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Grain boundaries in two-dimensional transition metal dichalcogenides can strongly affect the
transport properties by reducing the electron mobility or allowing gap conduction through extended
grain boundary states. Here, by combining advanced modeling tools — density-functional-theory-
calibrated tight-binding Hamiltonians and Green’s function techniques — we investigate transport
along and across mirror twin grain boundaries in MoS2. Our results show that the grain boundary
conductive channels are strongly affected by sulfur vacancies, while short-range Anderson disorder
has a moderate impact, which we quantitatively analyze, and long-range disorder has a very weak
effect. As for transport across the grain boundaries, the system conductance turns out to be less than
half that for the pristine system, and the spin-orbit coupling and intervalley scattering are found
to play an important role. Our findings are beneficial to the understanding and the prediction of
the impact of mirror twin grain boundaries in the transport phenomena, and could be of help in
designing electronic devices based on transition metal dichalcogenides.

This is the self-archived version of the paper

J. Park, K.-H. Xue, M. Mouis, F. Triozon, and A. Cresti, Physical Review B 100, 235403 (2019)

DOI: 10.1103/PhysRevB.100.235403

I. INTRODUCTION

After the discovery of graphene [1], a plethora of new
two-dimensional (2D) materials with a great variety of
electronic properties [2] have been predicted, fabricated
and investigated. Among them, semiconducting 2D ma-
terials are in the limelight for their very promising elec-
tronic and optoelectronic applications [3, 4]. For ex-
ample, field-effect transistors benefit from the few-atom
thickness of 2D materials, which allows an enhanced elec-
trostatic control, and from their self-passivated surfaces,
where the absence of dangling bonds reduces the risk
of traps at the interface with the oxide. Most impor-
tantly, the presence of a band gap in semiconducting
2D materials, in contrast with graphene [5], allows a
much higher on/off current ratio in logic devices [4]. It
also allows the design of tunnel field-effect transistors
with lateral [3] and vertical [6] structures, as well as
energy filtering steep-slope transistors [7]. The use of
MoS2 for topological quantum transistors was also pro-
posed [8]. Furthermore, the van der Waals stacking of
different materials [9] opens unprecedented possibilities
for the realization of original and complex architectures.
The most comprehensively investigated 2D materials be-
yond graphene are the semiconducting transition metal
dichalcogenides (TMDs) [10]. In particular, monolayers
from group VI in the trigonal prismatic phase show siz-
able direct band gaps. Some years after the first realiza-
tion of a working MoS2-based transistor [11], transistors
based on TMD van der Waals heterostructures [9, 12]
were demonstrated, which represent a significant advance

towards completely 2D microprocessors [13].

For applications, a large-scale fabrication of large-area
TMDs is crucial. In this respect, chemical vapor de-
position (CVD) [14–16] has emerged as a very efficient
growth technique, which is promising for industrial pro-
duction. However, CVD TMDs may present several kinds
of defects, which are expected to significantly impact the
electronic and transport properties, with possible degra-
dation of the device performance. The most common
defect is the polycrystallinity of CVD TMDs, which is
inherent in the synthesis process. The grain boundaries
at the interfaces between crystalline grains have been re-
ported to strongly localize electrons [17], with consequent
carrier mobility degradation [18, 19]. Therefore, under-
standing the impact of grain boundaries on the transport
properties of TMDs is of central importance.

Among the huge variety of grains boundaries with dif-
ferent geometries, mirror twin grain boundaries (MTBs)
are commonly observed in experiments [16, 20, 21]. An
MTB is an inversion grain boundary that forms at the
interface between two grains with a 60◦ rotation angle.
Interestingly, density functional theory (DFT) calcula-
tions [16, 21, 22] reveal that a periodic MTB shows
dispersive and metallic states within the bulk gap of
the two-dimensional semiconducting TMDs, while most
of the tilt grain boundaries induce strongly localized
states [19]. Such a metallic nature has also been ex-
perimentally demonstrated by scanning tunneling spec-
troscopy [23]. With regard to field-effect transistor appli-
cations, metallic MTBs along the transistor channel may
result in a detrimental leakage current flowing through
the TMD gap. On the other hand, metallic MTB net-
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works could drive opportunities for the realization of
suited metallic contacts for semiconducting TMDs, as ex-
perimentally demonstrated [24]. In the literature, how-
ever, electron transport in the presence of MTBs has
been barely investigated theoretically, with existing stud-
ies mainly focusing on transport across periodic and
defect-free grain boundaries [21, 25, 26].

In this paper, by means of calculations of the
Landauer-Büttiker conductance [27] based on the Green’s
function approach and a DFT-calibrated tight-binding
(TB) model, we explore electron quantum transport
along and across a metallic MTB in MoS2. In particu-
lar, we investigate the robustness of the MTB conductive
channels against short-range and long-range disorders.
Then, we concentrate on the conductance of 2D MoS2

where the MTB is orthogonal to the transport direction,
and provide a physical understanding of the transport
degradation. Our main result is a full analysis of the im-
pact of MTBs on the transport properties of MoS2. Note
that low-temperature many-body effects, such as charge
density wave transition [28, 29] and Tomonaga-Luttinger
liquid phase [30], are out of the scope of our study.

The paper is organized as follows. Section II intro-
duces the model and details the electronic structure of
the MTB. In Sects. III and IV, we investigate electron
transport along and across an MTB, respectively. Sec-
tion V concludes. Finally, the details of DFT simulations
and TB model, as well as of the scaling analysis of the
transport properties in the presence of disorder are re-
ported in the Appendices.

II. ELECTRONIC STRUCTURE OF THE
MIRROR TWIN BOUNDARY

We consider MoS2 ribbons with a periodic MTB
along their axis in the y-direction. We focus on the
rather common geometry called 4|4 P [16], whose re-
laxed structure calculated by DFT is shown in fig. 1(a).
DFT calculations were carried out using the plane-wave
basis set and the projector augmented-wave method,
and the generalized gradient approximation of the
Perdew-Burke-Ernzerhof functional form [31], as im-
plemented in the Vienna Ab initio Simulation Pack-
age [32, 33], see Appendix A for more details. Note that
the MTB is along the zigzag direction, which implies that
edges are along the zigzag orientation.

To describe the MTB, we make use of a TB Hamil-
tonian, which can take into account the atomistic de-
tails of the structure modulation induced around the
grain boundary. We adopt the Slater-Koster [34] TB
parametrization of Ref. [35], which considers five d or-
bitals for Mo atoms and three p orbitals for S atoms.
This TB model has the advantage of not being based
on symmetry considerations [36] and therefore to be able
to reasonably describe geometrically distorted configura-
tions. Moreover, it is accurate for energies within ap-
proximately 1 eV from the valence and conduction band
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FIG. 1. (a) Side and top views of the relaxed atomic struc-
ture of a periodic MTB, highlighted by a dashed red line, in
MoS2. Mo atoms are in purple color and S atoms are in yel-
low color. The dashed rectangle indicates a unit cell for the
ribbon, which is periodic along the y-direction and whose lat-
tice parameter is a = 0.316 nm. (b) Band structure obtained
with the calibrated TB model of a zigzag ribbon with width
W = 10 nm and a periodic MTB along its axis. 1O and 2O
indicate the two spin-degenerate MTB bands within the bulk
gap, which are highlighted by blue and green lines. The size
of the red dots corresponds to the weight of the states on the
molybdenum atoms in the MTB region. The indicated K, K’
and Γ points correspond to the projection of the corners and
the center of the hexagonal Brillouin zone of 2D MoS2 onto
the 1D Brillouin zone of the ribbon. Inset: Band structures
with (red line) and without (black line) SOC in the region
indicated by a square. The energy gap induced by SOC is
∼80 meV, which is close to that found by DFT calculations,
see fig. 9 for more details. (c) Probability density of the states
at E = 2 eV on bands 1O and 2O on the atoms close to MTB.
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edges.
We introduce the effect of spin-orbit coupling (SOC),

which is known to play an important role in TMDs, by
appropriate intra-atomic Hamiltonian elements [37]

HSOC =
∑
α

λα
~
L̂α · Ŝα , (1)

where α is the atom index, L̂ is the atomic orbital angular
momentum operator, Ŝ is the spin operator, and λα is
the intra-atomic SOC constant with value 75 meV for
Mo atoms and 52 meV for S atoms [37]. The use of the
Slater-Koster TB model allows us to consider the effect
of strain, which is present in our case due to the lattice
deformations close to the MTB. The two-center energy
integral elements Vij between two orbitals i and j depend
on the interatomic distance d as [39]

Vij(d) = Vij(d0)

(
d0
d

)γij
, (2)

where d0 is the unstrained interatomic distance for the
given couple of atoms corresponding to the i and j or-
bitals, and γij is a parameter, which can be assumed as
γij = li + lj + 1 with li and lj the angular momenta of
the orbitals i and j, respectively [38]. Together with the
relaxed geometry obtained from DFT calculations, this
provides an accurate description of the effect of strain
induced by the MTB.

The resulting Hamiltonian fairly reproduces the DFT
shape of the bands corresponding to the MTB, but not
their energy position. This problem is solved by a fur-
ther calibration procedure, which consists in analyzing
the specific orbital contributions to each band and in
modifying the on-site energies of some properly selected
orbitals. The result of the calibration, which is detailed
in Appendix B, is a shift by +1 eV, +0.2 eV, -0.3 eV and
-0.8 eV of the on-site energies of the dzx, dyz, dxy and
dz2 orbitals of the Mo atoms nearest to the MTB.

Figure 1(b) shows the band structure of a zigzag rib-
bon with width W = 10 nm and a periodic MTB along
its axis. These results are comparable with those previ-
ously obtained in the literature by DFT calculations [30].
The electronic structure consists of bulk bands, with di-
rect gap at the K and K’ points, which appear as quan-
tized subbands due to lateral confinement, and dispersive
bands within the bulk gap. Among these latter, in addi-
tion to those corresponding to edge states, we find those
(indicated by red dots) corresponding to MTB states.
The two MTB spin-degenerate bands within the bulk
band gap, indicated by 1O and 2O in fig. 1(b), display
different properties in terms of wave functions and atomic
orbital compositions. In particular, band 1O exhibits a
narrow wave function (with width up to ∼0.8 nm) com-
posed of dyz and dzx Mo orbitals, while band 2O shows a
spatially more extended wave function (with width up to
∼1.3 nm) mainly stemming from dxy, dz2 and dx2 orbitals
of Mo atoms, see fig. 1(c) and Appendix B.

We would like to comment on the effect of SOC, which
is responsible for the anticrossing of the two MTB bands
and the opening of a small gap in the order of 80 meV,
see the inset of fig. 1(b). This feature is also observed in
the DFT calculations, see fig. 9(b) in Appendix B, where
the results with and without SOC clearly show the band
anticrossing and crossing, respectively. The anticross-
ing is the consequence of the hybridization between two
MTB bands induced by the SOC coupling of the differ-
ent orbitals composing the two bands. Note that the
bands are spin-degenerate, because, in contrast with the
pristine MoS2, in the presence of the MTB the system
is invariant under inversion symmetry. Together with
the time-reversal symmetry, this entails the Kramers de-
generacy of the bands. While for the whole ribbon the
presence of the inversion symmetry requires the MTB to
be exactly along the ribbon axis (as in our case), such a
symmetry always holds for the region around the grain
boundary itself. As a consequence, the spin-degeneracy
of the MTB dispersive states within the bulk band gap
is expected to be generally observed.

Let us now analyze how bulk states outside the bulk
band gap are affected by the MTB. As shown in fig. 2(a),
the shape and the spacing of the quantized bulk valence
bands for the ribbon in the presence of the MTB are com-
parable to those of a pristine ribbon with a half-width,
i.e., W = 5 nm. This indicates that the MTB has the
effect of “cutting” the ribbon into two narrower ones.
The weak coupling between these resulting two ribbons
induces a small modification of the valence bands, as ob-
served in the figure. Note that while the bands of the
ribbon with the MTB are spin-degenerate, the pristine
ribbon bands are spin-split due to the joint effect of SOC
and absence of inversion symmetry. A more detailed
physical understanding can be gained by looking at the
local density of states (LDoS) displayed in fig. 2(b) as
a function of the energy and of the x-position across the
ribbon. The MTB is located in the center at x = 0 nm. In
agreement with the band structure of fig. 1(b), the LDoS
exhibits MTB states within the bulk band gap, while it
vanishes away from x = 0 nm. More importantly, as
shown as the dashed circle in fig. 2(b), the LDoS turns
out to be relatively low in the vicinity of the MTB in
the valence band, thus illustrating and confirming the
effective separation of the ribbon into two narrower rib-
bons. This effect also significantly affects the transport
properties, as we will discuss in Sec. IV.

III. TRANSPORT ALONG THE MIRROR TWIN
BOUNDARY

In this section, we investigate electron transport along
the MTB, i.e., along the y-axis, in the energy region of
the bulk gap, where the grain boundary states are ac-
tive and surrounded by an insulating bulk. To calculate
the Landauer-Büttiker conductance [27] we make use of
home-grown numerical codes based on the Green’s func-
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FIG. 2. (a) Band structures of a zigzag ribbon with
W = 10 nm and the MTB along its axis (same as in fig. 1) and
for a pristine zigzag ribbon with half-width W = 5 nm. Only
the valence band region is shown. (b) Local density of states
of the ribbon with an MTB as a function of the x-coordinate
along the ribbon transverse section and the electron energy
E. Edge states and MTB states within the bulk gap are in-
dicated in white arrows. A white dashed circle displays the
region with reduced density of states on the MTB.

tion approach, which allows us to write the transmission
coefficient as [40]

T (E) = Tr
[

ΓS(E) GR(E) ΓD(E) GA(E)
]
, (3)

where Tr is the trace operator, E is the electron en-
ergy, GR and GA are the retarded and advanced Green’s
function matrices, ΓS and ΓD are the rate operator ma-
trices for the source and drain contacts obtained from
semi-infinite periodic prolongation of the system along
the y-axis. The Green’s function also provides the LDoS,
i.e., the density of states on each atom as

ρn(E) = − 1

π
Im
{

Tr
[
GR
n (E)

]}
, (4)

where GR
n is the matrix of the retarded Green’s function

projected on the subspace of the orbitals of the atom with
index n. Additional details about the numerical methods
are given elsewhere [41, 42].

More specifically, this section focuses on the study of
the robustness of the MTB conductive channels against
additional short-range disorder (single sulfur vacancies
and Anderson disorder) and long-range (Gaussian) im-
purities. We will provide a quantitative scaling analysis
in terms of the different (quasi-ballistic, diffusive and lo-
calized regimes) transport regimes. Before proceeding,
we would like to recall that, for an infinite periodic rib-
bon with an MTB but no additional disorder, the trans-
mission coefficient is quantized at values corresponding
to the number of active conductive channels at given en-
ergy. To focus on the MTB transmission and suppress
the contribution of the ribbon edge states, which would
complicate the analysis, we introduced edge roughness
with amplitude 0.25 nm over a length of at least 20 nm.
For wide enough ribbons and for energies within the bulk
gap, as in our case, such an edge roughness does not affect
the transport along the MTB at all but completely local-
izes the edge states with a localization length in the order
of few nanometers [43]. As a result, the complete sup-
pression of the edge transmission allows us to exclusively
focus on the transmission of the MTB, see the dashed
line of fig. 3(b).

A. Sulfur vacancies

Sulfur vacancies, as one of the most common defects
observed in experiments, are expected to induce local-
ized midgap states, which can significantly affect trans-
port [44]. These vacancies could be fatal for the conduc-
tive MTB channels within the bulk gap.

To investigate this aspect, we introduce one single sul-
fur vacancy at different distances from the grain bound-
ary, see fig. 3(a). The impact of the single sulfur va-
cancy is expected to be negligible when the vacancy is
far enough from the grain boundary, because the local-
ized vacancy states and the MTB states are spatially
separated. Indeed, we do not find any impact of the
vacancy when its distance d from the MTB is larger
than ∼ 1.4 nm. This is consistent with the fact that
the vacancy states have a spatial extension of about
0.5 nm [44], while the MTB states have a maximum ex-
tension of about 1.3 nm. For shorter distances and down
to d ≈ 0.6 nm, the MTB transmission shows some dips
around specific energies, see fig. 3(b). Such dips are a
clear indication of resonant scattering between the MTB
states and the localized vacancy states, as confirmed by
the correspondence between the dip energies and the
energy of the vacancy states, see the dashed lines in
fig. 3(c). When the vacancy is closer to the grain bound-
ary (d = 0.3 nm), its impact is much more effective and
the transmission decreases over the whole energy range.
Interestingly, when the sulfur vacancy is exactly placed
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FIG. 3. (a) Three sulfur vacancy positions, indicated by cir-
cles, at different distances d from the MTB. (b) Transmission
coefficient as a function of energy for the pristine system and
in the presence of a single sulfur vacancy at the three positions
specified in (a). (c) Band structure of the pristine ribbon in
the bulk gap region. The size of the dots indicates the weight
of the sulfur component of the corresponding states, which
is only present for band 1O. The dashed lines indicate the
energies of the localized sulfur vacancy states.

on the grain boundary, we observe a strong suppression
of two conductive channels for energies E > 1.1 eV, as
demonstrated by the nearly quantized transmission coef-
ficient T ≈ 4 and T ≈ 2 compared to T = 6 and T = 4
for the pristine system. We find that the suppressed con-
ductive channels correspond to the MTB spin-degenerate
band 1O, which is contributed by the sulfur atoms. The
sulfur weight in the wave functions is indicated by dots
in fig. 3(c). Note that contribution of sulfur orbitals to
the MTB states is much smaller than that of molybde-
num orbitals, and that the size of dots in figs. 1(b) and
3(c) does not correspond to the same weight scale. Sul-
fur orbitals hardly contribute to band 2O, which is active
for E & 1.1 eV, and thus the corresponding conductive
channel is not appreciably affected by the vacancy.

For the sake of completeness, we estimated the forma-
tion energy for the single sulfur vacancies at the three
considered positions displayed in fig. 3(a). More details
about the DFT calculations are reported in Appendix A.
The most probable vacancy position is far from the MTB
(d = 0.6 nm), with a formation energy of 1.56 eV. The
vacancies with d = 0.3 nm and d = 0 are energetically
less favorable, with a formation energy of 2.39 eV and
1.95 eV, respectively.

B. Anderson disorder

The short-range Anderson disorder [45] introduces a
random potential energy for each atom with value in the
range [−∆,∆], where ∆ is the disorder strength. Despite

its simplicity, such a popular disorder model allows a gen-
eral physical understanding. Figure 4(a) shows an exam-
ple of generated random on-site potentials with strength
∆ = 100 meV applied over a ribbon section of length
L. To better statistically analyze the different transport
regimes, we consider an ensemble of 100 Anderson dis-
order realizations for each case under study. Figure 4(b)
reports the transmission coefficient for the pristine MTB
and the average transmission coefficients 〈T 〉 in the pres-
ence of Anderson disorder as a function of the electron
energy E within the bulk band gap for ∆ = 100 meV and
different lengths L. We can identify three energy regions,
indicated in fig. 4(b) by the letters A (for E . 1.1 eV), B
(for 1.1 eV . E . 1.29 eV, i.e., below the SOC-induced
gap) and C (for E & 1.37 eV, i.e., above the SOC-induced
gap). In region A, only band 1O is active and the de-
crease of 〈T 〉 with L is exponential for L > 100 nm. This
suggests a transition to the localized transport regime,
for which the average logarithm of the transmission co-
efficients, 〈lnT 〉, scales as

〈lnT 〉 ∝ −L/ξ , (5)

where ξ is the localization length, and which is char-
acterized by a Gaussian frequency distribution of lnT ,
with |∆ lnT/〈lnT 〉| < 1, where ∆ lnT is the standard
deviation [46]. We verified that these conditions are sat-
isfied, see Appendix C, and found that ξ ≈ 25 − 80 nm.
Such a localization length entails a huge transmission
suppression when L is hundreds of nm. In region B,
where six conductive channels are active, i.e., when both
bands 1O and 2O contribute and the energy is below
the SOC-induced gap, 〈T 〉 decreases more slowly with
increasing L, as shown in fig. 4(b). This suggests that
the system is in the diffusive transport regime, which is
characterized by a mean free path ` such that

〈T 〉 =
N

1 + L/`
, (6)

where N = 6 is the number of active conductive chan-
nels, and by a Gaussian frequency distribution of T , with
∆T/〈T 〉 < 1, where ∆T is the standard deviation [46].
These conditions are verified, see Appendix C, and the
mean free path ` is found to range between 20 nm and
50 nm. Finally, the average transmission coefficient de-
creases very slowly in region C, which indicates that the
system is in transition from the quasi-ballistic to the dif-
fusive transport regime, as evidenced by the extremely
large estimated mean free path up to ∼0.8 µm. There-
fore, the MTB conductive channels for these energies are
expected to be robust against Anderson disorder, and to
stay in the quasi-ballistic transport for L in the order of
hundreds of nm (L < `) and in the diffusive regime for L
in the order of a few µm.

The mean free path ` as a function of the energy E
is reported in fig. 4(c) for different disorder strengths ∆.
The energies for which ` is not defined correspond to
the SOC-induced gap or to regions where the transport
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FIG. 4. (a) Example of Anderson disorder realization with
random on-site energies for the atoms over the section of
length L, and with strength ∆ = 100 meV. The MTB is
highlighted by a dashed red line. (b) Average transmission
coefficient as a function of the electron energy E for the MTB
system in the pristine case (L = 0 nm) and in the presence
of Anderson disorder with ∆ = 100 meV and L varying from
50 nm to 200 nm. The continuous lines and shaded regions
show the average and the 25th to the 75th percentile of the
transmission over 100 disorder realizations, respectively. (c)
Mean free path as a function of E for different Anderson disor-
der strengths ∆. Inset: Mean free path as a function of ∆ for
two representative energies E = 1.2 eV and E = 2.1 eV. The
continuous lines correspond to the fit ∝ ∆−2. (d) Average
transmission coefficient as a function of E for the MTB sys-
tem in the presence of Anderson disorder with ∆ = 100 meV
and L = 50 nm, and sum of the average transmission of the
two MTB bands. 〈T1〉 is the average transmission of band 1O
contribution and 〈T2〉 is that of band 2O.

regime is localized. The mean free path scaling with the
Anderson disorder strength ∆ is reported in the inset of
fig. 4(c) for two representative energies E = 1.2 eV and
E = 2.1 eV (in regions B and C, respectively), where the
transport regime is diffusive. We find that ` is inversely
proportional to ∆2 for both representative energies. Such
a behavior is consistent with a weak scattering regime,
where the Fermi golden rule is a good approximation and
yields a scattering probability proportional to ∆2.

The origin of the different behaviors observed in the
three regions can be understood by noting that bands 1O
and 2O contribute independently to the transport prop-
erties. Indeed, by properly modifying the Hamiltonian,
see Appendix D, it is possible to selectively shift band 1O
or band 2O to higher energies and analyze the transport
properties of each of the two bands individually. Fig-
ure 4(d) demonstrates that the total average transmission
is given by the sum of the average transmission of the two
bands, i.e., 〈T 〉 ≈ 〈T1〉 + 〈T2〉, except, of course, around
the SOC gap, where the two bands hybridize. This means
that Anderson disorder does not introduce any signifi-
cant scattering between these two bands with different
orbital compositions, and that we can analyze each band
independently. In the first energy region (E . 1.1 eV),
the short mean free path and the transition to the lo-
calization transport regime are due to the fact that elec-
trons are at the bottom of band 1O. Therefore, An-
derson disorder is more effective in inducing intraband
scattering. At higher energies, in the region B and even
more above the SOC gap, the wave number separation
between counter-propagating states in band 1O becomes
larger, thus significantly tempering the backscattering.
In the region B, band 2O provides four conductive chan-
nels. However, again, the small separation in the Bril-
louin zone (BZ) between counter-propagating states sig-
nificantly enhances backscattering, especially close to the
bands extrema, i.e., at the van Hove singularities. As a
consequence, in this energy region the main contribution
to transport comes from band 1O. Analogously to what
is observed for band 1O, in region C above the SOC
gap, the backscattering for the two conductive channels
from band 2O is strongly and progressively suppressed
at higher energies. The resulting transmission coefficient
is close to the ballistic case.

C. Long-range disorder

We now consider the impact of long-range disorder,
which corresponds to real-space potential energy fluctu-
ations induced, for example, by the presence of charged
impurities in the substrate underlying the 2D material.
Adam et al. [47] proposed a model of the potential profile
U(r) for graphene as a random distribution of Gaussian
long-range scatterers

U(r) =

N∑
i=1

εie
−(r−Ri)

2

2χ2 , (7)
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FIG. 5. Main panel: Average transmission coefficient as
a function of the energy and for different L in the case of a
SiO2 substrate. The averaging is performed over 100 disorder
realizations. Inset: Example of long-range potential profile
realization for a SiO2 substrate.

where i is the impurity index, Ri is its random position,
εi is a randomly chosen potential energy that we select
in the range [-∆,∆], N is the total number of Gaussian
impurities and χ denotes the spatial range. Here, we
consider two energy potential profiles corresponding to
SiO2 and hBN substrates. We adopt the parameters
available in the literature for graphene [48], which are
∆ = 50 meV, χ = 10 nm and n = 1012 cm−2 for SiO2,
and ∆ = 5 meV, χ = 30 nm and n = 1011 cm−2 for
hBN, where n is the density of impurities per surface
area. These parameters may be different for MoS2, but
this effective model nonetheless provides a physical un-
derstanding of the impact of long-range disorder on the
transport properties of MTBs.

The inset of fig. 5 shows the potential profile reproduc-
ing the effect of the SiO2 substrate. We consider such a
potential to be active over a section of the system with
length L. The transmission coefficient averaged over 100
different profile realizations for different L is reported in
the main panel of fig. 5. We observe a huge suppression
of the transmission only close to edges of the transmis-
sion plateaus, where conductive channels are activated or
deactivated. This behavior is explained by the fact that
the long-range disorder over the quasi-1D MTB states
induces local shifts of grain boundary bands along the
system. In particular, the band edges, which determine
the activation of the conductive channels, are smoothly
shifted all along the grain boundary. The regions with
the highest and lowest shifts, which tend to be about ±∆
for long enough L, determine the energy width of the
decreased transmission region, as observed in the main
panel of fig. 5. For the hBN substrate, not shown here,
we do not observe any significant impact on the trans-
port properties because of the extremely weak disorder
strength ∆.

IV. TRANSPORT ACROSS THE MIRROR
TWIN BOUNDARY

We now investigate the degradation of the electronic
transmission of a two-dimensional MoS2 layer in the pres-
ence of an MTB across the transport x-direction. Note
that the two-dimensional system is infinitely extended in
the x-direction, where the semi-infinite pristine regions at
the sides of the MTB act as contacts, and periodic along
the y-direction, which allows us to introduce the wave
number ky. We can thus calculate the transmission coef-
ficient T (E, ky) for given energy E and wave number ky,
and obtain the zero-temperature conductance per unit of
width by integration over the one-dimensional BZ as

g(E) =
e2

h

1

2π

∫
BZ

T (E, ky) dky . (8)

Figure 6(a) compares the conductance per unit of width
for pristine MoS2 and in the presence of the MTB. Of
course, there is no transmission in the energy region of
the gap, since no state is available for injecting electrons.
We observe a general degradation of the conductance
with a more than 50% reduction.

Interestingly, as already observed in the literature [26],
the conductance is completely suppressed over about
150 meV from the top of the valence band, which corre-
sponds to the SOC-induced splitting of the valence band
in 2D MoS2 [35], see the inset of fig. 6(a). In this en-
ergy region, the bands have opposite spin polarization
at opposite K/K’ valleys in each of the two grains on
the two sides of the MTB. Note that the spin polariza-
tion is opposite in the two grains because of the mirror
reflection symmetry of the system. Therefore, as a con-
sequence of spin conservation, the current can only flow
in the presence of intervalley scattering, which is, how-
ever, suppressed due to the y-translation symmetry. This
results in the observed transport suppression [26]. The
very small but finite (10−8) residual transmission across
the MTB, as shown in the inset of fig. 6(a), can be con-
sidered as zero within the calculation accuracy.

We investigate the robustness of this phenomenon
against short-range disorder, which is expected to in-
duce intervalley scattering and activate transport. To
this aim, we consider a large ribbon (W = 50 nm) with
edge roughness and an MTB across its section. Fig-
ure 6(b) shows that the conductance is still suppressed
at the top of the valence band, but there is a residual
transmission due to intervalley scattering induced by the
ribbon edges. Given the extremely small conductance,
a residual contribution of edge state channels cannot be
excluded. Note that, to be effective, intervalley scatter-
ing must occur at the grain boundary, when electrons
pass from one grain to the other. Incidentally, at the
top of the valence band and within the same grain, in-
tervalley scattering is suppressed by the spin-valley lock-
ing mechanism. The conductance increases when includ-
ing Anderson disorder along the MTB (over a width of



8

g 
(e

2 /h
/n

m
)

SOC splitting

g 
(e

2 /h
/n

m
)

FIG. 6. (a) Main panel: Zero-temperature conductance per
unit of width as a function of the electron energy for pristine
2D MoS2 and in the presence of a transverse MTB. Inset:
Conductance at the top of the valence band in logarithmic
scale. (b) Zero-temperature conductance per unit of width
at the top of the valence band for 50 nm-wide MoS2 ribbons
with a transverse MTB in the absence (black line) and in the
presence of short-range disorders in the region of the MTB,
namely sulfur vacancies over an 80-nm-long section and An-
derson disorder over a 2-nm-wide stripe surrounding the MTB
with different strengths. To suppress edge contribution to the
transmission, we introduced edge roughness. (c) Transmission
coefficient as a function of the wave number and the electron
energy for 2D MoS2 with a transverse MTB. The white lines
correspond to the band profile of 2D MoS2, while the dashed
circles indicate the strong suppression of transmission in the
valence band.

T

FIG. 7. Transmission coefficient as a function of the wave
number and the electron energy in one of the two regions
indicated by dashed circles in fig. 6(c). The band structure of
for a 20 nm-wide zigzag ribbon with a periodic MTB without
(green lines) and with (white lines) SOC is superimposed.

2 nm), see fig. 6(b), which strongly enhances interval-
ley scattering all along the grain boundary length. The
conductance increase is larger for larger Anderson dis-
order strength ∆ from 100 meV to 500 meV. A similar
effect is observed in the presence of sulfur vacancies with
density nVS = 1013 cm−2, whose extremely short-range
nature entails a strong intervalley scattering. Note that
our model does not consider the Hartree potential in-
duced in the vicinity of MTB, whose estimation may be
sensitive to the model details and which is expected to
entail a further reduction of the transmission for energies
close to the top of the valence band [21, 26]. This choice
does not affect our physical analysis.

A further insight into the results of fig. 6(a) can be
gained from the energy- and ky-resolved transmission co-
efficient T (E, ky) reported in fig. 6(c). This figure clearly
shows the different contributions of the K/K’ valleys,
close to the sides of the BZ, and of the Γ valley at the
center. The result confirms the complete suppression
of transport at energies between the two SOC-split top-
most valence bands. Surprisingly enough, we observe a
strong suppression of T (E, ky) at low energies in the va-
lence band, as indicated by dashed circles. This behav-
ior is related to the MTB effect of “cutting” the system
into weakly coupled parts, as mentioned in Sec. II. At
the energies and wave numbers where T (E, ky) is sup-
pressed, the coupling between the two parts of the sys-
tem on the sides of the MTB is very small. To support
this interpretation, we superimpose the valence bands
of a 20 nm-wide zigzag ribbon with a periodic MTB to
the transmission coefficient. At first, we do not con-
sider SOC, see the green lines in fig. 7. As discussed
in Sec. II, the band structure is determined by the cou-
pling of the subbands that reside on each side of the
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MTB. Since the coupling is weak, we observe couples of
split bands. Where the bands cross, see the green dots in
the figure, the coupling between the two regions at the
sides of the MTB is vanishing. This explains why the
low transmission coefficient is exactly observed at these
crossing points. Note that increasing the width of the rib-
bon would just increase the number of the subbands and
crowd the crossing points along the lowest transmission
region (not shown here), thus confirming the validity of
this picture in the 2D limit. Introducing the SOC, see the
white lines in fig. 7, makes the interpretation more con-
voluted due to the absence of the crossing points. This
is because of the opposite spin-splitting energy on the
states at two sides of the MTB for given K/K’ valley,
which again is a consequence of the spin-valley locking
mechanism and the mirror symmetry.

In conclusion of this section, we would like to point out
that transport properties of the polycrystalline MoS2 can
be highly dependent on the density of the grain bound-
aries, which may cause a severe degradation of the con-
ductivity. Controlling the density of grain boundaries
will be a significant factor for the use in electronic appli-
cations [18].

V. CONCLUSIONS

In summary, we have numerically investigated the
transport properties of MoS2 in the presence of an MTB.
Along the grain boundary, conductive channels develop
at energies within the band gap of 2D MoS2. The conduc-
tance of these states is found to be sensitive to chalcogen
vacancies, relatively robust against short-range Ander-
son disorder, and scarcely impacted by long-range dis-
order. On the other side, transport across the mirror
grain boundary is significantly affected, and its analysis
in terms of wave number dependent transmission reveals
peculiar features of this grain boundary, as the separation
of the ribbon into two weakly coupled narrower ribbons.
Moreover, as already demonstrated in the literature [26],
the transmission across the grain boundary is suppressed
in the energy range of the spin-orbit splitting of the va-
lence, due to spin-valley locking. However, we demon-
strate that transmission is partially allowed as a conse-
quence of the induced intervalley scattering in the pres-
ence of short-range disorder. Our results provide physical
and quantitative insight into the interplay between grain
boundaries and additional disorder. They could thus be
beneficial to the design of electronic devices based on
TMDs, in particular for the control of leakage current in
field-effect transistors and the fabrication of 2D metallic
contacts based on grain boundary networks.
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Appendix A: Ab initio calculations

DFT calculations were carried out using the
plane-wave basis set with a kinetic energy cutoff of
500 eV and the projector augmented-wave method, as
implemented in the Vienna Ab initio Simulation Pack-
age [32, 33]. Generalized gradient approximation of the
Perdew-Burke-Ernzerhof functional form [31] was used.
The valence electron configurations were 4d and 5s for
Mo, 3s and 3p for S, 1s for H. The BZs were sampled us-
ing Γ-centered k-point mesh. Monolayer MoS2 was fully
relaxed with a vacuum layer greater than 2 nm to avoid
its interaction with periodic images along the x-axis. The
resulting Mo-S bond length is 2.41 Å, while the y-axis lat-
tice constant is 3.175 Å. A ribbon model with MTB was
set up, whose width is 2.24 nm and the optimized lattice
constant along the y-direction is 3.179 Å, very close to
the pure monolayer case. At least 1 nm vacuum space
was introduced in the x- and z-directions, and four hy-
drogen atoms per supercell were introduced to saturate
the corresponding four S atoms on the edges. The elec-
tronic structures were calculated either with or without
SOC.

For sulfur vacancy formation energy calculations, we
enlarged the MTB supercell to 4 times along the
y-axis. Therefore, one sulfur vacancy was introduced per
120-atom MoS2 supercell. The missing sulfur atom was
assumed to be in the solid α-S form, i.e., the sulfur chem-
ical potential equals that in an Fddd S8 supercell.

Appendix B: Details and calibration of the
tight-binding model

As mentioned in Sec. II, we made use of an 11-band
Slater-Koster TB Hamiltonian with five d orbitals (dxy,
dyz, dzx, dx2−y2 , dz2) for the Mo atoms and three p
orbitals (px, py, pz) for the S atoms, which we indi-
cate with Sb on the bottom layer and with St on the
top layer. The TB Hamiltonian elements include on-site
and hopping energies for St–Sb within the same unit cell,
Mo–St,b within each unit cell and its adjacent cells, and
next-nearest-neighbor ones for Mo–Mo and S–S within
adjacent cells. We adopted the Slater-Koster parameters
reported in Ref. [35].

Even after the consideration of the strain effect on
MTB as detailed in the main text, a further calibration
of the TB model was required for tuning the energy of
the MTB states. We illustrate here the calibration proce-
dure. We analyzed the wave functions of the MTB states
as resulting from the TB model, see fig. 8, and com-
pared them with those obtained by DFT calculations.
The shape of the MTB bands within the gap as well as the
different spatial extension of the wave functions for states
on bands 1O and 2O well match the DFT results [21, 30].
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FIG. 8. Band structure obtained with the non-calibrated
TB model and without SOC for the ribbon of fig. 1(b). MTB
bands within the bulk gap are indicated in blue, green and
purple lines. Orange lines display the MTB band above the
bulk states at the Γ point. The MTB bands in blue and green
lines correspond to bands 1O and 2O in fig. 1(b). Red circles
denote the weight of molybdenum atoms in the MTB region.
(a) Contribution of all d orbitals, (b) dxy, (c) dyz, (d) dzx,
(e) dx2−y2 , and (f) dz2 . Contribution of S atoms to the MTB
bands within the bulk gap is insignificant compared to that
of Mo atoms and thus not displayed.

The bands corresponding to the edge states, whose de-
tails we are not interested in here, do not match those
of the cited references, since they depend on the specific
edge passivation. The main difference with DFT calcula-
tions is the energy downshift of band 1O. By the analy-
sis of the wave function composition, we observe that the
main contributions to band 1O come from orbitals dyz
and dzx, see figs. 8(c) and 8(d), respectively. To shift the
energy of band 1O, we thus modified the on-site energies
of the nearest Mo atoms on MTB by +1 eV for dzx and
+0.2 eV for dyz. The extreme localization of band 1O
allows us to shift it without affecting the other bands.
Note that an extra MTB band indicated by purple lines
in fig. 8, which possesses the same orbital contribution
as band 1O, is also shifted upward to the bottom of and
inside the conduction band. The other aspect to take
into account is the presence of MTB states on the top of
the valence band at the Γ point, which appears at even
higher energies than the bulk states, see the orange lines
in fig. 8. MTB states in the valence band in DFT, how-
ever, are located at lower energies at Γ [30]. Therefore
we modified the on-site energies of the same Mo atoms
by -0.3 eV for dxy and -0.8 eV for dz2 to shift down and
calibrate the energy of the MTB states in the valence
band.

Figure 9(a) shows the band structure of a MoS2 rib-
bon with a periodic MTB along its axis obtained with
the calibrated TB model. The MTB bands 1O and 2O
within the bulk gap well reproduce those of the DFT cal-
culation, see fig. 9(b). The MTB states outside the bulk

TB DFT

FIG. 9. (a) Band structure obtained with the calibrated
TB model for the ribbon of fig. 1(b). The SOC-induced gap
is indicated by an arrow. (b) Band structure obtained by
DFT calculations for a ribbon with width W = 2.2 nm. The
SOC-induced gap, indicated by an arrow, is ∼60 meV, i.e.,
slightly narrower than in the TB case. A narrow ribbon width
is considered to reduce the computational burden. The shape
of the MTB bands is not significantly affected by the rib-
bon width, provided the ribbon is large enough to avoid the
coupling between edge and MTB states. Black and red lines
display the bands without and with SOC, respectively.

gap, as well as the presence of MTB states below the edge
of the valence band and close to the edge of the conduc-
tion band, also agree with the results of Ref. [30]. Fur-
thermore, we observe spin degeneracy and anti-crossing
between bands 1O and 2O for both the calibrated TB
model and the DFT calculation.

Appendix C: Details of the scaling analysis for
Anderson disorder

To illustrate the scaling analysis performed to statis-
tically analyze the transport regimes in the presence of
Anderson disorder, we focus on the ribbon with width
W = 10 nm and fix the disorder strength to ∆ =
100 meV. We select two representative energies, E=1 eV
and E=1.8 eV for the scaling analysis of transport prop-
erties along MTB. As shown in fig. 4(b), 〈T 〉 rapidly de-
creases when L increases for E=1 eV. This suggests the
transport regime is localized, as confirmed by the linear
decrease of the average logarithm of the transmission co-
efficient 〈lnT 〉 as a function of L, see fig. 10(a). The
localization length is then extracted according to eq. (5),
which gives ξ = 58 nm for the selected energy. Also,
fig. 10(b) shows the typical [46] Gaussian frequency dis-
tribution of lnT with |∆ lnT / 〈lnT 〉| < 1, where ∆ lnT
is the standard deviation. For E=1.8 eV, 〈T 〉 decreases
more slowly for increasing L, thus suggesting a diffusive
transport regime. This is confirmed by fig. 10(c), which
shows the inverse of the average transmission coefficient
〈T 〉 as a function of the length L. Its linear scaling al-
lows us to extract the mean free path according to eq. (6),
` = 750 nm for the given energy. Moreover, we observe
a typical [46] Gaussian distribution with ∆T/〈T 〉 < 1,
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FIG. 10. Scaling analysis of the localized (a), (b) and dif-
fusive (c), (d) transport regimes, for Anderson disorder with
∆ = 100 meV. (a) Average logarithm of the transmission co-
efficient as a function of L at E = 1 eV, which corresponds to
the energy region A in fig. 4(b). The continuous line shows
the linear fit. The estimated localization length is ξ ≈ 58 nm.
(b) Frequency distribution of lnT for L = 300 nm at the same
energy. (c) Inverse of the average the transmission coefficient
as a function of L at E = 1.8 eV chosen within the energy
region C in fig. 4 (b). The continuous line shows the linear fit.
The estimated mean free path is ` ≈ 750 nm. (d) Frequency
distribution of T for L = 300 nm at the same energy.
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FIG. 11. Separation of the MTB bands, 1O (green lines)
and 2O (blue lines) by modification of the Hamiltonian. (a)
Band structure without any modification for the ribbon of
fig. 1(b). (b), (c) Band structures obtained by modification of
the Hamiltonian for isolating bands 1O and 2O, respectively.

where ∆T is the standard deviation of T , see fig. 10(d).

Appendix D: Details of the analysis in terms of
individual MTB bands in the case of Anderson

disorder

As discussed in Sec. II, the total transmission along
MTB is related to the independent contribution of the
two MTB bands within the bulk gap, bands 1O and 2O.
Even though the SOC entails a weak coupling between
them and thus induces a small gap, their contributions
in terms of d orbitals of the nearest Mo atoms on MTB is

A B C
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FIG. 12. Mean free path as a function of the electron energy
in the presence of Anderson disorder with strength ∆ varying
from 50 meV to 200 meV. The individual mean free paths of
(a) band 1O and (b) band 2O, calculated starting from the
modified Hamiltonian corresponding to the band structures
in figs. 11(b) and 11(c), respectively.

preserved, except for energies close to the SOC-induced
gap, where the two bands hybridize. To better under-
stand the contribution of each band to transport proper-
ties, we artificially separate bands 1O and 2O by modify-
ing the Hamiltonian to shift alternatively one of the two
bands at higher energy and isolate the contribution of the
other. To this aim, we only modify the on-site energies
of the specific d orbitals of the Mo atoms close to the
MTB contributing to the states of the chosen band. To
isolate the contribution to transport of band 1O, band
2O is shifted upward by increasing the on-site energies of

the dxy and the dz2 orbitals by 0.5 eV and 2.0 eV, respec-
tively. To isolate the contribution to transport of band
2O, band 1O is shifted upward by increasing the on-site

energy of the dzx orbital by 3.0 eV. The resulting modi-
fied band structures are reported in fig. 11. Compared to
the unmodified band structure shown in fig. 11(a), only
one band remains in its initial position, while the other
one enters into the conduction band, thus not contribut-
ing to transport in the energy range of the bulk band
gap, see figs. 11(b) and fig. 11(c).

As discussed in Sec. III B, except for the region close
to the SOC gap, the average transmission coefficient 〈T 〉
turns out to be close to the sum of the two contributions
〈T1〉 + 〈T2〉, see fig. 4(d). Figure 12 reports the mean
free path of each band as a function of the energy E.
At lower energies corresponding to regions A and B in
fig. 4(b), band 1O exhibits a relatively large mean free
path compared to 2O. This behavior indicates the main
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contribution of band 1O to transport. For higher en-
ergies above the SOC-induced gap, on the other hand,
both bands are activated and contribute to the diffusive

transport regime with relatively large mean free paths.
The mean free path corresponding to band 1O is shorter
than for band 2O, and it becomes longer for E > 1.8 eV.
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[2] P. Miró, M. Audiffred, and T. Heine, An atlas of two-
dimensional materials, Chemical Society Reviews 43,
6537 (2014).

[3] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Pala-
cios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and
L. Colombo, Electronics based on two-dimensional ma-
terials, Nature Nanotechnology 9, 768 (2014).

[4] F. Schwierz, J. Pezoldt, and R. Granzner, Two-
dimensional materials and their prospects in transistor
electronics, Nanoscale 7, 8261 (2015).

[5] F. Schwierz, Graphene transistors, Nature Nanotechnol-
ogy 5, 487 (2010).

[6] F. Giannazzo, G. Greco, F. Roccaforte, and S. Sonde,
Vertical Transistors Based on 2D Materials: Status and
Prospects, Crystals 8, 70 (2018).

[7] D. Logoteta, M. G. Pala, J. Choukroun, P. Dollfus, and
G. Iannaccone, A Steep-Slope MoS2-Nanoribbon MOS-
FET Based on an Intrinsic Cold-Contact Effect, IEEE
Electron Device Letters 40, 1550 (2019).

[8] H. Simchi, M. Simchi, M. Fardmanesh, and F. M. Peeters,
Phase transition and field effect topological quantum
transistor made of monolayer MoS2, Journal of Physics:
Condensed Matter 30, 235303 (2018).

[9] X. Cui, G.-H. Lee, Y. D. Kim, G. Arefe, P. Y. Huang, C.-
H. Lee, D. A. Chenet, X. Zhang, L. Wang, F. Ye, F. Piz-
zocchero, B. S. Jessen, K. Watanabe, T. Taniguchi, D. A.
Muller, T. Low, P. Kim, and J. Hone, Multi-terminal
transport measurements of MoS2 using a van der Waals
heterostructure device platform, Nature Nanotechnology
10, 534 (2015).

[10] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Cole-
man, and M. S. Strano, Electronics and optoelectronics
of two-dimensional transition metal dichalcogenides, Na-
ture Nanotechnology 7, 699 (2012).

[11] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti,
and A. Kis, Single-layer MoS2 transistors, Nature Nan-
otechnology 6, 147 (2011).

[12] L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C.
Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang,
and T. Palacios, Graphene/MoS2 Hybrid Technology for
Large-Scale Two-Dimensional Electronics, Nano Letters
14, 3055 (2014).

[13] S. Wachter, D. K. Polyushkin, O. Bethge, and T. Mueller,
A microprocessor based on a two-dimensional semicon-
ductor, Nature Communications 8, 14948 (2017).

[14] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C.
Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Re-
ichman, D. A. Muller, and J. C. Hone, Grains and grain
boundaries in highly crystalline monolayer molybdenum
disulphide, Nature Materials 12, 554 (2013).

[15] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei,
B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou,
Vapour phase growth and grain boundary structure of
molybdenum disulphide atomic layers, Nature Materials

12, 754 (2013).
[16] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong,

J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo,
Intrinsic Structural Defects in Monolayer Molybdenum
Disulfide, Nano Letters 13, 2615 (2013).

[17] K. Hsieh, V. Kochat, X. Zhang, Y. Gong, C. S. Tiwary,
P. M. Ajayan, and A. Ghosh, Effect of Carrier Local-
ization on Electrical Transport and Noise at Individual
Grain Boundaries in Monolayer MoS2, Nano Letters 17,
5452 (2017).

[18] S. Najmaei, M. Amani, M. L. Chin, Z. Liu, A. G. Bird-
well, T. P. O’Regan, P. M. Ajayan, M. Dubey, and J. Lou,
Electrical Transport Properties of Polycrystalline Mono-
layer Molybdenum Disulfide, ACS Nano 8, 7930 (2014).

[19] T. H. Ly, D. J. Perello, J. Zhao, Q. Deng, H. Kim,
G. H. Han, S. H. Chae, H. Y. Jeong, and Y. H.
Lee, Misorientation-angle-dependent electrical transport
across molybdenum disulfide grain boundaries, Nature
Communications 7, 10426 (2016).

[20] H. Liu, L. Jiao, F. Yang, Y. Cai, X. Wu, W. Ho, C. Gao,
J. Jia, N. Wang, H. Fan, W. Yao, and M. Xie, Dense
network of one-dimensional midgap metallic modes in
monolayer MoSe2 and their spatial undulations, Physi-
cal Review Letters 113, 066105 (2014).

[21] O. Lehtinen, H.-P. Komsa, A. Pulkin, M. B. Whitwick,
M.-W. Chen, T. Lehnert, M. J. Mohn, O. V. Yazyev,
A. Kis, U. Kaiser, and A. V. Krasheninnikov, Atomic
Scale Microstructure and Properties of Se-Deficient Two-
Dimensional MoSe2, ACS Nano 9, 3274 (2015).

[22] X. Zou, Y. Liu, and B. I. Yakobson, Predicting Disloca-
tions and Grain Boundaries in Two-Dimensional Metal-
Disulfides from the First Principles, Nano Letters 13, 253
(2013).

[23] Y. Ma, S. Kolekar, H. C. Diaz, J. Aprojanz, I. Mic-
coli, C. Tegenkamp, and M. Batzill, Metallic Twin Grain
Boundaries Embedded in MoSe2 Monolayers Grown by
Molecular Beam Epitaxy, ACS Nano 11, 5130 (2017).

[24] H. C. Diaz, Y. Ma, R. Chaghi, and M. Batzill, High den-
sity of (pseudo) periodic twin-grain boundaries in molec-
ular beam epitaxy-grown van der Waals heterostruc-
ture: MoTe2/MoS2, Applied Physics Letters 108, 191606
(2016).

[25] M. Ghorbani-Asl, A. N. Enyashin, A. Kuc, G. Seifert,
and T. Heine, Defect-induced conductivity anisotropy in
MoS2 monolayers, Physical Review B 88, 1 (2013).

[26] A. Pulkin and O. V. Yazyev, Spin- and valley-polarized
transport across line defects in monolayer MoS2, Physical
Review B 93, 041419(R) (2016).
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