatal for the conductive MTB channels within the bulk gap.

To investigate this aspect, we introduce one single sulfur vacancy at different distances from the grain boundary, see fig. 3(a). The impact of the single sulfur vacancy is expected to be negligible when the vacancy is far enough from the grain boundary, because the localized vacancy states and the MTB states are spatially separated. Indeed, we do not find any impact of the vacancy when its distance d from the MTB is larger than ∼ 1.4 nm. This is consistent with the fact that the vacancy states have a spatial extension of about 0.5 nm [START_REF] Qiu | Hopping transport through defect-induced localized states in molybdenum disulphide[END_REF], while the MTB states have a maximum extension of about 1.3 nm. For shorter distances and down to d ≈ 0.6 nm, the MTB transmission shows some dips around specific energies, see fig. 3(b). Such dips are a clear indication of resonant scattering between the MTB states and the localized vacancy states, as confirmed by the correspondence between the dip energies and the energy of the vacancy states, see the dashed lines in fig. 3(c). When the vacancy is closer to the grain boundary (d = 0.3 nm), its impact is much more effective and the transmission decreases over the whole energy range. Interestingly, when the sulfur vacancy is exactly placed on the grain boundary, we observe a strong suppression of two conductive channels for energies E > 1.1 eV, as demonstrated by the nearly quantized transmission coefficient T ≈ 4 and T ≈ 2 compared to T = 6 and T = 4 for the pristine system. We find that the suppressed conductive channels correspond to the MTB spin-degenerate band 1 O, which is contributed by the sulfur atoms. The sulfur weight in the wave functions is indicated by dots in fig. 3(c). Note that contribution of sulfur orbitals to the MTB states is much smaller than that of molybdenum orbitals, and that the size of dots in figs. 1(b) and 3(c) does not correspond to the same weight scale. Sulfur orbitals hardly contribute to band 2 O, which is active for E 1.1 eV, and thus the corresponding conductive channel is not appreciably affected by the vacancy.

For the sake of completeness, we estimated the formation energy for the single sulfur vacancies at the three considered positions displayed in fig. 3(a). More details about the DFT calculations are reported in Appendix A. The most probable vacancy position is far from the MTB (d = 0.6 nm), with a formation energy of 1.56 eV. The vacancies with d = 0.3 nm and d = 0 are energetically less favorable, with a formation energy of 2.39 eV and 1.95 eV, respectively.

B. Anderson disorder

The short-range Anderson disorder [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF] introduces a random potential energy for each atom with value in the range [-∆, ∆], where ∆ is the disorder strength. Despite its simplicity, such a popular disorder model allows a general physical understanding. Figure 4(a) shows an example of generated random on-site potentials with strength ∆ = 100 meV applied over a ribbon section of length L. To better statistically analyze the different transport regimes, we consider an ensemble of 100 Anderson disorder realizations for each case under study. Figure 4 O is active and the decrease of T with L is exponential for L > 100 nm. This suggests a transition to the localized transport regime, for which the average logarithm of the transmission coefficients, ln T , scales as

ln T ∝ -L/ξ , ( 5 
)
where ξ is the localization length, and which is characterized by a Gaussian frequency distribution of ln T , with |∆ ln T / ln T | < 1, where ∆ ln T is the standard deviation [START_REF] Avriller | Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes[END_REF]. We verified that these conditions are satisfied, see Appendix C, and found that ξ ≈ 25 -80 nm. Such a localization length entails a huge transmission suppression when L is hundreds of nm. In region B, where six conductive channels are active, i.e., when both bands 1 O and 2 O contribute and the energy is below the SOC-induced gap, T decreases more slowly with increasing L, as shown in fig. 4(b). This suggests that the system is in the diffusive transport regime, which is characterized by a mean free path such that

T = N 1 + L/ , (6) 
where N = 6 is the number of active conductive channels, and by a Gaussian frequency distribution of T , with ∆T / T < 1, where ∆T is the standard deviation [START_REF] Avriller | Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes[END_REF]. These conditions are verified, see Appendix C, and the mean free path is found to range between 20 nm and 50 nm. Finally, the average transmission coefficient decreases very slowly in region C, which indicates that the system is in transition from the quasi-ballistic to the diffusive transport regime, as evidenced by the extremely large estimated mean free path up to ∼0.8 µm. Therefore, the MTB conductive channels for these energies are expected to be robust against Anderson disorder, and to stay in the quasi-ballistic transport for L in the order of hundreds of nm (L < ) and in the diffusive regime for L in the order of a few µm.

The mean free path as a function of the energy E is reported in fig. 4(c regime is localized. The mean free path scaling with the Anderson disorder strength ∆ is reported in the inset of fig. 4(c) for two representative energies E = 1.2 eV and E = 2.1 eV (in regions B and C, respectively), where the transport regime is diffusive. We find that is inversely proportional to ∆ 2 for both representative energies. Such a behavior is consistent with a weak scattering regime, where the Fermi golden rule is a good approximation and yields a scattering probability proportional to ∆ 2 .

The origin of the different behaviors observed in the three regions can be understood by noting that bands O. Therefore, Anderson disorder is more effective in inducing intraband scattering. At higher energies, in the region B and even more above the SOC gap, the wave number separation between counter-propagating states in band 1 O becomes larger, thus significantly tempering the backscattering. In the region B, band 2 O provides four conductive channels. However, again, the small separation in the Brillouin zone (BZ) between counter-propagating states significantly enhances backscattering, especially close to the bands extrema, i.e., at the van Hove singularities. As a consequence, in this energy region the main contribution to transport comes from band O is strongly and progressively suppressed at higher energies. The resulting transmission coefficient is close to the ballistic case.

C. Long-range disorder

We now consider the impact of long-range disorder, which corresponds to real-space potential energy fluctuations induced, for example, by the presence of charged impurities in the substrate underlying the 2D material. Adam et al. [START_REF] Adam | Mechanism for puddle formation in graphene[END_REF] proposed a model of the potential profile U (r) for graphene as a random distribution of Gaussian long-range scatterers where i is the impurity index, R i is its random position, i is a randomly chosen potential energy that we select in the range [-∆,∆], N is the total number of Gaussian impurities and χ denotes the spatial range. Here, we consider two energy potential profiles corresponding to SiO 2 and hBN substrates. We adopt the parameters available in the literature for graphene [START_REF] Tuan | Spin dynamics and relaxation in graphene dictated by electron-hole puddles[END_REF], which are ∆ = 50 meV, χ = 10 nm and n = 10 12 cm -2 for SiO 2 , and ∆ = 5 meV, χ = 30 nm and n = 10 11 cm -2 for hBN, where n is the density of impurities per surface area. These parameters may be different for MoS 2 , but this effective model nonetheless provides a physical understanding of the impact of long-range disorder on the transport properties of MTBs.

U (r) = N i=1 i e -(r-R i ) 2 2χ 2 , (7) 
The inset of fig. 5 shows the potential profile reproducing the effect of the SiO 2 substrate. We consider such a potential to be active over a section of the system with length L. The transmission coefficient averaged over 100 different profile realizations for different L is reported in the main panel of fig. 5. We observe a huge suppression of the transmission only close to edges of the transmission plateaus, where conductive channels are activated or deactivated. This behavior is explained by the fact that the long-range disorder over the quasi-1D MTB states induces local shifts of grain boundary bands along the system. In particular, the band edges, which determine the activation of the conductive channels, are smoothly shifted all along the grain boundary. The regions with the highest and lowest shifts, which tend to be about ±∆ for long enough L, determine the energy width of the decreased transmission region, as observed in the main panel of fig. 5. For the hBN substrate, not shown here, we do not any significant impact on the transport properties because of the extremely weak disorder strength ∆.

IV. TRANSPORT ACROSS THE MIRROR TWIN BOUNDARY

We now investigate the degradation of the electronic transmission of a two-dimensional MoS 2 layer in the presence of an MTB across the transport x-direction. Note that the two-dimensional system is infinitely extended in the x-direction, where the semi-infinite pristine regions at the sides of the MTB act as contacts, and periodic along the y-direction, which allows us to introduce the wave number k y . We can thus calculate the transmission coefficient T (E, k y ) for given energy E and wave number k y , and obtain the zero-temperature conductance per unit of width by integration over the one-dimensional BZ as

g(E) = e 2 h 1 2π BZ T (E, k y ) dk y . ( 8 
)
Figure 6(a) compares the conductance per unit of width for pristine MoS 2 and in the presence of the MTB. Of course, there is no transmission in the energy region of the gap, since no state is available for injecting electrons. We observe a general degradation of the conductance with a more than 50% reduction. Interestingly, as already observed in the literature [START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF], the conductance is completely suppressed over about 150 meV from the top of the valence band, which corresponds to the SOC-induced splitting of the valence band in 2D MoS 2 [START_REF] Ridolfi | A Tight-Binding Model For MoS2 Monolayers[END_REF], see the inset of fig. 6(a). In this energy region, the bands have opposite spin polarization at opposite K/K' valleys in each of the two grains on the two sides of the MTB. Note that the spin polarization is opposite in the two grains because of the mirror reflection symmetry of the system. Therefore, as a consequence of spin conservation, the current can only flow in the presence of intervalley scattering, which is, however, suppressed due to the y-translation symmetry. This results in the observed transport suppression [START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF]. The very small but finite (10 -8 ) residual transmission across the MTB, as shown in the inset of fig. 6(a), can be considered as zero within the calculation accuracy.

We investigate the robustness of this phenomenon against short-range disorder, which is expected to induce intervalley scattering and activate transport. To this aim, we consider a large ribbon (W = 50 nm) with edge roughness and an MTB across its section. 6(c). The band structure of for a 20 nm-wide zigzag ribbon with a periodic MTB without (green lines) and with (white lines) SOC is superimposed.

2 nm), see fig. 6(b), which strongly enhances intervalley scattering all along the grain boundary length. The conductance increase is larger for larger Anderson disorder strength ∆ from 100 meV to 500 meV. A similar effect is observed in the presence of sulfur vacancies with density n VS = 10 13 cm -2 , whose extremely short-range nature entails a strong intervalley scattering. Note that our model does not consider the Hartree potential induced in the vicinity of MTB, whose estimation may be sensitive to the model details and which is expected to entail a further reduction of the transmission for energies close to the top of the valence band [START_REF] Lehtinen | Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe2[END_REF][START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF]. This choice does not affect our physical analysis.

A further insight into the results of fig. 6(a) can be gained from the energy-and k y -resolved transmission coefficient T (E, k y ) reported in fig. 6(c). This figure clearly shows the different contributions of the K/K' valleys, close to the sides of the BZ, and of the Γ valley at the center. The result confirms the complete suppression of transport at energies between the two SOC-split topmost valence bands. Surprisingly enough, we observe a strong suppression of T (E, k y ) at low energies in the valence band, as indicated by dashed circles. This behavior is related to the MTB effect of "cutting" the system into weakly coupled parts, as mentioned in Sec. II. At the energies and wave numbers where T (E, k y ) is suppressed, the coupling between the two parts of the system on the sides of the MTB is very small. To support this interpretation, we superimpose the valence bands of a 20 nm-wide zigzag ribbon with a periodic MTB to the transmission coefficient. At first, we do not consider SOC, see the green lines in fig. 7. As discussed in Sec. II, the band structure is determined by the coupling of the subbands that reside on each side of the MTB. Since the coupling is weak, we observe couples of split bands. Where the bands cross, see the green dots in the figure, the coupling between the two regions at the sides of the MTB is vanishing. This explains why the low transmission coefficient is exactly observed at these crossing points. Note that increasing the width of the ribbon would just increase the number of the subbands and crowd the crossing points along the lowest transmission region (not shown here), thus confirming the validity of this picture in the 2D limit. Introducing the SOC, see the white lines in fig. 7, makes the interpretation more convoluted due to the absence of the crossing points. This is because of the opposite spin-splitting energy on the states at two sides of the MTB for given K/K' valley, which again is a consequence of the spin-valley locking mechanism and the mirror symmetry.

In conclusion of this section, we would like to point out that transport properties of the polycrystalline MoS 2 can be highly dependent on the density of the grain boundaries, which may cause a severe degradation of the conductivity. Controlling the density of grain boundaries will be a significant factor for the use in electronic applications [START_REF] Najmaei | Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide[END_REF].

V. CONCLUSIONS

In summary, we have numerically investigated the transport properties of MoS 2 in the presence of an MTB. Along the grain boundary, conductive channels develop at energies within the band gap of 2D MoS 2 . The conductance of these states is found to be sensitive to chalcogen vacancies, relatively robust against short-range Anderson disorder, and scarcely impacted by long-range disorder. On the other side, transport across the mirror grain boundary is significantly affected, and its analysis in terms of wave number dependent transmission reveals peculiar features of this grain boundary, as the separation of the ribbon into two weakly coupled narrower ribbons. Moreover, as already demonstrated in the literature [START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF], the transmission across the grain boundary is suppressed in the energy range of the spin-orbit splitting of the valence, due to spin-valley locking. However, we demonstrate that transmission is partially allowed as a consequence of the induced intervalley scattering in the presence of short-range disorder. Our results provide physical and quantitative insight into the interplay between grain boundaries and additional disorder. They could thus be beneficial to the design of electronic devices based on TMDs, in particular for the control of leakage current in field-effect transistors and the fabrication of 2D metallic contacts based on grain boundary networks. The bands corresponding to the edge states, whose details we are not interested in here, do not match those of the cited references, since they depend on the specific edge passivation. The main difference with DFT calculations is the energy downshift of band O, is also shifted upward to the bottom of and inside the conduction band. The other aspect to take into account is the presence of MTB states on the top of the valence band at the Γ point, which appears at even higher energies than the bulk states, see the orange lines in fig. 8. MTB states in the valence band in DFT, however, are located at lower energies at Γ [START_REF] Jolie | Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS2 Mirror-Twin Boundaries[END_REF]. Therefore we modified the on-site energies of the same Mo atoms by -0. The SOC-induced gap, indicated by an arrow, is ∼60 meV, i.e., slightly narrower than in the TB case. A narrow ribbon width is considered to reduce the computational burden. The shape of the MTB bands is not significantly affected by the ribbon width, provided the ribbon is large enough to avoid the coupling between edge and MTB states. Black and red lines display the bands without and with SOC, respectively. gap, as well as the presence of MTB states below the edge of the valence band and close to the edge of the conduction band, also agree with the results of Ref. [START_REF] Jolie | Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS2 Mirror-Twin Boundaries[END_REF]. Furthermore, we observe spin degeneracy and anti-crossing between bands 1

O and 2

O for both the calibrated TB model and the DFT calculation.

Appendix C: Details of the scaling analysis for Anderson disorder

To illustrate the scaling analysis performed to statistically analyze the transport regimes in the presence of Anderson disorder, we focus on the ribbon with width W = 10 nm and fix the disorder strength to ∆ = 100 meV. We select two representative energies, E=1 eV and E=1.8 eV for the scaling analysis of transport properties along MTB. As shown in fig. 4(b), T rapidly decreases when L increases for E=1 eV. This suggests the transport regime is localized, as confirmed by the linear decrease of the average logarithm of the transmission coefficient ln T as a function of L, see fig. 10(a). The localization length is then extracted according to eq. ( 5), which gives ξ = 58 nm for the selected energy. Also, fig. 10(b) shows the typical [START_REF] Avriller | Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes[END_REF] Gaussian frequency distribution of ln T with |∆ ln T / ln T | < 1, where ∆ ln T is the standard deviation. For E=1.8 eV, T decreases more slowly for increasing L, thus suggesting a diffusive transport regime. This is confirmed by fig. 10(c), which shows the inverse of the average transmission coefficient T as a function of the length L. Its linear scaling allows us to extract the mean free path according to eq. ( 6), = 750 nm for the given energy. Moreover, we observe a typical [START_REF] Avriller | Low-dimensional quantum transport properties of chemically-disordered carbon nanotubes: From weak to strong localization regimes[END_REF] Gaussian distribution with ∆T / T < 1, where ∆T is the standard deviation of T , see fig. 10(d).

Appendix D: Details of the analysis in terms of individual MTB bands in the case of Anderson disorder As discussed in Sec. II, the total transmission along MTB is related to the independent contribution of the two MTB bands within the bulk gap, bands 1 O and 2 O.

Even though the SOC entails a weak coupling between them and thus induces a small gap, their contributions in terms of d orbitals of the nearest Mo atoms on MTB is O to transport. For higher energies above the SOC-induced gap, on the other hand, both bands are activated and contribute to the diffusive transport regime with relatively large mean free paths. The mean free path corresponding to band 1 O is shorter than for band 2 O, and it becomes longer for E > 1.8 eV.
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 1122 FIG. 1. (a) Side and top views of the relaxed atomic structure of a periodic MTB, highlighted by a dashed red line, in MoS2. Mo atoms are in purple color and S atoms are in yellow color. The dashed rectangle indicates a unit cell for the ribbon, which is periodic along the y-direction and whose lattice parameter is a = 0.316 nm. (b) Band structure obtained with the calibrated TB model of a zigzag ribbon with width W = 10 nm and a periodic MTB along its axis. 1 O and 2 O indicate the two spin-degenerate MTB bands within the bulk gap, which are highlighted by blue and green lines. The size of the red dots corresponds to the weight of the states on the molybdenum atoms in the MTB region. The indicated K, K' and Γ points correspond to the projection of the corners and the center of the hexagonal Brillouin zone of 2D MoS2 onto the 1D Brillouin zone of the ribbon. Inset: Band structures with (red line) and without (black line) SOC in the region indicated by a square. The energy gap induced by SOC is ∼80 meV, which is close to that found by DFT calculations, see fig. 9 for more details. (c) Probability density of the states at E = 2 eV on bands 1Oand 2 Oontheatomscl ose to MTB.

  FIG. 2. (a) Band structures of a zigzag ribbon with W = 10 nm and the MTB along its axis (same as in fig. 1) and for a pristine zigzag ribbon with half-width W = 5 nm. Only the valence band region is shown. (b) Local density of states of the ribbon with an MTB as a function of the x-coordinate along the ribbon transverse section and the electron energy E. Edge states and MTB states within the bulk gap are indicated in white arrows. A white dashed circle displays the region with reduced density of states on the MTB.

  FIG. 3. (a) Three sulfur vacancy positions, indicated by circles, at different distances d from the MTB. (b) Transmission coefficient as a function of energy for the pristine system and in the presence of a single sulfur vacancy at the three positions specified in (a). (c) Band structure of the pristine ribbon in the bulk gap region. The size of the dots indicates the weight of the sulfur component of the corresponding states, which is only present for band 1 O. The dashed lines indicate the energies of the localized sulfur vacancy states.

  (b) reports the transmission coefficient for the pristine MTB and the average transmission coefficients T in the presence of Anderson disorder as a function of the electron energy E within the bulk band gap for ∆ = 100 meV and different lengths L. We can identify three energy regions, indicated in fig.4(b) by the letters A (for E 1.1 eV), B (for 1.1 eV E 1.29 eV, i.e., below the SOC-induced gap) and C (for E 1.37 eV, i.e., above the SOC-induced gap). In region A, only band1 

FIG. 4 .

 4 FIG. 4. (a) Example of Anderson disorder realization with random on-site energies for the atoms over the section of length L, and with strength ∆ = 100 meV. The MTB is highlighted by a dashed red line. (b) Average transmission coefficient as a function of the electron energy E for the MTB system in the pristine case (L = 0 nm) and in the presence of Anderson disorder with ∆ = 100 meV and L varying from 50 nm to 200 nm. The continuous lines and shaded regions show the average and the 25th to the 75th percentile of the transmission over 100 disorder realizations, respectively. (c) Mean free path as a function of E for different Anderson disorder strengths ∆. Inset: Mean free path as a function of ∆ for two representative energies E = 1.2 eV and E = 2.1 eV. The continuous lines correspond to the fit ∝ ∆ -2 . (d) Average transmission coefficient as a function of E for the MTB system in the presence of Anderson disorder with ∆ = 100 meV and L = 50 nm, and sum of the average transmission of the two MTB bands. T1 is the average transmission of band 1 O
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 212 contribute independently to the transport properties. Indeed, by properly modifying the Hamiltonian, see Appendix D, it is possible to selectively shift band to higher energies and analyze the transport properties of each of the two bands individually. Figure 4(d) demonstrates that the total average transmission is given by the sum of the average transmission of the two bands, i.e., T ≈ T 1 + T 2 , except, of course, around the SOC gap, where the two bands hybridize. This means that Anderson disorder does not introduce any significant scattering between these two bands with different orbital compositions, and that we can analyze each band independently. In the first energy region (E 1.1 eV), the short mean free path and the transition to the localization transport regime are due to the fact that electrons are at the bottom of band 1

1 O.

 1 Analogously to what is observed for band 1 O, in region C above the SOC gap, the backscattering for the two conductive channels from band 2

FIG. 5 .

 5 FIG. 5. Main panel: Average transmission coefficient as a function of the energy and for different L in the case of a SiO2 substrate. The averaging is performed over 100 disorder realizations. Inset: Example of long-range potential profile realization for a SiO2 substrate.

FIG. 6 .

 6 Figure6(a) compares the conductance per unit of width for pristine MoS 2 and in the presence of the MTB. Of course, there is no transmission in the energy region of the gap, since no state is available for injecting electrons. We observe a general degradation of the conductance with a more than 50% reduction.Interestingly, as already observed in the literature[START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF], the conductance is completely suppressed over about 150 meV from the top of the valence band, which corresponds to the SOC-induced splitting of the valence band in 2D MoS 2[START_REF] Ridolfi | A Tight-Binding Model For MoS2 Monolayers[END_REF], see the inset of fig.6(a). In this energy region, the bands have opposite spin polarization at opposite K/K' valleys in each of the two grains on the two sides of the MTB. Note that the spin polarization is opposite in the two grains because of the mirror reflection symmetry of the system. Therefore, as a consequence of spin conservation, the current can only flow in the presence of intervalley scattering, which is, however, suppressed due to the y-translation symmetry. This results in the observed transport suppression[START_REF] Pulkin | Spin-and valley-polarized transport across line defects in monolayer MoS2[END_REF]. The very small but finite (10 -8 ) residual transmission across the MTB, as shown in the inset of fig.6(a), can be considered as zero within the calculation accuracy.We investigate the robustness of this phenomenon against short-range disorder, which is expected to induce intervalley scattering and activate transport. To this aim, we consider a large ribbon (W = 50 nm) with edge roughness and an MTB across its section. Figure6(b)shows that the conductance is still suppressed at the top of the valence band, but there is a residual transmission due to intervalley scattering induced by the ribbon edges. Given the extremely small conductance, a residual contribution of edge state channels cannot be excluded. Note that, to be effective, intervalley scattering must occur at the grain boundary, when electrons pass from one grain to the other. Incidentally, at the top of the valence band and within the same grain, intervalley scattering is suppressed by the spin-valley locking mechanism. The conductance increases when including Anderson disorder along the MTB (over a width of

TFIG. 7 .

 7 FIG.7. Transmission coefficient as a function of the wave number and the electron energy in one of the two regions indicated by dashed circles in fig.6(c). The band structure of for a 20 nm-wide zigzag ribbon with a periodic MTB without (green lines) and with (white lines) SOC is superimposed.

FIG. 8 .

 8 FIG. 8. Band structure obtained with the non-calibrated TB model and without SOC for the ribbon of fig. 1(b). MTB bands within the bulk gap are indicated in blue, green and purple lines. Orange lines display the MTB band above the bulk states at the Γ point. The MTB bands in blue and green lines correspond to bands 1 O and 2 O in fig. 1(b). Red circles denote the weight of molybdenum atoms in the MTB region. (a) Contribution of all d orbitals, (b) dxy, (c) dyz, (d) dzx, (e) d x 2 -y 2 , and (f) d z 2 . Contribution of S atoms to the MTB bands within the bulk gap is insignificant compared to that of Mo atoms and thus not displayed.

  FIG. 9.(a) Band structure obtained with the calibrated TB model for the ribbon of fig.1(b). The SOC-induced gap is indicated by an arrow. (b) Band structure obtained by DFT calculations for a ribbon with width W = 2.2 nm. The SOC-induced gap, indicated by an arrow, is ∼60 meV, i.e., slightly narrower than in the TB case. A narrow ribbon width is considered to reduce the computational burden. The shape of the MTB bands is not significantly affected by the ribbon width, provided the ribbon is large enough to avoid the coupling between edge and MTB states. Black and red lines display the bands without and with SOC, respectively.

35 FIG. 10 . 2 FIG. 11 . 1 O (green lines) and 2 O

 351021112 FIG. 10. Scaling analysis of the localized (a), (b) and diffusive (c), (d) transport regimes, for Anderson disorder with ∆ = 100 meV. (a) Average logarithm of the transmission coefficient as a function of L at E = 1 eV, which corresponds to the energy region A in fig. 4(b). The continuous line shows the linear fit. The estimated localization length is ξ ≈ 58 nm. (b) Frequency distribution of lnT for L = 300 nm at the same energy. (c) Inverse of the average the transmission coefficient as a function of L at E = 1.8 eV chosen within the energy region C in fig. 4 (b). The continuous line shows the linear fit. The estimated mean free path is ≈ 750 nm. (d) Frequency distribution of T for L = 300 nm at the same energy.
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 121 FIG. 12. Mean free path as a function of the electron energy in the presence of Anderson disorder with strength ∆ varying from 50 meV to 200 meV. The individual mean free paths of band 1 O and (b) band 2 O, calculated starting from the modified Hamiltonian corresponding to the band structures in figs. 11(b) and 11(c), respectively.

O and 2 O 1 O, band 2 O 2 O, band 1 O

 21221 by modifying the Hamiltonian to shift alternatively one of the two bands at higher energy and isolate the contribution of the other. To this aim, we only modify the on-site energies of the specific d orbitals of the Mo atoms close to the MTB contributing to the states of the chosen band. To isolate the contribution to transport of band is shifted upward by increasing the on-site energies of the d xy and the d z 2 orbitals by 0.5 eV and 2.0 eV, respectively. To isolate the contribution to transport of band is shifted upward by increasing the on-site energy of the d zx orbital by 3.0 eV. The resulting modified band structures are reported in fig.11. Compared to the unmodified band structure shown in fig.11(a), only one band remains in its initial position, while the other one enters into the conduction band, thus not contributing to transport in the energy range of the bulk band gap, see figs. 11(b) and fig. 11(c).As discussed in Sec. III B, except for the region close to the SOC gap, the average transmission coefficient T turns out to be close to the sum of the two contributions T 1 + T 2 , see fig.4(d).

  Figure 12 reports the mean free path of each band as a function of the energy E. At lower energies corresponding to regions A and B in fig. 4(b), band 1 O exhibits a relatively large mean free path compared to 2 O. This behavior indicates the main contribution of band 1
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Appendix A: Ab initio calculations DFT calculations were carried out using the plane-wave basis set with a kinetic energy cutoff of 500 eV and the projector augmented-wave method, as implemented in the Vienna Ab initio Simulation Package [START_REF] Kresse | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[END_REF][START_REF] Kresse | Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[END_REF]. Generalized gradient approximation of the Perdew-Burke-Ernzerhof functional form [START_REF] Perdew | Generalized Gradient Approximation Made Simple[END_REF] was used. The valence electron configurations were 4d and 5s for Mo, 3s and 3p for S, 1s for H. The BZs were sampled using Γ-centered k-point mesh. Monolayer MoS 2 was fully relaxed with a vacuum layer greater than 2 nm to avoid its interaction with periodic images along the x-axis. The resulting Mo-S bond length is 2.41 Å, while the y-axis lattice constant is 3.175 Å. A ribbon model with MTB was set up, whose width is 2.24 nm and the optimized lattice constant along the y-direction is 3.179 Å, very close to the pure monolayer case. At least 1 nm vacuum space was introduced in the x-and z-directions, and four hydrogen atoms per supercell were introduced to saturate the corresponding four S atoms on the edges. The electronic structures were calculated either with or without SOC.

For sulfur vacancy formation energy calculations, we enlarged the MTB supercell to 4 times along the y-axis. Therefore, one sulfur vacancy was introduced per 120-atom MoS 2 supercell. The missing sulfur atom was assumed to be in the solid α-S form, i.e., the sulfur chemical potential equals that in an Fddd S 8 supercell.

Appendix B: Details and calibration of the tight-binding model

As mentioned in Sec. II, we made use of an 11-band Slater-Koster TB Hamiltonian with five d orbitals (d xy , d yz , d zx , d x 2 -y 2 , d z 2 ) for the Mo atoms and three p orbitals (p x , p y , p z ) for the S atoms, which we indicate with S b on the bottom layer and with S t on the top layer. The TB Hamiltonian elements include on-site and hopping energies for S t -S b within the same unit cell, Mo-S t,b within each unit cell and its adjacent cells, and next-nearest-neighbor ones for Mo-Mo and S-S within adjacent cells. We adopted the Slater-Koster parameters reported in Ref. [START_REF] Ridolfi | A Tight-Binding Model For MoS2 Monolayers[END_REF].

Even after the consideration of the strain effect on MTB as detailed in the main text, a further calibration of the TB model was required for tuning the energy of the MTB states. We illustrate here the calibration procedure. We analyzed the wave functions of the MTB states as resulting from the TB model, see fig. 8, and compared them with those obtained by DFT calculations. The shape of the MTB bands within the gap as well as the different spatial extension of the wave functions for states on bands 1 O and 2 O well match the DFT results [START_REF] Lehtinen | Atomic Scale Microstructure and Properties of Se-Deficient Two-Dimensional MoSe2[END_REF][START_REF] Jolie | Tomonaga-Luttinger Liquid in a Box: Electrons Confined within MoS2 Mirror-Twin Boundaries[END_REF].