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This paper is a discussion on the method and the
status of a statistical theory of sound and vibration,
called statistical energy analysis (SEA). SEA is a
simple theory of sound and vibration in elastic
structures that applies when the vibrational energy
is diffusely distributed. We show that SEA is a
thermodynamical theory of sound and vibration,
based on a law of exchange of energy analogous to
Clausius’ principle. We further investigate the notion
of entropy in this context and discuss its meaning. We
show that entropy is a measure of information lost
in the passage from the classical theory of sound and
vibration and SEA, its thermodynamical counterpart.

1. Introduction
The idea to use statistical physics methods in acoustics
goes back to the work of Sabine [1] at the end of
the nineteenth century. In architectural acoustics, the
geometrical complexity of rooms and their large size pose
major difficulties and the solving of the wave equation
is generally not possible. But complexity may rather be
considered as an advantage if a statistical approach is
adopted. In a large auditorium, the sound is rapidly
disordered by successive reflections on walls and reaches
a state of diffuse field. This results in a particularly simple
law, the so-called Sabine’s law, for the decrease of sound
in large rooms after extinction of sources.

In the sixties, the statistical theory of sound has been
considerably enlarged by a discovery by R.H. Lyon and
co-workers [2–5]. They found that sound and vibrational
energy flow from high energetic to low energetic regions
exactly as heat does in solids. This result is the foundation
of statistical energy analysis, a statistical theory of sound
and vibration. The equations of statistical energy analysis
are based on an energy balance in each subsystem. The
method is quite similar to the application of the first
principle of thermodynamics.

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:alain.le-bot@ec-lyon.fr


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

(a) (b)

k2c2

x1(t) f2(t)

m2

f1(t)

K
m1

c1
k1

... ... ... ...1 2

...

...

...

Figure 1. (a); Mechanical resonators weakly coupled and loaded by uncorrelated random forces fi(t). (b); Energy

exchange between groups of oscillators excited by rain-on-the-roof forces.

This allows a direct prediction of the vibrational energy of each subsystem provided that the
vibrations are sufficiently disordered and have reached a state of diffuse field. This is the most
restrictive assumption in statistical energy analysis.

The question of the second principle of thermodynamics in statistical energy analysis has been
examined more recently [6–10]. The main idea is that since under certain conditions vibrational
energy may be assimilated to heat, it becomes possible to apply Clausius’ definition of entropy
and therefore to introduce a vibrational entropy as well as a vibrational temperature. Several
examples of exchange of entropy in mechanical oscillators or continuous systems have been
studied in the literature [11,12]. Some of them even show an apparent irreversible behaviour [13,
14].

This article is a discussion on the status of entropy in statistical energy analysis with a
particular emphasis on its meaning. The paper is organized as follows. Section 2 presents the
coupling power proportionality and the analogy with Clausius’ principle. Section 3 introduces
the concept of entropy in statistical energy analysis while its meaning in terms of information is
discussed in section 4. In section 5 this question is further discussed but in the eyes of the reference
theory in which statistical energy analysis is derived. Some concluding remarks are given in the
last section.

2. Lyon’s law and the Clausius principle
The fundamental law found by R.H. Lyon and co-workers [2–5] is related to energy flow in
sets of mechanical linear oscillators. We shall call it coupling power proportionality. This law
states that under certain conditions, the mechanical energy flows from ’hot’ to ’cold’ regions. This
remarkable law suggests an analogy with Clausius’ principle in thermodynamics. This analogy is
the foundation of a statistical theory of ’disordered’ sound and vibration called statistical energy
analysis. Before to discuss the status of this analogy, let us first introduce Lyon’s result.

The most elementary form of the coupling power proportionality examines the power
exchanged by two coupled oscillators. Let’s define a set of mechanical resonators as shown in
figure 1a. Each oscillator consists of a moving mass mi, a spring ki, and a dashpot ci. The
resonators are coupled through springs of stiffnessK but not dashpot. The couplings are therefore
conservative. The time-varying forces fi(t) applied to masses are assumed to be stationary
random processes. Since the external forces are random, the kinetic and elastic energies of
oscillators are also random functions of time. We shall denote by brackets 〈X〉 the random
expectation of a quantity X and we shall call it mean value of X for short. When the external
forces are ergodic, the mean value 〈X〉 is also the time average of X . We set the following list of
assumptions.



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

• All couplings are conservative
• All couplings are weak ε=K/

√
kikj << 1

• The forces are mutually uncorrelated white noises

The last assumption means that the cross-correlation function of the forces fi and fj is Rij(τ) =

〈fi(t)fj(t+ τ)〉= Siδijδ(τ) where δij is Kronecker’s symbol, δ(τ) the Dirac function, and τ the
time-delay. Equivalently, the cross-power spectral density is Sij(ω) = Siδij and ω the circular
frequency. Under the above conditions, it may be established by applying Cauchy’s theorem in
complex analysis that the mean kinetic and elastic energies are equal for each oscillator (see [15]
for a complete proof). Furthermore, it may be proved that the mean vibrational power 〈P12〉
flowing from resonators 1 to 2 (the choice of these indices is just a convention) is proportional to
the difference of the mean vibrational energies 〈E1〉, 〈E2〉.

〈P12〉= β (〈E1〉 − 〈E2〉) + o(ε2) (2.1)

where

β =
K2 (∆1 +∆2)

m1m2

[(
Ω2

1 −Ω2
2

)2
+ (∆1 +∆2)

(
∆1Ω

2
2 +∆2Ω

2
1

)] (2.2)

In equation (2.2), Ωi =
√

(K + ki)/mi are the ’blocked’ natural frequencies of resonators and
∆i = ci/mi their half-power bandwidths. We observe that the proportionality factor β is a
function of mechanical parameters of adjacent oscillators only although they belong to a larger set
of oscillators. The coupling power proportionality is valid up to order two in the small parameter
ε. However, in the special case of a set containing only two oscillators, the result is exact.

This result can be generalized by considering groups of oscillators in interaction. The
situation is shown in figure 1b. We constitute groups of Ni resonators and we examine the net
power exchanged by two such groups (also called subsystems). In each subsystem, resonators
are uncoupled. They have different natural frequencies but the same mass mi and damping
coefficient ci. In addition to the first three assumptions, we set the further assumptions.

• The power spectral density is identical for all resonators of a subsystem (rain-on-the-roof
forces)
• The number of resonators is large in each subsystem Ni >> 1

• The internal damping is light

Then, the coupling power proportionality takes the form

〈P12〉= β

(
〈E1〉
N1
− 〈E2〉

N2

)
+ o(ε2) (2.3)

The mechanical power flowing from subsystem 1 to subsystem 2 is proportional to the difference
of modal energies 〈Ei〉/Ni where 〈Ei〉 is the mean vibrational energy of subsystem i. The result is
again valid up to order two in ε. The factor β now depends on all characteristics of the oscillators
of the two subsystems in interaction.

The coupling power proportionality is not a result restricted to the study of discrete mechanical
resonators. The generalization to flexible structures is straightforward. We know that the
dynamics of a flexible structure can always be reduced to that of the eigenmodes. The modes
are uncoupled and behave like resonators whose modal mass may be chosen arbitrarily. If the
dissipation force acting on the flexible structure is of viscous type, the half-power bandwidth
of modes is also constant. The energy exchange between two flexible structures then reduces
to the previous canonical problem of groups of uncoupled oscillators (normal modes form an
orthogonal basis). Of course some difficulties appear in this process. For instance the analysis of
energy exchange is confined to a frequency band ∆ω centred on the circular ω. The number of
modes within ∆ω is Ni = ni∆ω where ni is the modal density (per rad/s). However, the main
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result is maintained (see [15] or [16] for details). Neglecting second order terms, the Lyon law or
coupling power proportionality is

P12 = ωη12N1

(
E1

N1
− E2

N2

)
(2.4)

where from now on, we shall remove brackets for the sake of simplicity. The coupling loss factors
ηij are functions of the mechanical characteristics of adjacent subsystems. There exact form is of
no importance for the following discussion. But a statistical estimation for two substructures of
masses M1 and M2 coupled through a weak spring of stiffness K gives the following result

η12 =
πK2n2

2ω3M1M2
(2.5)

The coupling loss factors verify the reciprocity relationship η12N1 = η21N2.
Lyon’s law states that when flexible structures are excited by broadband random forces, the

vibrational energy always flows from subsystems having a large modal energy to that with a
lower modal energy. Clausius’ principle states that when two bodies with different temperatures
are come into contact, heat flows from the hotter to colder bodies. The analogy between Lyon’s
law and Clausius’ principle is clear. In sound and vibration, the modal energy plays the role of
temperature so that it is meaningful to claims that even in sound and vibration, the vibrational
energy flows from ’hot’ to ’cold’ regions. Of course there is several constraints for this result to be
valid (the above list of assumptions). A careful study of these assumptions lead to establish that
all subsystems must be in diffuse field state (homogeneous and isotropic repartition of energy,
see [17]). This state of diffuse field may be interpreted as an equilibrium state with a constant
temperature. The analogy is complete. In Lyon’s law we put in interaction two mechanical
structures in vibrational equilibrium. If the coupling is weak, the energy flows from ’hot’ to ’cold’
structure. In Clausius’s principle, we put into contact two bodies in thermal equilibrium, then
heat flows from hot to cold bodies. Thus in both principles, the equilibrium is reached in each
body (diffuse energy density for vibrating structures, uniform temperature for hot solids) and an
intensive quantity (modal energy or temperature) fixes the direction of power flow (vibrational
power or heat).

The coupling power proportionality is a powerful tool to construct a statistical theory of
sound and vibration. In statistical energy analysis, a complex structure is divided into simple
mechanical components (beam, shell, acoustical cavities...) which are weakly coupled. A power
balance for each subsystem reads Pi = Pdiss +

∑
Pij where Pi is the mean power supplied by

external forces, Pdiss the mean power dissipated by viscous forces and Pij the power exchanged
with other subsystems. If the state of diffuse field is reached in all subsystems, the coupling power
proportionality (2.4) applies and the power balance becomes

Pi = ω

ηiEi +
∑
j 6=i

ηijEi − ηjiEj

 (2.6)

where ηi is a damping loss factor. This equation is the foundation of statistical energy analysis.
This gives a set of linear equations on the mean energies Ei. The resolution of equation (2.6) leads
to the calculation of the mean vibrational energies in all components of the system provided that
the injected powers and the coupling loss factors are known.

3. Entropy in statistical energy analysis
The analogy of Lyon’s law with Clausius’ principle highlights the importance of the two extensive
quantities E and N . From the coupling power proportionality and energy balance, it becomes
possible to predict the energy levels in all subsystems without solving the wave equation
in acoustics or other governing equations for structural components. One must say that all
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information available on a subsystem reduces to E and N , that is sufficient to provide a closed
set of equations.

This is obviously a statistical theory which neglects the details. In particular, statistical energy
analysis does not provide information on the exact repartition of energy among modes at any time
but just its mean value per mode. As in statistical physics, we arrive to the notions of macrostate
and microstate. The macrostate is characterized by E and N while a microstate is specified by
the exact repartition of energy on modes. The most important task is to assess the number of
microstates that correspond to a single macrostate.

This problem is a classical question in statistical physics. If we have Z energy quanta and N

sites, the number of possibilities to arrange Z among N is

W =
(Z +N − 1)!

Z!(N − 1)!
(3.1)

Note that in this estimation, the energy is undistinguishable while theN sites are distinguishable.
Before to derive an explicit relationship of entropy, let us estimate the two main numbers N and
Z that appear in the previous expression in the context of acoustics.

In a room, the density of acoustical modes is n(ω) = V ω2/2π2c30 where c0 = 340 m/s is the
sound speed. The number of modes whose frequency lie in an octave band ∆ω= ω/

√
2 is N =

n(ω)∆ω. For instance, a small room of volume V = 45 m3 containsN ≈ 10000 modes in the octave
band 1 kHz. This number is of course larger for larger rooms or at higher frequencies. But usually,
the number of modes N in acoustics is of order of few thousands up to several millions. This is
very small compared with usual number atoms in statistical physics.

The acoustical energy may be assessed as follows. Consider the same room in which lies a noise
of say, 70 dB that is a root-mean-square acoustical pressure of p= 2 10−5 × 1070/20 ≈ 60 mPa. The
acoustical energy contained in the whole room is E = p2V/ρ0c

2
0 where ρ0 = 1.3 kg/m3 is the air

density. One obtains E ≈ 1 µJ. At 1 kHz, the number of energy quanta is therefore Z =E/~ω≈
3. 1024 units where ~ is Planck’s constant.

It appears from this estimation that for ordinary situations in acoustics, the number of energy
levelsZ is considerably larger than the number of modesN . The sumZ +N − 1 differs fromZ by
a negligible term. Since the product (Z +N − 1)!/Z! contains exactlyN − 1 terms approximately
equal to Z, we may write

W =
ZN−1

(N − 1)!
(3.2)

Let us now introduce Boltzmann’s entropy of a system whose number of microstates is W

S = kB logW (3.3)

where kB is Boltzmann’s constant. By substituting equation (3.2) into equation (3.3) and using
Stirling’s approximation log(N − 1)! = (N − 1) log(N − 1)− (N − 1), one obtains

S = kB(N − 1) [logZ − log (N − 1) + 1] (3.4)

Now, writing N instead of N − 1 and Z =E/~ω, we obtain [8]

S(E,N) = kBN

[
1 + log

(
E

~ωN

)]
(3.5)

This is the final expression of entropy of a vibro-acoustical system having energy E spread on
N modes about the circular frequency ω. Two fundamental physical constants appear in this
relationship, the Planck constant ~ and Boltzmann constant kB.

4. Interpretation in terms of information
We have seen that Lyon’s law allows to construct a thermal theory of sound and vibration in
which each subsystem is characterized by two and only two quantities which are the vibrational
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energy E and the number of modes N . In statistical energy analysis, the state of a subsystem
reduces to the knowledge of E and N and no further information can be provided by the theory.

In the previous section, the entropy has been introduced in statistical energy analysis in the
same way as in statistical physics for Einstein’s solid. In a solid, the energy is localized in atoms.
And each atom behaves like a resonator whose discrete energy levels are Ek = (k + 1/2)~ω,
k= 0, 1, ... by the rules of quantum mechanics. At the macroscopic scale, the state of the solid is
specified by its total energyE and the number of atomsN . We may imagine a thought experiment
which consists in measuring the exact energy of all resonators at a given time. This exact
repartition of energy E on resonators defines the microstate. The gain of information acquired
during this process is I =− log p where p is the probability of the microstate. Since all microstates
are assumed to be equiprobable p= 1/W where W is the total number of microstates. The gain
of information is therefore I = logW . It becomes clear that Bolzmann’s entropy S = kB logW is a
measure of information lost when we ignore the actual microstate of the solid.

In statistical energy analysis, the vibrational energy is not localized on atoms but on normal
modes. The non local character of modes does not raise any difficulty since they remain well
identified by their natural frequencies and mode shapes. Modes are therefore discernable like
atoms. Following the analogy with Einstein’s solid, the entropy given in equation (3.5) is a
measure of information lost when we ignore the actual repartition of energy on modes. This is
exactly what happens in statistical energy analysis and we can conclude that equation (3.5) gives
the information lost in statistical energy analysis.

In this reasoning, we have tacitly assumed that a microscopic configuration is fully determined
by the knowledge of the exact repartition of energy on modes. This raises the question of the
definition of a microstate in classical physics. In acoustics, the vibrational field is solution to the
wave equation. This solution can always be developed in a series of normal modes. At any time,
a mode has a kinetic energy which may be different from its elastic energy. This information on
the repartition of the kinetic and elastic energies has not be taken into account in equation (3.5).
Another point of view is to start from geometrical acoustics. Here, we consider geometrical
acoustics in its strict sense that is when phase of rays has been neglected. The sound field may
then be viewed as a sound particle gaz of speed c0. In this context, a microstate is rather defined
by the specific energy density ρ(x,v) in the phase-space (x,v) where x is the position and v the
velocity of sound particles.

The problem of interpretation of equation (3.5) raises the question of the theoretical framework
in which statistical energy analysis is interpreted as a derived theory. This will be discussed in the
next section.

5. Towards a new paradigm
Statistical energy analysis occupies a special place in physical sciences. Since several centuries,
the general trend in physics is to construct more general theories whose range of application
is enlarged. For instance, magnetism and electrostatics have been replaced by Maxwell
electromagnetism which, in turn, has been replaced by Feynman quantum electrodynamics. In
this process, the older theories remain operative but only within a certain domain of validity
which may be delimited in the upper theory.

In acoustics, the oldest theory is certainly geometrical acoustics yet known by Ancient Greeks.
The wave theory of sound initiated in the 18th century by D’Alembert generalizes geometrical
acoustics while allowing to explain other phenomena such as diffraction, interferences, and the
existence of modes. In the wave theory, the validity of geometrical acoustics turns out to be the
domain of short wavelengths. The validity of the geometrical acoustics is therefore limited by a
lower frequency (the so-called Schroeder’s frequency in room acoustics). To be complete, we must
also mention that it exists also a upper frequency imposed by the limits of continuum mechanics.

The motivation of statistical energy analysis was exactly the converse. The fundamental laws of
vibro-acoustics were known for several decades at the beginning of statistical energy analysis. But
the former contributors raised the question of the applicability of classical sound and vibration
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theory when the number of modes is very large, so large that a practical resolution of classical
equations is unthinkable. The question was not that of correctness of the wave theory but rather
its usefulness and relevance.

The construction of the theory was achieved through the discovery of the coupling power
proportionality which enabled to set an analogy with Clausius’s principle in thermodynamics.
This law highlights that under certain conditions, a thermalization of acoustical waves is possible.
This law allowed the development of a thermodynamics of acoustical waves. Technically, a
complex system is divided into several subsystems in diffuse field state. For all of them, the
energy balance states the equality between the power delivered by external forces and the power
lost by internal dissipation or exchanged with adjacent subsystems. This leads to a set of linear
equations on subsystems energies. The solution gives the macroscopic repartition of vibrational
energy among subsystems without solving the wave equation. This is a true thermodynamical
approach of vibro-acoustics based on the first principle.
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Figure 2. Domains of validity statistical energy analysis (SEA, lower right-hand corner), geometrical acoustics (RAYS,

right-side) and the wave theory (WAVES, entire plane) in the κ, η-plane of a thin rectangular plate in vibration. The

isovalues give the relative standard deviation σ of vibrational energy.

The validity domain of statistical energy analysis is now well known [18]. The most important
assumption is the diffuse field state that must be reached by all subsystems. For the sake of
simplicity, we confine the discussion to a single subsystem. Let us examine the situation with only
two controlled parameters chosen as the dimensionless wavenumber κ (number of wavelengths
per mean-free-path) and the damping loss factor η. In figure 2 is plotted the relative standard
deviation σ of the map of vibrational energy in a rectangular plate (the frequency bandwidth
is an octave). σ= 1 means 100% of spatial variation about the mean value. A small value of σ
means a homogeneous field of energy inside the plate that may be interpreted as the diffuse field
state. The validity domain of statistical energy density is therefore the region of small σ. This
is the region in the bottom right-hand corner of figure 2. It is characterized by large values of
κ (high frequency or large number of modes) and small damping η. This last condition may be
understood by remarking that when absorption is high, rays cannot propagate on long distances.
They are reflected few times on boundaries before since they vanish rapidly and therefore rays
cannot mix efficiently the energy. Similarly, the region of geometrical acoustics is delimited by its
lowest frequency limit. This is the domain on the right-side of the vertical line in figure 2. Finally,
the domain of Love’s equation of thin plate is the entire κ, η-plane. This is the reference theory in
this example.

The previous discussion on the validity domains highlights that it exists a strict hierarchy
in the three theories. The largest one is the wave theory. It embodies geometrical acoustics as
an approximation at high frequencies. Geometrical acoustics may therefore be seen as a theory
derived from the wave theory. But it turns out that statistical energy analysis is also a sub-theory of
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geometrical acoustics [19]. Statistical energy analysis is an approximation of geometrical acoustics
when the damping is low. We therefore observe the following hierarchy: wave→ rays→ SEA.

The originality of the historical construction of statistical energy analysis is that formerly, it
was not strictly necessary to set a further theory. Waves and rays both cover a large validity
domain sufficient for all practical purposes of engineers. But the discovery of the coupling
power proportionality opened the door to a new field in sound and vibration, the domain of
disordered vibrations. When a vibrating system is sufficiently disorganized the state of diffuse
energy emerges and leads to a simpler behaviour. The advantage of a special theory well suited
to this domain is simplicity but not generality. The idea is to deliberately construct a theory as a
special case of a larger theory, just for convenience. This is rather unusual in the history of physical
sciences.

However it exists other examples in physics. For instance, the research of a closed theory
of turbulence in fluid mechanics falls within the same idea. Basically, the fundamental of fluid
mechanics are known (Navier-Stoke equation). But the domain of high Reynold numbers exhibits
a particular behaviour of flow that is highly disordered. Although the behaviour of turbulent
flow is embodied in Navier-Stoke equation, it is obviously of interest to set a statistical theory of
turbulence. This theory is not yet fully established.

6. Conclusion
We have shown in this article that the construction of statistical energy analysis, a sort of
thermodynamics of sound and vibration, follows from a motivation rather atypical in the history
of physical sciences. The hierarchy of the three theories wave theory, geometrical acoustics,
and statistical energy analysis establishes a logical chain from the most general to the most
particular theory. Each theory of this chain is a special case of the upper theory. The historical
chronology in physics generally goes from the most particular to the most general theory. The
reductionist program in philosophy of science aims to find the logical link between existing
theories and to construct a single framework theory to interpret them. But the recent construction
of statistical energy analysis represents a remarkable example of the reverse movement. Statistical
energy analysis has been deliberately elaborated as a special case of a previously existing upper
theory. There were therefore no theoretical requirement to set a new theory, but just a practical
convenience to have at one’s disposal a new simple theory which applies within a restricted but
useful domain. This idea which consists in increasing the number of special theories, establishes
a new paradigm which rather falls within emergentism in philosophy of science.

Data accessibility statement. This work does not have any experimental data.

Competing interests statement. We have no competing interests.

Authors’ contributions. A. Le Bot conceived the mathematical model of entropy and its
interpretation, wrote the paper and gave final approval for publication.

Acknowledgements. The author acknowledges the referees for their positive comments.

Funding statement. This work was supported by the CNRS and Labex CeLyA of Université de
Lyon, operated by the French National Research Agency (ANR-10-LABX-0060/ANR-11-IDEX-
0007). These supports are greatly appreciated.

References
1. Sabine WC. 1922 Collected papers on acoustics. Cambridge, USA: Harvard University Press.
2. Lyon RH, Maidanik G. 1962 Power flow between linearly coupled oscillators. J. Acoust. Soc.

Am. 34, 623–639. (doi:10.1121/1.1918177)
3. Newland DE. 1966 Calculation of power flow between coupled oscillators. J. Sound Vib. 3, 262–

276.



9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

4. Scharton TD, Lyon RH. 1968 Power flow and energy sharing in random vibration. J. Acoust.
Soc. Am. 43, 1332–1343. (doi:10.1121/1.1910990)

5. Newland DE. 1968 Power flow between a class of coupled oscillators. J. Acoust. Soc. Am. 43,
553–559. (doi:10.1121/1.1910865)

6. Carcaterra A. 2002 An entropy formulation for the analysis of energy flow between mechanical
resonators. Mech. Syst. Signal Process. 16, 905–920.

7. Carcaterra A. 2005 Ensemble energy average and energy flow relationships for nonstationary
vibrating systems. J. Sound Vib. 288, 751–790.

8. Le Bot A. 2009 Entropy in statistical energy analysis. J. Acoust. Soc. Am. 125, 1473–1478.
9. Le Bot A, Carcaterra A, Mazuyer D. 2010 Statistical vibracoustics and entropy concept. Entropy

12, 2418–2435. (doi:10.3390/e12122418)
10. Le Bot A. 2011 Statistical energy analysis and the second principle of thermodynamics. IUTAM

symposium on the vibration analysis of structures with uncertainties 129–139. London, UK: Springer.
(doi:10.1007/978-94-007-0289-9)

11. Tufano D, Sotoudeh Z. 2017 Exploring the entropy concept for coupled oscillators. Journal of
International Engineering Science, to appear.

12. Tufano D, Sotoudeh Z. 2016 Exploring entropy for continuous vibrating systems. 57th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego,
USA.

13. Carcaterra A, Akay A. 2004 Transient energy exchange between a primary structure and a set
of oscillators: Return time and apparent damping. J. Acoust. Soc. Am. 115, 683–696.

14. Carcaterra A, Akay A. 2007 Theoretical foundations of apparent-damping phenomena and
nearly irreversible energy exchange in linear conservative systems. J. Acoust. Soc. Am. 121,
1971–1982.

15. Le Bot A. 2015 Foundation of statistical energy analysis in vibroacoustics. Oxford, UK: Oxford
University Press.

16. Mace BR, Ji L. 2007 The statistical energy analysis of coupled sets of oscillators Proc. R. Soc. A
463, 1359–1377. (doi:10.1098/rspa.2007.1824)

17. Lafont T, Totaro N, Le Bot A. 2013 Review of statistical energy analysis hypotheses in
vibroacoustics. Proc. R. Soc. A 470, 20130515.

18. Le Bot A, Cotoni V. 2010 Validity diagrams of Statistical Energy Analysis. J. Sound Vib. 329,
221–235.

19. Le Bot A. 2007 Derivation of Statistical Energy Analysis from radiative exchanges. J. Sound
Vib. 300, 763–779.


	1 Introduction
	2 Lyon's law and the Clausius principle
	3 Entropy in statistical energy analysis
	4 Interpretation in terms of information
	5 Towards a new paradigm
	6 Conclusion
	References

