
HAL Id: hal-02390097
https://hal.science/hal-02390097

Submitted on 20 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neutral, charged excitons and biexcitons in strain-free
and asymmetric GaAs quantum dots fabricated by local

droplet etching
Z. Trabelsi, M. Yahyaoui, S. Ben Radhia, K. Boujdaria, E. Zallo, O.G.

Schmidt, P. Atkinson, M. Chamarro, C. Testelin

To cite this version:
Z. Trabelsi, M. Yahyaoui, S. Ben Radhia, K. Boujdaria, E. Zallo, et al.. Neutral, charged excitons
and biexcitons in strain-free and asymmetric GaAs quantum dots fabricated by local droplet etching.
Journal of Luminescence, 2018, 197, pp.47-55. �10.1016/j.jlumin.2018.01.012�. �hal-02390097�

https://hal.science/hal-02390097
https://hal.archives-ouvertes.fr


APS/123-QED

Neutral, charged excitons and biexcitons in strain-free and

asymmetric GaAs quantum dots fabricated by local droplet

etching

Z. Trabelsi1, M. Yahyaoui1, S. Ben Radhia1, K. Boujdaria1, E. Zallo2;3,

O. G. Schmidt2, 4P. Atkinson, 4M. Chamarro, and 4C. Testelin

1Laboratoire de Physique des Matériaux: Structure et Propriétés,

Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia

2Institute for Integrative Nanosciences, IFW Dresden,

Helmholtzstrasse 20, 01069 Dresden, Germany

3Paul-Drude-Institut für Festkörperelektronik,

Hausvogteiplatz 5-7, D-10117, Berlin, Germany and

4Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588,

Institut des NanoSciences de Paris, F-75005, Paris, France

(Dated: December 23, 2017)

Abstract

We present an experimental and theoretical study of the optical properties of asymmetric strain-

free GaAs quantum dots (QDs) fabricated by �lling of self-organized nanoholes (NHs) created

by local droplet etching. The energy levels are calculated within the e¤ective mass approximation

using as input a model anisotropic QD shape with C2v symmetry based on atomic force microscopy

(AFM) pro�les of NHs. The in�uence of the QD height and shape anisotropy on the exciton

emission energy and the s-px and s-py energy splittings is studied theoretically. The experimentally

observed bound nature of excitonic states is well reproduced by our theoretical approach which

includes direct Coulomb energies and correlation e¤ects. We investigate the �ne-structure splitting

(FSS) of the neutral exciton as a function of dot size. Theoretical calculations of the long-range

electron-hole (e-h) exchange interaction predict an increase of the FSS with decreasing QD height,

which describes well the experimental trend.

PACS numbers: 73.21.La, 68.65.Hb
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1. Introduction

Strain-free GaAs/AlGaAs quantum dots (QDs) are a relatively new III-V QD family of

great interest. One method to grow these dots is droplet epitaxy, and highly symmetric, high

optical quality strain-free dots have been fabricated on (111) substrates by this technique

[1�3]. An alternative QD growth method is self-assembled local droplet etching (LDE) and

nanohole in�lling [4�7]. This technique is particularly attractive since the dot density and

emission energy can be controlled independently with the QD size precisely controlled via

the hole �lling level [7, 8]; both anisotropic and highly symmetric dots can be grown by

suitable choice of droplet etching conditions [9, 10]; and quantum dot molecules can be

realized and implemented in devices [11]. This makes these strain-free GaAs/AlGaAs QDs

potentially useful for applications such as QD lasers [12] and solar cells [13]. However, for

the realization of QD based devices, the dependence of the QD optical properties, namely,

the exciton transition energies and intersublevel energy spacing on the QD shape and size

needs to be well understood.

The asymmetry of QDs is of particular interest also for quantum information applications

since symmetric dots are attractive due to the low value of exciton �ne-structure splitting

(FSS), which makes them promising systems for entangled photon sources, while highly

asymmetric dots have the potential to lead to brightening of the long-lived dark exciton

state, which is of interest for spin-based quantum processing [14]. Since GaAs/AlGaAs QDs

are nominally unstrained and have sharp interfaces with little intermixing, they provide an

ideal system to study the role of the geometric anisotropy in determining QD electronic

properties, such as the FSS.

Recently, a few studies [5�7] have focused on the optoelectronic properties of strain-free

GaAs QDs, however theoretical investigations are still required. In our recent work [15],

we presented a theoretical study of the optical transitions of di¤erent excitonic complexes

in highly symmetric strain-free GaAs quantum dots (QDs) fabricated by epitaxially �lling

nanoholes (NHs) in AlGaAs surface. The QD energy levels were calculated using a model of

the QD shape and size based on atomic force microscopy (AFM) measurements of the QD,

and the calculated levels showed reasonable agreement with photoluminescence measure-

ments demonstrating the suitability of our modelling approach. Nevertheless, the majority

of the QDs fabricated by local droplet etching technique are slightly anisotropic [8, 16�18].
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Hence, taking into account such anisotropy in our modelling approach is necessary. Here,

we give a comprehensive outline of our theoretical approach which is supported by a good

agreement with optical spectroscopic study, performed on GaAs QDs. Since we are inter-

ested in asymmetric QDs, we investigate the exciton FSS, due to the electron-hole (e-h)

exchange interaction, as a function of the QD height.

The paper is organized as follows. Section 2 is divided into two parts. In part 2.1.,

we present micro-photoluminescence (�-PL) measurements of single GaAs QDs obtained

by �lling NHs with di¤erent amounts of GaAs. In part 2.2., we outline our theoretical

model which includes the QD shape modelling and the calculation of the con�ned states.

The numerical results are presented in section 3 where we perform a comparison between

experimental data and theoretical results, and we study the few-particle binding energies

and correlation e¤ects. Exchange interaction e¤ects and exciton FSS will also be evaluated

and discussed. Our results are summarized in section 4.

2. Methods

2.1. Samples and experimental setup

The samples have been grown by solid source molecular beam epitaxy on GaAs (100)

substrate. Details of the gallium droplet etching process used to form the nanohole can be

found in Ref. [7]. The nanoholes were then overgrown by a 7 nm Al0:45Ga0:55As barrier, a

GaAs layer with nominal thickness from 0:25 to 3:5 nm, and an upper Al0:33Ga0:67As barrier.

A 2 minute growth interruption ensured signi�cant GaAs migration towards the bottom of

the NH such that the GaAs thickness at the bottom is signi�cantly larger than the nominal

deposited thickness.

Figure 1 shows the shape of the NH after growth of the lower AlGaAs barrier (left image,

black lines) and after growth of a subsequent 1 nm GaAs layer followed by 2 minute growth

interruption (right image, blue lines). It can be seen that the NHs, which have a typical

depth of 8 nm before growth of the GaAs layer, are elongated along the [110] direction, with

an in-plane anisotropy (ratio of the width along [110] to the width along [110]) given by

� � 2:5. It can be seen that net migration towards the bottom of the hole results in a dot,

approximately 4 nm high, con�ned in the NH for a nominally 1 nm deposition.
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Fig. 1: AFM images of an in-situ etched nanohole where the growth was stopped after:

overgrowth of 7 nm Al0:45Ga0:55As bottom barrier layer (left image), overgrowth of the

bottom AlGaAs barrier layer and 1 nm GaAs layer followed by a 2 minute growth

interruption (right image). Corresponding surface pro�les along the [110] and [110]

directions, which are the average from ten measured nanoholes, are shown for the bottom

barrier layer (black line) and top of the GaAs layer (blue line). The gray shaded area

indicates the location and form of the QD.

�-PL measurements were carried out at 10 K using a 532 nm Nd:YVO4 excitation laser

focused down to � 1�m2 and a spectrometer with � 40 � eV resolution. The dot density

was low enough to enable single dot spectroscopy to be carried out without any need for

sample processing.

The �-PL polarization was analyzed by including a half-wave plate and a linear polarizer

before detection. The �ne structure splitting of the exciton can then be observed (see Inset

Fig. 2(b)).

�-PL spectra obtained for di¤erent nominal thicknesses are shown on Fig. 2. For each

sample, one detects a strong emission peak associated to the neutral exciton of a single

QD, labelled X, (more precisely, an electron-hole pair in a neutral QD), determined by

polarization measurements. At lower energy, extra peaks are observed; they can be assigned

to the biexciton and charged excitons.

To analyze the low energy peaks, a study of the �-PL spectrum, versus the excitation

intensity, has been performed on a QD with a 1 nm nominal thickness. Figure 2(d) shows

the excitation power dependence of the QD emission intensity for the peaks at 1643:5 and

1647:7 meV. When Pexc is large, both emission intensities saturate, as expected. Below

saturation, from a power law �t (I _ P�exc), it can be seen that the neutral exciton emis-

sion has a linear dependence on the excitation power whereas the line at 1643:5 meV has

a quadratic dependence which is the signature of the biexciton (XX) complex. The inter-
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mediate emission, between X and XX, can be attributed to charged excitons (as we will

discuss below).

FIG. 2: (a)-(c) �-PL spectra of single QDs with di¤erent sizes. The nominal thickness is

given for each QD. The highest energy line for each dot is the neutral exciton emission,

characterized by polarisation measurements not shown here; inset (b) shows orthogonally

polarised exciton emission. (d) Intensity of the exciton (black dot) and biexciton (red dot)

emission lines, respectively at 1647.7 and 1643.5 meV ; a power law �t, below saturation,

leads to the exponents � = 1.0 and 2.1, respectively.

2.2. Theoretical model

We �rst model the QD shape and then calculate the single particle energy levels, the single

particle wave functions (WFs) and the �nal alignment of the excitonic states by combining a

good description of the QD shape and the BenDaniel-Duke Hamiltonian [19]. Since a shape

anisotropy induces a splitting of p-like states, we also calculate the s-px (�s�px) and s-py

(�s�py) energy level spacings.
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2.2.1. Shape modelling

The QDs studied here di¤er from the symmetric GaAs/AlGaAs QDs that we have previ-

ously modelled [15] in that the dots here are elongated along the (Ox) ([110]) direction (see

Fig. 1 Ref. [7]). It is however possible to adapt the QD shape modelling approach used in

Ref. [15] to take into account the QD shape anisotropy as described in Fig. 3. The QDs

are modelled by the overlaying of two ellipsoids E1 and E2 revolving around the z axis (the

growth direction) with di¤erent centers and eccentricities. E1 (E2) describes the shape of

NH before (after) GaAs �lling. These ellipsoids satisfy the following equations:

r2ix
a20i
+
r2iy
b20i
+
(z + di)

2

c20i
= 1 (1)

the indices i = 1 and i = 2 are reserved for NH before and after �lling, respectively.

Note that in the symmetric QD case, the cross-section of the two ellipsoids and (xOy)

planes are circles, while they are ellipses of radii Rb(�; z) for the asymmetric QD case :

Rb(�; z) =
1q

cos2 �
r2ix

+ sin2 �
r2iy

(2)

where rix and riy are the major and minor ellipse axes, respectively. They are de�ned as

follows:

r2ix(z) = a20i

�
1� (z + di)

2

c20i

�
r2iy(z) = b20i

�
1� (z + di)

2

c20i

�
(3)

FIG. 3: Schematic view of the QD shape modeling.
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In order to determine the other parameters, namely a0i, b0i, c0i and di, the same approach

as in Ref. [15] is followed. We note that the QD dimensions were based on the AFM data

of the AlGaAs NH before and after GaAs �lling [7]. These AFM measurements establish

that the hole opening is anisotropic and the pro�les allow us to de�ne an aspect ratio

� = r0x
r0y

� 2:5, where r0x and r0y are the radii of the hole opening along the major axis

(x = [110]) and the minor axis (y = [110]) for the elongated structure, respectively. The NH

depth before GaAs �lling is h1 � 8 nm and we denote by h2 the NH depth after �lling. Thus,
the QD height is de�ned as hQD = (h1 � h2). h2 is considered as an adjustable parameter

in our calculations.

2.2.2. Con�ned states : outline of the calculation method

To calculate the charge carrier states within the e¤ective-mass theory, we consider the

single carrier (electron (e) or hole (h)) Hamiltonian which is written as follows:

He(h) = Te(h)(re(h)) + Vconfe(h) (re(h)) (4)

where Vconfe(h) (re(h)) is the carrier con�nement potential and T (re(h)) denotes the carrier ki-
netic operator. Taking into account the QD shape anisotropy, the cylindrical symmetry is

somewhat broken and, in this case, the kinetic energy operator will be decomposed into

three components as follows:

Te(h) = T ze(h) + T
�
e(h) + T

�
e(h) (5)

with 8>>>><>>>>:
T ze(h) = �}2

2

h
@
@z

1
mz
e(h)

@
@z

i
T �e(h) = �

}2
2

h
1
�
@
@�

�
m�
e(h)

@
@�

i
T �e(h) = �}2

2

h
1
�2

@
@�

1
m�
e(h)

@
@�

i (6)

where (�; �; z) denotes cylindrical coordinates. mz
e(h) and m�

e(h) are the carriers e¤ective

masses along z- and �- directions, respectively. The Luttinger parameters, 
j (j = 1; 2) are

calculated via the 40-band k.p theoretical model [20]. The numerical parameters used in

our calculations are compiled in Table 1.
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GaAs GaAs/Al0:45Ga0:55As


1 
2 me(m0) m
z
h(m0) m

�
h(m0) " Ve(eV ) Vh(eV )

7.03 2.33 0.067 0.422 0.107 12.47 0.390 0.206

TABLE I: Numerical values of the input parameters used in this work. Masses are given in free

electron mass unit

The carriers energy levels are calculated by diagonalizing the Hamiltonian He(h)

using the matrix method over a known and �nite eigenstate basis. The eigen-

functions of the Hamiltonian are expanded in a Fourier-Bessel �nite series as

	n(re(h)) =

`max;mmaxX
`>0;m>0

Cn`m�
n
`m

�
�e(h); �e(h); ze(h)

�
, with Cn`m are the basis coe¢ cients. The

�n
`m

�
�e(h); �e(h); ze(h)

�
functions correspond to the eigenbasis of a large cylinder of height ZC

and elliptical base of radius RC (�) which is given by : RC (�) = 1=(
q

cos2 �
A2

+ sin2 �
B2
). A and

B denote the dimensions along x- and y- directions of the elongated cylinder, respectively.

The normalization condition of the carriers WFs imposes the condition (A=B) = � = 2:5.

The origin of the z-axis is taken at the midpoint of the cylinder. �n
`m
are given by:

8>>><>>>:
�0
`m

�
�e(h); �e(h); ze(h)

�
= �0`J0

�
�0`

RC(�)
�e(h)

�
sin(�mZC ze(h)), for s-state

�1
`m

�
�e(h); �e(h); ze(h)

�
= �1`

�
A+B
A

�1=2
cos(�e(h))J1

�
�1`

RC(�)
�e(h)

�
sin(�mZC ze(h)), for px-state

��1
`m

�
�e(h); �e(h); ze(h)

�
= ��1`

�
A+B
B

�1=2
sin(�e(h))J�1

�
��1`
RC(�)

�e(h)

�
sin(�mZC ze(h)), for py-state

(7)

�n` is the `
th root of the n-order Bessel functions Jn, and �n` are the normalization constants.

We should point out that only the matrix elements of the kinetic term T �e(h) are a¤ected
by the QD shape anisotropy, and these are calculated using Eq. (6) and (7). Calculations

show that these elements di¤er from one state to another. The other contributions of the

kinetic matrix elements, T ze(h) and T
�
e(h) are given in Ref. [21].

Thus, �nding the exact energy eigenvalues of the stationary Schrödinger equation is

reduced to the numerical diagonalization of the Hamiltonian matrix. Such a technique has

proved itself to be a workable and reliable approach [22, 23].
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3. Results

In this section, we check the accuracy of our numerical approach by comparing the theo-

retical results with experimental data. Firstly, we begin by calculating the carriers con�ne-

ment energies as well as the s� px(y) and px � py spacing energies, supported by a study of

the carriers WFs distribution and localization inside the QD. We then calculate the binding

energies of the excitonic complexes present in the dot, such as the neutral excitons, charged

excitons (X+ and X�) and the biexcitons. This is then compared with �-PL data on single

dots with di¤erent heights. A study of the anisotropic FSS of the ground state (s-s) exciton

concludes the section.

3.1. Single-particle energy levels

As described previously, the electron and hole energy levels are numerically calculated by

diagonalizingHe(h) over the eigenstates basis of a large cylinder. Note that, due to symmetry

conditions, the cylinder is laterally elongated with an anisotropy factor equal to that of the

QD: � = A
B
= r0x

r0y
= 2:5. Figure 4(a) shows the electron and hole con�nement energies of

the s-shell (Ee(h)s ), px-shell (E
e(h)
px ) and py-shell (E

e(h)
py ) states as a function of hQD. As for

conventional QDs, the carriers con�nement energies of the studied QDs decrease gradually

when increasing the QD size. In contrast to the case of symmetric QDs [15] and as expected

a degeneracy lifting of the p-shell states is observed for asymmetric QDs. In Fig. 4(b),

we highlight the size e¤ect on the s-px and s-py level spacing energies �E
e;h
s�px and �E

e;h
s�py ,

respectively. It is known that the energy spacing mainly depends on the lateral size. For the

studied QDs, the increase of the QD height leads to an expansion of the QD lateral size due

to the shape of the NH and an increase of the WF extensions (see Fig. 6). This explains

the decrease of �Ee;hs�px and �E
e;h
s�py as hQD increases, as well as the px-py spacing energy

becoming equal to a few meV.
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FIG. 4: (a) Calculated single particle, electron and hole, con�nement energies of the s, px

and py states with respect to hQD. (b) Calculated s- px and s-py splitting energies of

electrons and holes as a function of hQD. (c) Band alignment of the GaAs/Al0:45Ga0:55As

QD. The s- px and px-py splitting energies are shown for both electron and hole

This is summarized in Fig. 4(c) which shows a schematic illustration of single-particle

electron and hole energy levels for the GaAs/AlGaAs QDs studied here. We have ne-

glected here the fact that the as-grown QDs had a lower Al0:45Ga0:55As barrier and an upper

Al0:33Ga0:67As barrier, treating both barriers as Al0:45Ga0:55As. The s � px energy spacing

ranges between 6.7 meV and 11.7 meV for holes, while for electrons it is almost double. The
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px � py spacing energy is much lower than s� px one.

3.2. Electron and hole wave functions distribution

WFs of single charge carriers are calculated by solving the Schrödinger equation. We

denote by
���	e(h)n (x)

���2, ���	e(h)n (y)
���2 and ���	e(h)n (z)

���2 the electron or hole densities along (x =
[110]), (y = [110]) and (z = [001])-axes, respectively. n = 0; 1 and �1 indicate s, px and
py-states, respectively. Our numerical results for a given QD (r0x=75 nm, r0y=30 nm) are

shown in Fig. 5.

FIG. 5 : Electron and hole WFs of GaAs/Al0:45Ga0:55As QDs with r0x=75 nm and r0y=30

nm. (a) Evolution of
���	e(h)0 (z)

���2with respect to hQD. (b)-(d) The distribution of s, px and
py carriers WFs in the in-plane directions.

These plots show that: (i) the electron and hole WFs are highly localized inside the GaAs

QD, and (ii) the distribution of the carriers WFs , for a given state, re�ects the anisotropy
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and the size of the QD. Plots of the s, px and py WFs along (Ox) and (Oy) directions are

presented in Figs. 5(b), (c) and (d), respectively.

In order to show more clearly the evolution of the WFs extension with the QD height,

we have reproduced the carriers�WFs by Gaussian �ts using the following expressions [24]:8>>>>>>>><>>>>>>>>:

���	e(h)0

���2 = A0e(h) e
�

x2
e(h)

`2xe(h) e
�

y2
e(h)

`2ye(h) e
�
(ze(h)�zme(h) )

2

`2ze(h) , for s-state���	e(h)1

���2 = A1e(h) x
2
e(h) e

�
x2
e(h)

`2xe(h) e
�

y2
e(h)

`2ye(h) e
�
(ze(h)�zme(h) )

2

`2ze(h) , for px-state���	e(h)�1

���2 = A�1e(h) y
2
e(h) e

�
x2
e(h)

`2xe(h) e
�

y2
e(h)

`2ye(h) e
�
(ze(h)�zme(h) )

2

`2ze(h) , for py-state

(8)

where Ane(h) (n = 0;�1) are the normalization constants. `xe(h) , `ye(h) and `ze(h) are the �t
parameters which determine the e(h)- WFs extension in the three directions x, y and z.

FIG. 6: (a)-(c) The evolution of the s, px and py carriers WFs extension with respect to

hQD.
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It can be seen from Fig. 6(a)-(c) that the WF extension always decreases as the QD size

decreases. The WF extension along (Oz) is similar for all the states, due to the fact that the

main con�nement is along the (Oz) direction. In the xOy plane, the WF is always elongated

along (Ox) re�ecting the dot asymmetry; however the increase in WF extension with dot

height is more rapid along the (Ox) direction than the (Oy) direction for the px-state so that

the px state become more anisotropic, and more rapid along the (Oy) direction compared

to the (Ox) direction for the py-state such that the py state becomes more isotropic.

3.3. Exciton transition energy: comparison with experiment

In this section, we compare the ground state transition energy, E0(X) experimentally

observed, with our numerical results. The exciton energy can be calculated as follows:

E0(X) = Eg + Ee0 + Eh0 �
��V 0
eh

�� (9)

where Eg is the GaAs QD band gap energy. The electron and hole con�nement energies,

Ee0 and Eh0 , are de�ned relative to the bottom of the con�nement potential. V 0
eh is the

electron-hole Coulomb energy treated in the perturbative approach and it is given by [25]:

V 0
eh = �

e2

4�"0"

ZZ j	e0(�!re )j2 ��	h0(�!rh)��2
j�!re ��!rh j

d3�!red3�!rh (10)

where " is the average dielectric constant of GaAs [26].

In Fig. 7(a), we show the dependence of the QD emission energy as a function of the

dot height hQD ( hQD = (8 nm�h2), where 8 nm is the average NH depth, and h2 is an

input to the calculation). The calculated QD emission energy can then be compared to the

measured ensemble QD emission energy for a given nominal thickness, which allows the QD

height for a given nominal thickness to be estimated. This is shown in Fig. 7(b), where

the experimental data points of ensemble emission vs. nominal GaAs thickness is shown,

together with the estimated QD height vs. nominal thickness taken from the calculated

emission energies. It can be seen that the QD height is much greater than the nominal

thickness due to the fact that there is net migration towards the bottom of the nanohole.
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FIG. 7: (a) Calculated (black curve) and measured (red points) excitonic transition energy

of the ground state. (b) Measured excitonic transition energy as a function of the nominal

GaAs thickness deposited (red points), and corresponding calculated QD height (hQD)

(black points). The curves are guides to eye.

3.4. Excitonic complexes binding energies

We present a systematic calculation of the few-particle binding energies in order to assign

excitonic complexes to the peaks observed in single QD �-PL spectra. We �rst calculate the

excitonic complexes binding energies in terms of direct Coulomb interactions and then the

e¤ect of correlation energies will be included. The electron-hole exchange interaction e¤ects

on the excitonic binding energy will be discussed thereafter.

The s-shell direct Coulomb interactions between an electron and a hole (V 0
eh), and between

two electrons (V 0
ee) and two holes (V

0
hh) are calculated using Eq. (10), and plotted as a

function of hQD in Fig. 8(a).

All these quantities decrease when hQD increases which is attributed to the reduced

overlap of the carriers WFs and the increase of the WFs extension already noted in Fig.

6. It can also be seen that the hole-hole Coulomb interaction is always smaller then the

electron-electron interaction. This can be explained by the larger extension of the hole WF

in the (Ox) and (Oy) directions compared to that of the electron (see Fig. 6(a)). Our

results satisfy the following relationship [27]: V 0
ee > jV 0

ehj > V 0
hh over the entire dot height

range studied here. This �nding is in contrast to the symmetric QDs case where a change
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in order of the Coulomb contributions was observed [15]. The absence of such a reversal in

the asymmetric QDs studied here is mainly due to the larger lateral dimensions of the dot.

Both electron and hole carriers are con�ned within even the thinnest QDs, and their WFs

evolve in a monotonic way which explains the monotonic behavior of V 0
ee, jV 0

ehj and V 0
hh with

respect to hQD.

FIG. 8: (a) Direct Coulomb interactions versus hQD. (b) Calculated binding energies of

exciton complexes as a function of hQD without including correlation e¤ects.

We denote by �(X`) (` = �) the binding energy of trions and by �(XX) that of
biexcitons. These quantities have been estimated using the Hartree-Fock approximation

in terms of direct Coulomb energies (see Eq. (6) of Ref. [15]). Figure 8(b) shows the

evolution of �(X`) and �(XX) as a function of hQD. The important points in this �gure

are summarized as follows: (i) �(X�) is always negative, thus X� forms an unbound state.

�(X�) becomes more negative as hQD increases. (ii) X+ shows a trend opposite to X�.

Its binding energy increases with QD height and it is positive, meaning that X+ forms a

bound state. (iii) XX shows a binding energy close to zero, regardless of hQD. Since the

binding energy of a few-particle state is approximated by the sum of attractive and repulsive

interactions between all pairs of particles, the same magnitude of the�(X�) and�(X+) but

with opposite trends is expected. This result agrees well with the V 0
ee, jV 0

ehj and V 0
hh ordering

seen in Fig. 8(a). It is important to note however that the few-particle binding energies

cannot be fully evaluated using only the direct Coulomb interaction. Consideration of the

correlation e¤ects is paramount to provide a good estimation of the excitonic complexes
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binding energies. This has been demonstrated in several previous works either in strained

QDs [28] or unstrained ones [6, 15].

In the following, we calculate the few-particle binding energies by evaluating the Coulom-

bic interaction expressions to the second order of the perturbation theory. The procedure

is detailed in Ref. [15] (Eqs (7)-(9)). We have summarized our theoretical results of the

correlation energies (�c(X), �c(X`) (` = �), and �c(XX)) as well as the binding energies�
�c(X

`)(` = �);�c(XX)
�
of the excitonic complexes in Figs. 9(a) and 9(b), respectively.

Fig. 9: (a) The variation of the correlation energies of the exciton complexes as well as the

neutral exciton, �c, with respect to hQD. (b) Calculated binding energies of exciton

complexes as a function of hQD while including correlation e¤ects. The wine-coloured stars

indicate the �-PL experimental data.

It can be seen that the few-particle correlation energies and binding energies are mutually

correlated. A sensitive dependence of the correlation energies on the hQD is plainly shown

in Fig. 9(a). Compared to the symmetric QDs case where the set of the correlation energies

(�c) vary monotonically with the QD height, in asymmetric QDs the correlation energies

�rst increase and then subsequently decrease with increasing height because �c depends

both on the s� p splitting energies and the Coulomb interaction energies V nimj00
ij , (see Eq.

(7) of Ref. [15]). The Coulomb coupling V nimj00
ij depends strongly on the WF overlap and

extension. From our study (see Fig. 6), theWF extensions are continuously increasing and so���V nimj00
ij

��� is continuously decreasing, with increasing hQD. For the s-p splittings, �Es�px(y) ,
we observe two regimes (see Fig. 4(b)): below 5 nm, the splitting is almost constant,
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while at higher QD thickness, this splitting decreases rapidly. The correlation term being

proportional to
���V nimj00
ij

���2 and inversely proportional to �Es�px(y) , one can conclude that
at low thickness (�Es�px(y) almost constant), the correlation term decreases following the

Coulomb contribution, while at high thickness, the rapid decrease of �Es�px(y) leads to an

increase of j�cj.
We present in Fig. 9(b) the calculated binding energies when including correlation e¤ects.

It is clear that all the calculated few-particles binding energies are now positive, consistent

with experimental observations. The addition of the correlation e¤ects leads to a change

from unbound to bound forX� andXX states as was previously shown for symmetric GaAs

QDs [15]. The sequence of excitonic peaks, arranged in order of increasing emission energy

is XX, X+, X�, X and is similar to that obtained for bow-tie shaped GaAs QDs, where

the X+ was also found to have a binding energy of around 3 meV [17]. In contrast, X+ is

typically unbound in strained InAs QDs [27]. This di¤erence can be related to the larger

lateral size of the GaAs QDs, which increases the contribution of the correlation e¤ect on

the exciton binding energy resulting in a bound positive trion for these dots [15, 31].

�-PL measurements of QDs show a strong emission associated with the neutral exciton

and two weaker lines at lower energy (see Fig. 2). The main emission line is attributed to

the exciton X. The lowest energy line is attributed to the biexciton XX, since its emission

intensity shows a quadratic dependence on the excitation power. This observation is in

agreement with our calculations, which predicts that XX has the highest binding energy.

The theoretical binding energies, for all the excitonic complexes are plotted on Fig. 9(b)

together with the experimental values for XX. Our calculations reproduce quite well the

XX binding energy which is in the 3� 5 meV range. While a good agreement is obtained
for low QD thickness, a discrepancy is observed at high QD thickness (hQD > 5:5 nm). This

deviation is related to the smaller s and p-states splitting when hQD increases and the fact

that the contribution of the d-states has not been included in these calculations. Finally,

for the intermediate emission line, the binding energy varies from 1:3 to 3:2 meV, with a

mean value equal to 2:6 meV. This allows this emission line to be assigned to the positively

charged exciton X+, according to our calculation.
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3.5. Exchange interaction e¤ects: �ne structure splitting

Here, we study the role of the e-h exchange interaction taking into account the shape

anisotropy, on the excitonic properties. In particular, we investigate the contribution of

the long-range exchange interaction which can be separated into two di¤erent terms acting

on bright exciton states: (i) a diagonal term ("exchd ) which induces an additional energy

correction, the same for both bright excitons; (ii) the o¤-diagonal term ("exchod ) which splits

the bright excitons and will give the exciton �ne-structure splitting: FSS = 2
��"exchod

��. "exchd

and "exchod are given by

"exchd =
~2

4m0

EP
E2g

Z
dq(q2x + q2y)Vq

����Z d3r  �ne(r) nh(r)e
iq:r

����2 (11)

"exchod =
~2

4m0

EP
E2g

Z
dq(qx + iqy)

2Vq

����Z d3r  �ne(r) nh(r)e
iq:r

����2 (12)

where EP = 23:81 eV [20] is the related energy to the Kane matrix element P =

~
m0
hSj px jiXi = ~

m0
hSj py jiY i = ~

m0
hSj pz jiZi. Vq = � 1

(2�)3
e2

"0"r
1
q2
is the Fourier trans-

form of the Coulomb potential. We then evaluate numerically, "exchd and "exchod by using the

Gaussian functions. It should be noted that previous studies on III-V QDs have shown that

both the short range exchange interaction and the contribution of the valence band mixing

to the long range exchange interaction have only a very weak e¤ect on the magnitude of the

bright exciton splitting, and so these e¤ects have not been included here [30].

Our calculations show that the correction to the exciton binding energy due to e-h ex-

change interaction,
��"exchd

��, ranges between 14 �eV and 30 �eV ( inset of Fig. 10). The

magnitude of this term is quite negligible, in comparison with the other contributions (di-

rect Coulomb interaction and correlation energy) and consequently, it does not impact on

the excitonic binding energy. We show in Fig. 10 calculated and measured FSS values as

a function of the X emission energy. The FSS has been measured on 5 QD families, with

emission energy ranging from 1.58 to 1.72 eV. The FSS varies from 17 to 155 � eV. In

contrast, GaAs/AlGaAs QDs grown in quasi-symmetric LDE nanoholes [10] showed a FSS

varying from 4 to 12 � eV, for the same exciton energy range. For the same QD size, one

then observes a FSS one order of magnitude larger, signature of the asymmetric nanohole

shape. Our calculations predict a FSS increase from 16 to 36 � eV for the same energy

range, which qualitatively agrees with the experimentally increase of the FSS observed here,
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and on other quasi-isotropic [10] or anisotropic [31] GaAs/AlGaAs QDs. A quantitative

agreement is missing for the thinnest QDs. For small nominal thicknesses, the QD shape

will strongly depend on the NH bottom, whose symmetry is probably reduced under the

e¤ect of inhomogeneous etching at the start of the droplet etching process. Moreover, as

shown on AFM images (Fig. 1), the pro�le along (Oy) is not symmetric meaning that the

xOz plane is no more a mirror plane: the C2v symmetry, assumed in our model, is broken

to a Cs symmetry. This extra anisotropy may favor an increase of the FSS in small QDs,

needing more complex calculations.

Fig. 10: Calculated (stars) and measured (circles) values of the FSS as a function of the X

emission energy for di¤erent QDs. The inset shows the calculated values of the diagonal

(
��"exchd

��) and o¤-diagonal ("exchod ) terms of the long-range exchange interaction as a function

of hQD.

4. Conclusions

We present here an experimental and theoretical study of the electronic states of asymmet-

ric strain-free GaAs/AlGaAs QDs grown by the local droplet etching and in�lling method.

Both the lateral and vertical size of these QDs can be adjusted by the thickness of the �lling

layer. AFM data allowed us to give a realistic description of the anisotropic QD shape.

Using the e¤ective mass approximation and the BenDaniel-Duke Hamiltonian, we have pro-
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vided a detailed calculation of the charge carriers energy levels which includes new terms,

compared to the symmetric case, arising from the shape anisotropy. The calculated exciton

transition energies correspond to realistic dot heights in the nanoholes, demonstrating the

suitability of our theoretical approach. For a series of QD height ranging between 3:3 nm

< hQD < 7:5 nm, the emission energy of the QD s-state decreases from 1:77 eV to 1:57 eV.

The energy di¤erence between s and px (py) band to band transition decreases from 32:6

meV (XX) down to 19:7 meV (YY) with increasing hQD.

�-PL measurements of QDs of di¤erent nominal thicknesses exhibit high optical quality

with sharp excitonic peaks. In order to get a meaningful identi�cation of these spectra, we

have calculated the few-particle binding energies. We have shown that the direct Coulomb

interactions are insu¢ cient to reproduce the experimental �ndings and that the inclusion of

correlation e¤ects allows the positive binding energy of the negatively charged exciton and of

the biexciton to be explained. Binding states of the di¤erent excitonic complexes have been

shown to be in reasonable agreement with experimental observations. For the thickest QDs,

an improved agreement is expected by including d and higher excited states in the evaluation

of the correlation e¤ects. Our model of the anisotropic QD shape leads to a calculated FSS

ranging from 16 to 36 � eV, as the dot height decreases from 7:5 nm to 3:3 nm. The trend

of increasing FSS with decreasing QD height is in qualitative agreement with experimental

observations; however the calculated FSS underestimates the experimental values. The

discrepancy between calculation and FSS increases as the QD height decreases, which is

likely due to the fact that our model considers a C2v symmetry which is lost in the smallest

QDs due to higher degree of asymmetry at the bottom of the nanohole. Further studies, out

of the scope the present work, should extend the model to Cs symmetry QDs.
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