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VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND
APPLICATIONS

SAMUEL AMSTUTZ, DANIEL GOURION, AND MOHAMMED ZABIBA

ABSTRACT. Minimal partition problems consist in finding a partition of a domain into a given
number of components in order to minimize a geometric criterion. In applicative fields such
as image processing or continuum mechanics, it is standard to incorporate in this objective an
interface energy that accounts for the lengths of the interfaces between components. The present
work is focused on the theoretical and numerical treatment of minimal partition problems with
such interface energies. The considered approach is based on a I'-convergence approximation
combined with convex analysis techniques.

1. INTRODUCTION

Consider a partition of a bounded domain € of R? into relatively closed subsets Q,...,Qn,
called phases, that may intersect only through their boundaries:

N
Q=[JQ;,  with@nQ;=00,009,nQ fori#j.
j=1

Denote the interface separating €2; and Q; by I';; :
Fij zaQZﬁaﬂ]ﬁQ fOI”L'#j,

with the additional convention I';; = ), see Figure 1. The prototype problem of minimal partition
can be written as

N
minimize Z/ gi(x)dz + Z(Q,...,0QN) (1.1)
i=1 78

over all partitions (Q1,...,Qy) of Q, where g1, ..., gy are given functions in L*(Q2), and Z(2y, ..., Qn)
is the total interface energy. This energy is here chosen as

1
Z(Ql,---7QN)=§ > aHITHT), (1.2)

1<i<j<N

where o;; > 0 is a coefficient called surface tension associated with I';; and ’del(Fij) isthed—1
dimensional Hausdorff measure of I';;. It is convenient to assume that the surface tensions satisfy
a; = aj; whenever ¢ # j and oy; = 0. We denote

Sn = {(aij) € RVN sy = aji and ay; = 0} .

In order to guarantee the lower semicontinuity of the interface energy, it is required that the
surface tensions be nonnegative and satisfy the triangle inequality [4]

Qij < ok + QL Vi, 4, k. (13)
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2 VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND APPLICATIONS

FIGURE 1. A partition of a domain into sets (€2;) that intersect only at their
boundaries. Interface I';; separates €2; from ;.

This condition is also discussed in [15,16,19]. We will therefore mainly place ourselves in the
classes of surface tensions
Sy = {(ayy) € Sy +ai; >0},
Ty = {(O@j) S SI—\,—/ Dy < a;r + Ak Vl,j,k} .

For the rigorous mathematical analysis, the lower semicontinuity of (1.2) needs to be formulated in
an appropriate framework, namely the space of sets of finite perimeter, or Caccioppoli sets [6,9,23].
In this setting, the total interface energy writes

1

3 > M (0m N ou; N Q), (1.4)
1<i<j<N
where Q4,...,Qxn are now assumed to be sets of finite perimeter in 2 such that Q = UﬁilQi up

to a Lebesgue negligible set and |Q; N Q;| = 0 for all 4 # j, denoting by | - | the d-dimensional
Lebesgue measure. Moreover, d)/€); is the measure theoretical (or essential) boundary of €; in €.
We refer to [6,9,23] for details on sets of finite perimeter and geometric measure theory.

Domain functionals of perimetric type are known to be difficult to handle within numerical
optimization procedures. The most direct approach in shape optimization relies on the concept
of shape derivative, often implemented by means of level-sets, see e.g. the seminal paper [3]
and [2] for a multiphase application. Drawbacks of this setting are that it does not allow all
types of topology changes, and that it raises the difficulty, when perimetric terms are involved,
of the numerical evaluation of curvatures. In this paper we follow another path, and propose
an approximation of the energy (1.4) by a I'-converging parameterized functional. This latter
is constructed upon the solutions of auxiliary elliptic boundary value problems, in the spirit of
[7,8]. This is in contrast with the celebrated Modica-Mortola I'-convergence approximation of
the perimeter [25] which, borrowing the terminology of numerical schemes, could be qualified as
explicit. The Modica-Mortola functional, special case of the Ginzburg Landau free energy, has been
used in particular by several authors to address minimal partition problems, see e.g. [10-12,26],
and specifically [15] where the energy (1.4) is considered. Closely related to our approach is the
parabolic approximation, applied to (1.4) in [19], see also [1,24] for the two phase case. Nonlocal
functionals, either elliptic or parabolic, lend themselves to optimization procedures which are less
sensitive to the spatial discretization than local, explicit ones. In particular, descent steps are
unrelated to mesh size. As we will see, the elliptic framework has a further advantage: it provides
a variational formulation which enables the implementation of alternating minimization schemes.
The separated subproblems may be linear or quadratic and be solved in one shot without line
search. Finally, different from I'-convergence based methods, we mention the convex approximation
of minimal partition problems from [17].

The paper is organized as follows. In section 2 we recall and extend some useful results from [7,8].
In section 3 we introduce our interface energy approximation and analyze its pointwise convergence.
Section 4 deals with the lower semicontinuity and equicoercivity properties. In section 5 we recall
and complement known combinatorial issues concerning the expression of the interface energy as a
weighted sum of perimeters of clusters of phases. A corollary is a first I'-convergence result, which
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we subsequently generalize. Sections 6 and 7 provide the aforementioned variational formulation,
derived with the help of Legendre-Fenchel duality. The resulting algorithm is presented in section
8, together with some numerical examples. In section 9 we describe an enrichment of the algorithm
in order to take into account volume constraints. A technical lemma is deferred in appendix.

2. PRELIMINARY: A GRADIENT-FREE PERIMETER APPROXIMATION

To set up the mathematical framework, we assume that the hold-all 2 is an open and bounded
subset of R?, d € {2, 3}, with Lipschitz boundary, and we first define the functional F : L>°(£, {0,1}) —
RU {+o0} by

Flu) = %\Du|(ﬂ) if u e BV (9,{0,1}),

+00 otherwise.

We recall that the total variation of u satisfies |Du|(Q) = HI "1 (01 N Q) whenever u €
BV(Q,{0,1}) and w is the characteristic function of a Lebesgue-measurable subset Q1 of Q, de-
noted by u = xq,, see again [6,9,23]. Then we say that €; is a set of finite perimeter and that
HI=L(Op Q1 N Q) is the relative perimeter of Q7 in . We also define the extended functional F
over the convex set L>°(, [0, 1]) by

F(u){F(u) if u e L0, {0,1}),
400 otherwise.

In all what follows we denote
(u,v) = / u(x) - v(z)dz
Q

for every pair of scalar or vector valued functions u, v having suitable regularity. It is shown in [7,8]
that a variational approximation of F', in the sense of I'-convergence, is provided by the family of

functionals (F.).so defined by

. 1
At = ot {eIT0 + 2 (10l + (01 - 20))}. (2.1)

We recall below some results proven in [7,8]. The first one is a straightforward reformulation of
(2.1) with the help of Euler-Lagrange equations.

Proposition 2.1. Let u € L*(Q) be given and L.u :=v. € H'(Q) be the (weak) solution of

—e?Av. +v., =u in Q, (2.2)
Opve =0 on 9N.

Then we have

F.(u) = é(l — Lou,u).

It follows straightforwardly from (2.2) that L.1 = 1. Also, the weak formulation yields for all
u,v € L2(Q)

(Low,v) = / 2V (Low) - V(Lov) + (Lew) - (Lov)lda,
Q
whereby the operator L. : L?(Q) — L?(Q) is self-adjoint and positive definite. It follows that

1
= g<LeU7 1—wu).

F, E(U)
The second result will be useful for existence issues at ¢ fixed.

Lemma 2.2. The functional F. is continuous on L>(,[0,1]) for the weak-x topology of L>(Q).
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The third result establishes the liminf inequality of the I'—convergence of the approximating
functionals. From now on, convergence statements for ¢ — 0 will refer to the convergence of the
corresponding quantity considering any sequence (ex) of positive numbers such that limg_, 4 o0 €5 =
0.

Proposition 2.3. Let u € L™ (Q,[0,1]) and (u®) be a sequence of functions of L*>(,]0,1]) such
that u¢ — u strongly in L'(Q). Then we have

liminf F. (uf) > F(u).
e—0

Proofs of the lim sup inequality of the I'-convergence may involve more geometrical aspects, with
a possible influence of the space dimension and the shape of Q. In [8] it was proved for a Lipschitz
domain € in any dimension, with the help of a recovery sequence (u®). However, recovery sequences
become problematic in the multiphase case, since independent recovery sequences (u$)1<;<n have
no reason to satisfy Zf\il u$ = 1, even if this property is verified at the limit. In [7] the limsup
inequality was proved for the constant recovery sequence u® = u, which is obviously a remedy to
the above limitation, in two dimensions for €2 rectangular. Here we extend this result to Lipschitz
domains in dimension d € {2, 3}.

Proposition 2.4. For all w € BV (Q,{0,1}) and all € > 0 we have

~ 1
limsup F.(u) < 3 | Du|(2).

e—0

Proof. We first note that for all u € BV (€, {0,1}) we can write
~ 1
F.(u) = Fc(u) := g<u — Lou,u).

Moreover, standard arguments provide the variational formulation
F.(u)= inf <e[|Vwl|? + 1||w — ul|2
ST weHL(Q) L2 T ¢ SON

We will estimate F.(u) through three steps.
Step 1. 1In the first step we assume that u € H'(€,[0,1]). We have in particular for all w € C?(f2)

1
Fo(u) < el Vol + Zllw = ulZzq),
which rewrites
1
F.(u) < 6/ Opw(w —u)ds + 5/ Vw - Vudz + - / (—2Aw +w — u)(w — u)da. (2.3)
a0 Q Q

Here we have used the Green formula for BV functions [6,9], which applies in Lipschitz domains.
We recall that v admits a trace in Lj,,_,(052), and that this trace can be lifted by a function in
WHQ\ Q), where Q is a bounded open smooth set containing §, see [6,20]. Call % the obtained
extension of u, further extended by 0 outside €. Inequality (2.3) extends by density to any function
w e CH(Q) with Aw € L*(Q). We choose w = w, := ®. » & where ®, is the fundamental solution

of the operator —2A + I. By construction, it holds —e2Aw, + w. = @ ae. in . Hence, since
o€ WhH(Q), we. € C1(Q) [21] and

F.(u)<e Onwe(we —u)ds + 5/ Vwe - Vudz. (2.4)
a0 Q
The construction from [20] permits to assume the 0 < @ < 1 a.e. in Q. Using ®.(z) = e 9®; (e x)
we obtain
eVw.(z) = Vo (2)u(x — ez)dz.
Rd
Let v be a unit vector of R%. We infer

eVuwe(z) v = / V®&(z) - via(x —ez)dz < max(V®1(z) - v,0)dz.
R¢ R¢
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Due to the radial symmetry of ®; we can without loss of generality assume that v is oriented along
the first basis vector of R%. It follows that

eVwe(z) - v < [ max(0;, P1(2),0)dz.
R4
We subsequently infer

eVwe(z) v < /max (/ Oz, P1(21, 2)dZ, O> dz1
R Rd—1

because, due to radial symmetry, the sign of 9., ®1(z1,2) only depends on the coordinate z;. By
uniqueness, the function

21— @1(21,2)d2
Rd—1
is the one dimensional fundamental solution, i.e.,

1
/ @1(2’1,2)d§ = 767\2«1\.
Rd-1 2
We arrive at

1
eVwe(z) - v < / ie*'zldzl =

R+
whereby, since v is arbitrary,

e|Vwe (z)] <

l\J\H

Coming back to (2.4) we obtain

1 1 1 1
F.(u) < f/ |we — ulds + 7/ |Vu|de = f/ | D, * @ — ulds —|— |Vu|dx (2.5)
2 Joq 2 Ja 2

Step 2. We now assume that u € BV (12, [0, 1]). By density of C*°(£2) in BV(Q) for the intermediate
convergence [6,9], there exists a sequence of functions u, € H!(2) such that u, — u in LY(Q)
and |Dug|(Q) — |Du|(Q). The construction by mollifiers allows to assume that 0 < ug < 1.
By Parseval’s equality, as the Fourier transform of ®; is F®;(£) = 1/(1 + [£]?), we infer that
®; € L%(RYN). Since obviously ux — u also in L?(2), iy — @ in L?(R?) by continuity of the trace
operator for the intermediate convergence, and F. is continuous on L?({), taking limits in (2.5)
yields

F.(u) < ;/ | x @ —ulds + = / | Du. (2.6)

Step 8. It remains to estimate the first integral in (2.6), which denoting w. = ®. x @ can be

e [ e —udas= [ V[ ) it = c0) ~ a60)) do| o)

Let a > 0. Due to the decay of ® at infinity there exists p > 0 such that

I8

The Cauchy-Schwarz inequality yields

1/2
/ we — ulds < HTHONY?|| D1 ]| 12 (ray </ / (z —ey) — ()] dyds(x)> + o
a0 B,(0)

By a change of variable this rewrites as

1/2
/ lw. — ulds < M~ 1(89)1/2H<I>1||L2(Rd) (/ / w(x — z) — a(x)] dzds(x)) + a.
oQ sp(O)

ds(z) < a.

/ By (y) iz — ey) — alx)) dy
RI\B,(0)
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Theorem 3.187 of [6] states the following: for H?~!- a.e. 2 € 9 it holds

limt_d/ u(y) — u(z)|dy = 0.
L A u(y) — u(z)]
Obviously the same limit holds for the exterior part, which entails

lim E_dp_d/ iz — 2) — @(z)| dz = 0
B2 (0)

e—0

for H?1- a.e. x € 9. Then it follows from Lebesgue’s dominated convergence theorem that

lim/ g_d/ |i(z — z) — a(x)| dzds(x) = 0.
re) B.,(0)

e—0

We infer that, for € small enough,

/ |we — ulds < 2a.
o9

This completes the proof. O

As straightforward consequences of Propositions 2.3 and 2.4, one obtains the desired I'-convergence
and pointwise convergence results.

Theorem 2.5. When ¢ — 0, the functionals F. T'—converge in L>(Q,[0,1]) endowed with the
strong topology of L*(2) to the functional F defined by

B SIDu(©) i ue BY(©R,{0,1),

+00 otherwise.

Theorem 2.6. For all u € L*™(,[0,1]) 4t holds
;I_IE(I) F.(u) = F(u). (2.7)

3. APPROXIMATION OF INTERFACE ENERGIES: POINTWISE CONVERGENCE

Given two subsets €; and ; of €}, we look for an approximation of the interface energy
H (O N OS2y N KY). The starting point is the following result established within the proof
of Proposition 1 of [5].

Lemma 3.1. Let Q;,Q; be sets of finite perimeter such that |Q; N Q;| = 0. There exists an
HA 1 negligible set L such that

We obtain the following extension of Proposition 1 of [5].

Proposition 3.2. Let (£;);=1,._m be sets of finite perimeter such that |Q; N Q| =0 for any i # j.
Then

HT (Op (U ) NQ) =Y HT O N Q) =2 Y HET (Om N Ou N Q).

i=1 1<i<j<m
Proof. First we derive from Lemma 3.1 that if [2; N ;| = 0 then
HIN (00 (QUQ)NQ) = HIH (00 %N Q) +HEH (002N Q) — 2H (00 QN0 NN). (3.1)

This proves the proposition for m = 2. The general case is obtained by induction. For readability
we present the proof for m = 3. Using (3.1) we obtain

HEN O (Q1 UQ UQs) N Q) = HETH (0021 N Q) + HITH (00 N Q) + HE (003N Q)
—2HY (0 N O Q2 N Q) — 21 (00 (Q1 U Q) N3 N Q).
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Using Lemma 3.1 we get
HEL (0 (21 U Qo) N a3 N Q) = HE (001 N Oar Q3 NQ)A(9ar Q2 N O Q3 N)).
Now, we will prove that
HE (00 N O Q2 N O Q3) = 0. (3.2)
Call Ql% the set of points of density % relatively to ;, see e.g. [6]. By definition we have
QFNQ;NOZ = 0.
As a consequence, it follows that
0=HILQF N0 NQ2) = HE 1Oy N 02 N O Qs), (3.3)
since the two sets above coincide up to an H? !-negligible set, see [6]. We infer that
HAL((9ar Q1 N OprQ3 N Q) A(OnrQ N O3 N Q))
= HIL (D0 N O Qs N Q) + HIL (900 N Oy N Q)
and subsequently
HIL (00 (Q U Qe U Q) N Q) = HE L0 N Q) + HIL (000 N Q) + HE (0023 N Q)
— 2H (00 Q1 N O N Q) — 2HI (00 NN Q3 N Q) — 2H (03,2 N O Q3N Q).
This proves the result for m = 3. g
We have now all the ingredients to prove the pointwise convergence result.
Theorem 3.3. Let §;,Q; be two subsets of finite perimeter of Q such that |Q; N Q;| = 0. If

u; = xq, and u; = xq,, then

.2
= gli% E<L5ui,uj>.

HITL (00 N AN, N Q)
Proof. By Proposition 3.2, we have
1
HT (0 N O N Q) = 3 [(HH (O N Q) + HH (O N Q) — HIHOM(Q: U Q) NQ)] .

Using Theorem 2.6 we obtain

Hd_1(8MQi N 61\/[9] n Q) = 111% {Fa(ul) + FE(Uj) — Fg(ul + Uj)
e—

—_

. 1 1
= Eh_% |:5‘<1 — Lsuiaui> + g<1 — LEUj,Uj> — g<1 — Le(ul + uj),ui + ’U,j>

.2
:Eh_% E<Lgui,uj>.

We denote

GE (ui, Uj) = ! <L5ui, ’U,j>. (34)

€
We present an example to illustrate the pointwise convergence of the functional G. in Figure
2. The values of the function G. are computed using two discretization methods, namely the
finite element method (FEM) with Q1 elements and the finite difference method (FDM) with 5
points stencil. The parameter ¢ has the dimension of a length. In fact, in view of (2.2), it is a
characteristic width of the diffuse interface represented by the slow variable v.. Thus we start with
a characteristic size of 2, namely g = epnax = max(m, n) where (m,n) is the size of the grid (its
stepsize is fixed as unitary). Then we divide € by two at each iteration of an outer loop, that is,
we choose &; = emax/2¢. In order to approximate (2.2) properly, ¢ must not be taken significantly
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GHFEM

00 e
F—oiToemme o i S ST sl FOM
I ~— G, FEM
600 N =
\, — — _G,,FOM
)

P ———— G,yFEM

500 i
— — —G,;FDM
400 + — — —Exact value| {

-100
10° 10t 102 10°

FIGURE 2. (left) given partition, (right) convergence history of G.(u;,u;) com-
puted with the FEM (solid lines), the FDM (dashed lines) and the exact values
(horizontal lines).

smaller than the grid resolution. Thus we stop the algorithm as soon as ¢; < e, = 1. We observe
that the computed values of G.(u;,u;) are always smaller using the FDM than using the FEM.
This is due to higher diffusion of the FEM.

4. LOWER SEMICONTINUITY AND EQUICOERCIVITY

4.1. Lower semicontinuity. The following important result is found in [4], an alternative proof
is given in [19].

Theorem 4.1. Let () € Sy. The condition (1.8) is necessary and sufficient for the function

1
7: (Ql,...,QN)H 5 Z Oéinl(aMQiﬂaMQjﬁQ)
1<i<j<N
to be lower semicontinous for the convergence in measure in the set of N-tuples (Q1,...,Qn) of

Lebesgue-measurable subsets of Q such that xq, € BV () for all i and Zivzl xo, = 1.

This property will lead to the existence of minimizers for the exact minimal partition problem in
Theorem 5.2. In addition, lower-semicontinuity is a necessary condition for I'-convergence [9, 14],
which will be addressed later. Equicoercivity is another important property. Basically, together
with T'-convergence, it implies that sequences of minimizers of approximating functionals converge
up to a subsequence to a minimizer of the limiting functional, see again, e.g., [9,14].

4.2. Equicoercivity. We will rely on the following theorem from [7].

Theorem 4.2. Let uf be a sequence of functions of L (S, [0,1]) such that sup.-oF:(uf) < 400.
There ezists u € L*>(Q,{0,1}) such that u® — u strongly in L*(Q) for a subsequence.

We set
1
Ig(ul,...,uN) = Z aist(ui,uj) = — Z Oéij<L€’LLZ‘,’LLj>.
1<i<j<N € 1<i<j<N

We now prove the equicoercivity of the functionals Z..

Theorem 4.3. Assume that (ay;) € S§ with cij > a > 0. Let (u5,...,u%) be a sequence of
N-tuples of functions in L>=(£,[0,1]) such that Zf;l ui =1 for all e and supesoZe(us, ..., u%y) <
+00. For all i, there exists u; € L°°(£2,{0,1}) such that u$ — w; strongly in L*(Q) for a subse-
quence. Moreover we have 21111 u; = 1.
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Proof. Using (3.4), we obtain

Z @i Ge(us, u5) = - Z ij(Leus, u5)
1<i<j<N € 1<ici<N
a a a & ol
> ? (Leus,u5) = i Z (Leug,u3) = ;?Z@EUWZLW
1<i<j<N 1<i#j<N i=1 ];1
JF

Due to >, u5 =1 — uf we infer

N N
o 1 6] ~
> ayGeluf, ) = 5 S(Leuf L uf) = 537 Fulug).

1<i<j<N i=1 i=1
The result follows from Theorem 4.2. O

5. CONICAL COMBINATIONS OF PERIMETERS AND I'-CONVERGENCE

In this section we rewrite the interface energy as a linear combination of perimeters of aggregated
phases. If all coefficients can be taken nonnegative (conical combination) then the I'-convergence
of the approximating functional is straightforward. Therefore special attention is paid to the signs

of the coefficients. -
Let S C {1,...,N}. From now on, we will denote Qg = U;es8; and S ={1,...,N} \ S.

5.1. Algebraic properties of interface energies.

Lemma 5.1. Let Q,...,Qn be subsets of finite perimeter of Q such that |\ UX,Q;| = 0 and
|Ql N Qj| =0 fori#j. Let Lij = Hd_l(aMQi N aMQ] NnQ), Ps= Hd_l(aMQS N Q) Then

Ps=> Li=Pg
i€S
¢S

Proof. By the definition of the essential boundary, we have
O = O (Rd \ Ql> =0y (ng U (Rd \ Q)) .
JFi

As an elementary property of the essential boundary, we have that 9y (AU B) C Oy AU Oy B.
Moreover, as € is open, we have 9,;Q N Q = (). This yields

O UL URINQ)|nQc( uau® )nQ,
M(j# iU (RTA )> (j#i M J)
which implies that
o, NQ = L;(a]ij ﬁé)MQZOQ) (51)
JF#i

For i # j,i # k,j # k, following (3.2), we have
?{d_l((BMQZ- N 8MQJ N Q) N ((r“)]\/[Qz N Op 2 N Q)) = ’Hd_l(ajngi N 8MQJ N Oy QN Q) =0.
(5.2)
We deduce from (5.1),(5.2) that
Py = Lij.
J#i
From this fact and Proposition 3.2, we obtain that

Ps=> Pu—2 > Lij=> L

i€s (i.5)€s? i€
i<y Jgs
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We arrive at the announced existence result.

Theorem 5.2. Assume that (a;;) € Sy with a;; > a > 0. The problem

N
minimize J(Qq,...,Qn) := Z/ gi(z)de +Z(Qq,...,0N), (5.3)

in the set S of N-tuples (Q1,...,Qn) of Lebesque-measurable subsets of Q such that xq, € BV (Q)
for all i and Zfil xqo; = 1, admits at least a solution.

Proof. We have the inequality

N
oY _
J( ..., Qn) 2 _Z||9i||L1(SZ)+§ > HTHOMQ N 0N, N Q).

1<i<j<N

Lemma 5.1 entails
N

T, 0n) = =Y gl + 427# 00 N Q).

=1

Therefore, for a minimizing sequence (QF, ..., Qk), the quantity Zi:l HIL(0 Q2 NQ) is bounded.
By a standard property of bounded sequences of sets of finite perimeters, see e.g. [6,9,23], there
exists a family (€,...,Qp) of subsets of finite perimeters of ) such that QF — €, in measure
for each i, for a non- relabeled subsequence. Equivalently, XoF = X in LI(Q), which implies

(Q1,...,9n) € S. The lower-semicontinuity of Theorem 4.1 shows that (Q,...,0Qn) is a global
minimlzer. g

5.2. Algebraic properties of approximate interface energies. We now prove the approxi-
mate counterpart of Lemma 5.1.

Lemma 5.3. Let ;,...,Qn be subsets of finite perimeter of Q such that |Q\ UX,Q;| = 0 and
18, N Q| =0 fori+#j. Let u; = xq,, ij = 1<L€ui,uj>, P = é(l — L, Zies “inieS u;). Then
Z L, = P2
i
Proof. We have
P = §<1 — L) i),y wi) = §<LE(Z wi), 1= ).
icS = = ieS
Using 1 =3, qui = Zjes uj we obtain

Zuz Zuj ZLul,uJ ZL

€S j¢s ’LES €S
Jgs j¢s

We emphasize that the properties stated in Lemmas 5.1 and 5.3 are formally the same. This
will allow to obtain similar reformulations for the interface energy and its approximation. The
approximate counterpart of Theorem 5.2 is stated below

Theorem 5.4. Assume that (c;) € SI"\", with a;; > o> 0. The problem
N
minimize Je(uy, ..., un) = Z/ wigi(x)dx + T (uq, ..., uy), (5.4)
— Jo

in the set of N-tuples (u1,...,uy) € L>=(,[0,1])V such that Z _,u; =1 a.e., admits at least a
solution.
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N=2 {1}
N=3 {1}, {2} and {3}

N=4 {1}, {2}, {3}, {4}, {12}, {13} and {14}
N=5 | {1}, {2}, {3}, {4}, {5}, {12}, {13}, {14}, {15}
{23}, {24}, {25}, {34}, {35} and {45}

TABLE 1. The set S of values of S.

Proof. Consider a minimizing sequence (uf, ... uk) € L>(Q,[0,1))N such that SN uf = 1.
Up to a subsequence, this sequence converges weakly-* to some (ug,...,uyx) € L>(Q,[0,1]))V.
Obviously it holds Zf\il u; = 1. By Lemma 2.2, (uq,...,uy) is a minimizer of (5.4). O

5.3. Matrix representation of algebraic properties. We define the column vector L made of
the values (L;;) in a chosen order. Similarly define the column vector « of the surface tensions (cv;;)
and P the vector gathering the values Pg, for S € S € P({1,...,N}). The set S is made as small
as possible by exploiting the property of complementation. We adopt the following construction:
when N is odd the elements of S are the subsets of {1,..., N} containing between 1 and (N —1)/2
elements; when N is even the elements of S are the subsets of {1,..., N} containing between 1 and
N/2 — 1 elements and the subsets containing N/2 elements including 1 (see Table 1 for N < 5).

An alternative - bijective - set could be taken as the set of nonempty subsets of {1,..., N — 1}, so
N
that §S = 2V~1 — 1. In view of Lemma 5.1, we can define a matrix M = (m;;) € R¥*(%) such that

P =ML. (5.5)

Note that m;; € {0,1}.
Let 8 = (8s)ses. Starting from the dot products

B-P=8-ML=MTG-L,
one infers that
> aily =) BsPs (5.6)
1<i<j<N Ses

for any L as soon as the columns of coeflicients satisfy the linear system

MT3 = a. (5.7)
Due to
1
Lij = i(Pi +P; —Pyj), (5.8)

it turns out that M has full rank. However there are in general multiple ways to find a /3 corre-
sponding to a given «. For the purpose of proving a I'-convergence property, possible nonnegative
solutions of this system will be privileged.

5.4. Existence of conical combination. We define the set
BR} = {(O&,‘j) €Sy 3(,@3) >0 st.a= MTﬁ} C SJJ'\}

We now address the identification of the set B]'\",. We consider Sy, Ty and Bj\', as subsets of the
RN(N=1)/2 Note that Sy is the full linear space, while Ty and B}, are polyhedral
convex cones. Indeed, Ty is defined as intersection of halfspaces of RNV =1)/2 and BR‘, is the convex
cone generated by the row vectors of M. The sets Ty and BX[ are sometimes called the semimetric
cone (or metric cone) and the cut cone (or Hamming cone), respectively, see for example [18]. For
the sake of completeness, we recall that a matrix (a;;) € Sy is called ¢!-embeddable if there exist
some integer K and N points z1,...,zy € R such that aij = |lzi—xjl1 forall1 <i<j < N. It
is known that the set of £'-embeddable matrices is equal to BJJ{, (see for example [18], proposition

Euclidean space
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4.2.2). It is also known that Bj"’\', C T for any N > 2 and that BY =Ty for N < 4. Nevertheless
we present our own proofs of these results, without using the concept of ¢!-embeddability.

Theorem 5.5. For any N > 2 it holds BX, CTy.

Proof. Using the conic description of B]\L, and T, we only have to check that any row vector of
M is an element of T. Consider an arbitrary row of M. It corresponds to a set S € S§. Call
(mi;) the entries of this row vector in the system of indices associated with phases. Recall that
m;; € {0,1}. Consider a nontrivial triangle inequality m;; < m;x + my; (with 4,7 and k distinct
integers) defining Tn. In view of Lemma 5.1, if both ¢ and j are in S, then m;; = 0 and the
inequality is satisfied. The same holds if both ¢ and j are not in S. If i € S and 5 ¢ S, then
m;; = 1. In this case, either kK € S and my; =1, or k ¢ S and m;; = 1. In both cases the triangle
inequality is satisfied. Obviously the same occurs if ¢ ¢ S and j € S. Thus any row vector of M
belongs to T, which implies that BX[ CTn. O

Theorem 5.6. If N = 3,4 then Ty C B;{,.
Proof. We will use the notations 3; for B(;; and B;; for By;;;. We treat separately the two cases.
e Case 1: N = 3. The unique solution of (5.7) is
_ —Qoz o2 + o3 T3+ 12 + a3 _ —ai2 + a3+ a3
pr = 5 , Ba = 9 , B2 = B .

If (a;5) € T3, then (1, B2, and Bi12 are nonnegative, which implies that 75 C B;‘.
e Case 2: N = 4. Solving (5.7) for N = 4, we choose the particular solution

—Qa12 + Q14 + Qog —a13 + 14 + a3y —Qo3 + Qg4 + Q34

P12 = 2 , P13 = 5 , Bag = 5 ,
Q12 + (13 — Qigg — (i34 Q12 + Qo3 — 14 — i34
51 = ; 62 = ’
2 2
Q13 + Qo3 — Qx4 — Qg
B3 = 5 , Ba=0.

It is immediate to see that if (c;) € Ty, then B2, B13, and B3 are nonnegative. Now, we
want to prove that if (a;;) € Ty, then 51, B2, and B3 are nonnegative. Let us define for i =
1,...,4,%; = Zj# o;j. Up to reordering the phases, we assume that ¥4 < 33 < ¥y < 3.
Then we have

Y4 < a4+ Qg + o34 < a1z + 13 + Qg
Y4<¥y = qoaigtagtazs <ap+ a3+ oy
Y4 <3 14 + Qo4 + a3 < a3 + Qo3 + Qg

Qg + a3q < a2 + Qa3 B1=>0

= autay <apptan =(62>0

aqq + agy < aq3 + ass B3>0

We now discuss the numerical search for some (8s) > 0, given coefficients (a;;). Let us first
recall the definition of a conical combination and Carathéodory’s theorem. Given a finite number
of vectors vy, vs,...,v, in a real vector space, a conical combination of these vectors is a vector of
the form

AU+ Agvg + ...+ )\p’l)p7
where the real numbers \; are non-negative.

Theorem 5.7 (Carathéodory). In a vector space of dimension n, all conical combination of m
vectors (m > n), can be written as a conical combination of n of these vectors.
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By the above theorem and the linear system (5.7), when a = (a;;) € Bj;, o can be written
as a conical combination of (g ) rows of the matrix M. Calling B the corresponding submatrix,
we have B = «, with 8§ > 0. Denoting £ = rank B, then « belongs to the space spanned by k
linearly independent columns of B. By Carathéodory’s theorem again, « is a conical combination
of k columns of B. By completion of these vectors (since MT has full rank), a writes has a conical
combination of (1; ) linearly independent columns of MT. This leads to Algorithm 1.

Data: Given o = (oy;) € R(G)x1 M e RES*(5),
1 repeat
. . . N N
2 Loop on the set of square invertible submatrices A € R(2)x(2) of MT;
3 Compute 8 = A"l
4 until g > 0;
5 Complete 8 by zeros at the entries corresponding to the columns of MT that have been
removed.

Algorithm 1: Search for (5s) > 0.

Using Algorithm 1 we are in particular able to find counterexamples to Theorem 5.6 when
N = 5. For instance, it is immediately seen that the matrix

0 2 3 2 1
2 01 2 3
2 2 3 01
13 3 10

satisfies the triangle inequality, but Algorithm 1 terminates without finding any £ > 0.

The complexity of Algorithm 1 rapidly grows with N: for example for N = 6, there are
300540195 (J;’ ) X (];[ ) submatrices of MT. Hence, it is impossible in practice to use this algo-
rithm for V > 5. For this reason we propose a second algorithm. Let (B?\',)o denote the polar cone
of B;{,. Moreau’s decomposition theorem directly implies that o € B;{, if and only if the projection
of a on (By)° is 0. This leads us to the following positive definite quadratic program:

: 2
o i =l (5.9)
where (a;) are the rows of M. Then « € B;{, if and only if the optimal solution of this program is
0. This program is easily tractable up to N = 13. This technique, however, does not provide any
possible 5. Note that the algorithms developed in sections 8 and 9 do not require the knowledge
of such g.

5.5. I'-convergence with nonnegative coefficients. Define the set

N
Ey = {(ul, un) € L, 0,1, Zui =1 a.e.}
=1

and the functional Z : € ~ — R such that

1 . .
i<u17.“,UN) _ §Zlgi<j§N ozijﬂl(@MQiﬂ8MQj NnQ) if u; € BV(Q,{0,1}) Vi, u; = X,
+o0 otherwise.

Theorem 5.8. If (o) € B;{,, then the functionals Z. T'- converge to 7 in Ey endowed with the
strong topology of L*(Q)N.
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Proof. We first prove the liminf inequality. Let (uf) € En be a sequence such that (u$) converges
to u;. From (3.4), (5.6) and Lemma 5.3 we have

Z i Ge(us, us) ZBSI—L ZuZ,Zu (5.10)

1<i<j<N SES €S €S

This entails
N
hgn_}glf Z a;;Ge(us, ] thmf Bs(l — L. Zul,Zu

1<i<j<N €S  ieS

We deduce from Theorem 2.5 and (5.6) that
N
ligrgélf Z @ijGe(ui,u5) > I(ug, ..., un).
1<i<j<N

Second, due to the pointwise convergence (Theorem 3.3), the limsup inequality holds for the
constant recovery sequence. O

5.6. I'-convergence in the general case. Here we generalize Theorem 5.8 to arbitrary surface
tensions by exploiting a powerful result from [19], whose proof is based on a tricky monotonicity
argument. It nevertheless requires that 2 be Cartesian product of intervals.

Theorem 5.9. If (aw) € Tn and Q) is a Cartesian product of open intervals, then the functionals
I. T'- converge to 7 in Ex endowed with the strong topology of L*(Q)N.

Proof. In [19] the functional
1
E.(uy, -+ ,up) = B %:ozij /D Ge * ujujde

is considered. The convolution kernel is mainly chosen as the Gaussian, but the I'-convergence
result is proven in the more general setting where

1 T
Ge(z) = QG(E)
and G is a radial function that satisfies

G >0, / Gdz =1, / [wlGdr =1, [VG@)| £ G(5), VG() -7 <0. (5.11)
R4 Rd

Moreover, the functions (ug,--- ,u,) are defined over a Cartesian product of semi-open intervals
D and extended by periodicity over R%. Then, under the condition that (a;;) € Ty, it is shown
that E. I'-converges in the strong L' topology to E defined by

U)ZCOZ%‘% (/D |Dui|+/D|Dua‘|—/D|D(ui+uj)|) (5.12)

if u; € BV(D,{0,1}) for all i, and E(u) = +oco otherwise. The constant ¢y is given by ¢y =

gz lll fRd |z|Gdx. Note that (5.12) is, up to the constant ¢y and to the fact that D must be seen
as a torus, the interface energy we are considering.

To apply this result to our context one takes D as the extension of (2 by axial symmetry with
respect to each axial direction, and the same extension of (uq,- -+ ,u,), in order to represent the
Neumann boundary condition of L.. Then, G must be chosen as the fundamental solution of the
operator —A + I, namely

1
47 ||

Assumptions (5.12) are readily checked. The constant ¢ is found equal to 1/2 in the two cases. The
calculation is straightforward for d = 3, and similar to a calculation described in [7] for d =2. O

e 1*l for d = 3.

G(z) = %KO(M) ford=2,  G(z)=



VARIATIONAL APPROXIMATION OF INTERFACE ENERGIES AND APPLICATIONS 15

6. CONVEXITY ISSUES

6.1. Conditional negative semidefiniteness.

Definition 6.1. A real symmetric N x N matriz Q = (aj) is said to be conditionally negative
semidefinite ifo\fj:l ;&€ <0 for all§ = (&1,...,&n)T € RY such that Zf\;l & =0. We denote
Q =0.

In contrast we use the standard notation @ < 0 if @) is negative semidefinite.
We consider the (N — 1) x (N — 1) submatrix of @ = («a;;) by

Q = (aij)i<ij<n-1
and the column vector V' = (V) by
V = (un)i<i<n-1- (6.1)
We also define the (N — 1) x (N — 1) matrix
Q=Q—-1VT —VIT = (ay), (6.2)

where 1 = (1,...,1)T. Let £ = (€1,...,6n)T € RN, € = (E)1<icn—1. HQ € Sy and N & =0
it is immediately obtained that Q¢ - & = Q¢ - €. This leads to the following characterization.

Lemma 6.1. Let Q € Sy. Then Q <0 if and only zf@ <0.

6.2. Sufficient condition for conditional negative semidefiniteness. According to [19], a
sufficient condition for a matrix to be conditionally negative semidefinite is its ¢!-embeddability.
Since @ is ¢'-embeddable if and only if Q € Bj\',, we infer the following statement, for which we
provide a direct proof.

Theorem 6.2. If Q € Bf\',, then @ < 0.

Proof. The set of conditionally negative semidefinite matrices is a convex cone, and B]J\r, is the
polyhedral cone generated by the row vectors of the matrix M. Therefore, as in the proof of
Theorem 5.5, it is enough to prove that any row vector of M defines a conditionally negative
semidefinite matrix Q). Consider an arbitrary row vector of M with entries (m;;) in the system of
indices associated with phases, and denote by S € S its row index in the same system. Let & € RY
such that Zfil & = 0. We have

N-1 N-1
Z m;&i&; = Z & | minén + Z m;;€;
i1

1<i<j<N P
N-1 N-1

= & | min(=§1 — ... —&n-1) + Z m;;&;
i=1 j=it1

-1

=Y min&+ D (mi —min —myn)éi

i=1 1<i<j<N—1

Since m;n € {0,1} then m;y = m?y. Moreover, we claim that
mij — MmM;N — ij = —2miijN.

Indeed, if either i € S, j € Sand N ¢ Sori ¢ S, j ¢ S and N € S, then m;; — m;y — m;n =
—2m;nm n = —2. In the other cases we check that m;; — m;y — mjn = —2m;ym;ny = 0. We
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derive

N-1
Yo omi&l =) ming -2 Y mivmn&
i=1

1<i<j<N 1<i<j<N-—1

N—1 2
- (Z miNfi) <0.
i=1

By Theorem 5.6 we obtain the following useful implication.
Corollary 6.3. If N =3,4 and Q € Ty, then Q < 0.

The converse of Corollary 6.3 is false. For N = 3 a counterexample is given by the matrix

01 1
Q=10 3
1 30

We have det(Q) = 3 and trace(Q) = —8, which implies that Q < 0, but ags > aja + a13.
Corollary 6.3 is not true for N > 5. A counterexample is given by

023 2 1
2.0 2 3 2
Q=320 1 1
2 310 2
12120

This matrix satisfies the triangle inequality, but the corresponding @ admits a positive eigenvalue.

7. VARIATIONAL FORMULATIONS OF THE APPROXIMATE INTERFACE ENERCY

For algorithmic purposes we give in this section variational formulations of the approximate
interface energy Z.. Our approach relies on Legendre-Fenchel duality. Since this is strongly related
to convexity we distinguish between two cases. In the first case we assume that @ < 0, which covers
a rather wide range of situations as seen in Corollary 6.3. Then the energy is concave with respect
to its natural variables and the Legendre-Fenchel transform directly provides a formulation as a
minimization problem. In the second case we assume that () > 0, which corresponds to a convex
energy. We follow a parametric duality approach to obtain concavity with respect to well-chosen
perturbation variables. The general case is obtained by additive decomposition of the quadratic
form.

Other variational formulations, based on the representation of the total interface energy as a
linear combination of perimeters, are given in [27].

7.1. Case @ = 0. We assume that @ is a conditionally negative semidefinite symmetric N x N
matrix. Note that, with the aforementioned additive decomposition in mind, we do not assume
that @@ € Ty, not even that Q € Sy. Therefore we will use the expression of the approximate

energy

1
IE(’U,l,...,UN) = 2*(3_ Z aij<ui,L€uj). (71)
1<4,j<N

We set for all u,v € H*()

(u,v)1 = / (EZVU - Vo + w) dz, (7.2)
Q
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and for all u,v € H'(Q,RY)

[u, v] = Z<Uiavi>H51~ (7.3)

We first state a small technical lemma.
Lemma 7.1. Let £ € HY(Q,RY) such that Zivzl & =0. Then [Q£,£] <0
Proof. We have by definition

N
@5.6= Y [ V(@9 - v + Qo)) do.

which yields

N
Q€. €] = /Q D i (V& - VE + &85 da

1,7=1
N d
- [ Y lz (00 (€0RE}) + 65| d
Q=1 k=1
The fact that @ =< 0 implies [Q&, ] < 0. O

Recall that the operator L. : H'(Q)" — H'(Q) is defined by L.u = u. such that
[ EVuTo b up)ds = (ug) Vo H®) (.4
Q

where the notation (-,-) is used for the duality pairing between H'(Q) and its continuous dual
HY(Q)'. Clearly it is a linear and continuous operator. If u,v € H(Q)’, then choosing ¢ = v, :=
L.v in the above equation yields

(u, Lev) = /(€2VuE.VUE + ueve )d. (7.5)
Q

This shows that L. is self-adjoint. In addition, (u, Leu) > 0 and L.1 =1, from (7.4).
The operator Z. defined in (7.1) canonically extends to a continuous functional on [H*(2)"]V.
A direct calculation yields for all u,v € [H'(22)']V, X € [0,1]

A— DA &

T.(Au+ (1= X)v) — AZ.(u) — (1 = NZ.(v) = o Z a;j(u; —vj, Le(u; — v;)).

Using (7.5), denoting ¢ = €0y L. (u; — v;), 7; = L. (u; — v;), we obtain

N d
ZOw+ (1= 00) = AL () = (1= NZG0) = S50 [ (5™ a3 abel +rry) | o
Q \ij=1 k=1

Let
V:{ue Zul—l}

If u,v € V then ), qF = >, 7 = 0. Since @ is conditionnally negative semidefinite, we infer that
7. is concave on V.

Let 6y be the indicator function of V. We have that dy, —Z. is a proper, closed, convex function
on [H'(Q)']"V. Hence the Fenchel-Moreau biconjugation theorem tells us that (§y —Z.)** = &y —
This leads to the following theorem.
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Theorem 7.2. Let Q <0, ue V. We have
&2

1. 1
T.(u) = — inf Zaij ((ui,v]> — (Vv;, Vo) — 3 (vi,vj>) .
Proof. Let w € H(Q)V. The Legendre-Fenchel transform of &y — Z is defined as

N
(v —Z.)"(w) = sup {Z (i, wi) — oy (u) +IE(U)} ;
wE[H'(Q)IV 3=
which can be rewritten as
N X
(0y — Ze)*(w) = sup Z g, W;) 2— Z i (ui, Leus) o (7.6)

ueV i—1

By definition of L. and the fact that it is an isomorphism from H!(Q)" into H'(Q), we obtain with
the change of variables u; = L.u;

N
(0y —Z.)"(w) =  sup {Z/ (e°VU; - Vw; + Uyw;) da
aeH IV Ui Ja

YL =1

+fZa”/ e*Va; - Vu]—l—uuj)dx}

,j=1
With the notation (7.2) this reads
N | X
R N DA s PR
YL =1 - v
which we rewrite as
N | X
(v =)= swp 3 (o) 50 D (@0 v
ElH i=1 =1
Z?’:l Yi=1 J
From (7.3), we obtain
N 1
(Oy —=Zo)"(w) = sup [w, ] + =[Qv, ] o . (7.7)
el (@)Y 2
YLy =1
Observe that, for any A € H'(),
(oy —Zo)"(w+ A1) = /Q)\dx + (0y — Zo)* (w). (7.8)

Call

N
}{:{@hw@weRN:E:@:O},
=1

and Py the orthogonal projection of RY onto H, i.e.,

Pyé = S—(llfll—f—< Z@)

Let R = Py o Q o Py and denote

w@)zﬁ<m+iQ$mu0.
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We distinguish between two cases.

e Case 1: We assume here that
w(z) € ImR for a.e. z € Q.
Hence there exists v € [H!(Q)]" such that w(z) = Rv(zx) for a.e. x € Q. We can write

1 1
w—l-gQN]l:u?—&—u]lzRv—&—u]l:PH(QTJ)—i—,u]l:QTJ—i—)\IL,

with o = Pyv, p, A € H(2). Setting

A S 1
U—U—ewl—PHU gwﬂ,
we arrive at w = Q0 + A\1. Plugging this into (7.7)-(7.8) yields
€ 1
Gy — T.)"(w) = / Mo = S[Q0, 6]+ = sup  [Q +ed), 0+ <d]. (7.9)
Q 2 2€IP€[H1(Q)]N
Zévzl 1,[11':1
Observing that
N
ey ii=-1 (7.10)
i=1
and using Lemma 7.1, we conclude that
Gy — T.)"(w) = / Nz — £[Q0, 0], (7.11)
Q

Note that conversely, if w = Q0 + A1 with ¢ satisfying (7.10), then
1 1 . 1
w(x) = Py <w(aj) + EQNII) =PyoQ <v(ax) + 5N]l)) € ImR. (7.12)
e Case 2: There exists W C Q, |W| > 0 such that

Vo € W,w(z) ¢ ImR = (ker R)*,

since R is self-adjoint. Let p(x) be the orthogonal projection of w(x) onto ker R. By
assumption we have p(x) # 0 Vo € W. Defining

1
b= —1+tP 7.13
V' =1+ tPap, (7.13)
we will show that
1
[, 0] + 5-[Qu", 9] > +ox, (7.14)
when t — +o00. To see this we proceed by
1 1 1 12
o, L t ot — = = .

Observing that QPgp(z) € H*, since p(z) € ker R, and Pyp(z) € H, we infer that
QPpp(z) - Pyp(z) = 0. In addition, writing QPyp(x) = A(z)1, we have Oy (A1) - Oy Pup =
OOk (1 - Pyp) = 0. This entails

[QPrp, Pap] = 0.
Now, noting that Oy (Pgp) = Pu(0kp), we have
1 1 _
[w + 87NQ17PHP] = [Pu(w+ STVQ]I),Z?] = [w,p] = [p,p] > 0.

Hence, when ¢t — +o0,

[w, 9] + %[QW? P'] — +oo. (7.15)
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We infer from (7.7) that
(Oy — Z.)" (w) = +o0. (7.16)

The biconjugate of dy — Z. is defined by
N

Oy —Z.)™ (u) = sup Z(uz,wz> — 0y — Z)" (w).

welH ()N ;55
In view of (7.16) it is equal to
N

Oy —Z)"™(u) =  sup Z(u“wJ — (6v — Z:)"(w).
we[HY ()N . —
welmR

We now assume that v € V, which permits to write
Zc(u) = —(0v — Zc)(u) = —(0v — Zc)™ (u).
By (7.11) and (7.12), we infer

N
1S
Felu) = i - 0 (Q0)i + A Az — Z[Q0, 7.17
) selHI @IV, )\eHl(Sz){ Ew (@Q0): + >+/Q z Q[QU U]} (7.17)
szlef’i:_l =

N
e {-Sgcon ~ena) s

eSN bi=—1 =

A change of variables yields
1 al 1
Te(w) = 2 Ao {Du (Qu):) — 5[Qv, v1} : (7.19)
XL vi=l .

which completes the proof. O
Remark 7.1. For N = 2 phases the variational formulation amounts to (2.1) and has been

used within alternating minimization schemes in [8] in a context of structural optimization. The
multiphase case with uniform surface tensions has been considered in [7].

7.2. Case @ > 0.

Theorem 7.3. Given (ui,...,uy) € L>(Q,[0,1])Y with >, u; = 1 consider the approzimate
interface energy (7.1) with Q = (a;;) symmetric conditionally positive semi-definite. We have the
eTpression

1

Te(u1,y .oyt « T; - Tidx + «; / . —ediv ;) (u; — ediv 75)dz.

= (w1 N) = 2€Te[HdW QN Z w/ [ Z j i) (u U J)
1,0=1 1,9=1

(7.20)

Proof. We compute a dual formulation with respect to an auxiliary perturbation variable, in order

to place ourselves in an appropriate convexity framework. Therefore u is considered as fixed, as
well as €, and we set

I =27 (uy,....,un) = é(Qu, v) = %((Qu,w + (Qu,u) Z az]/ wivj + u;v;)d

i,j=1

with v; = Lou;. We define for all 7 = (7;,...,7n5) € L?(,RH)N

Za”/ (Vo] = 7)) - (Vo] —75) +vjv] —uvj — ujv]) dz

3,j=1
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where v] € H(Q) is the solution of

/ (e*(Vo] —7i) - Vo +v]p) de = / uspdx Yo € HY(9).
Q Q

We have immediately F'(0) = —¢l.
There exists A € L£(L?(Q,R?), H*(Q)) such that v] = v) + A7;. Elementary differential calculus
leads to

D?F(1)(#,7) = Z ozlj/ (VA% — %) - (VAT — 75) + (M%) (AF))) da.

Hence F' is convex over the Hilbert space

H:{T€L2QRd Zn_o}

Let us compute the Legendre-Fenchel transform of F' over H, given for any 7* € H by
N

F*(7") = sup /Ti*~Ti—F<T).
7'61-11-221 Q

This rewrites as
F*(t*) = sup Z/ Z Oézj/ (Vu, — 1) - (Vv — 15) + vv; — wvj — u]vl) dz

TeH
1
ve[H ()N L=

(7.21)
subject to

/ (e%(Vo; — 1) - Vo + vip) da = / u;pdx Vo € HY(Q), Vi=1,...,N. (7.22)
Q Q

Assume that F*(7*) < 4o00. Since the functional to maximize is made of quadratic and linear
terms, the supremum is attained. Call (7,v) a maximizer. There exists Lagrange multipliers
(wy,--+,wyn) € HY(Q)N such that

- Z Qi / (Vvi — 73) - (VO; — 7)) + °(Vd; — 1) - (Vv; — 75) + 030; + D05 — widj — uyd;) da

,j=1
N
+ Z/ (e*(Vo; — ) - Vw; + dw;)de =0 V(7,0) € Hx H'(Q)N. (7.23)

Choosing 7 = 0 yields

— Z Qg / V’Ul — VUJ +e€ VUZ (V’Uj — Tj) + Ui’LA}j + ﬁﬂ)j — uiﬁj — Ujﬁz) dx

1,7=1
N
+ Z/ (Vo - Vw; + dw;)de =0 Vo e H'(Q)N

Due to the constraint (7.22) the first line vanishes. This entails w; = 0. Choosing now ¢ = 0 yields

N
> [
i=1 v/

Za,]/ (Vv; = 7i) - (=7;) + €X(=F) - (Vv; —75))dz = 0 Vi € H.

7,7=1
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It follows that

N
74262 ii(Vo; — 1) € H,
j=1 1<i<N
i.e., there exists \* € L?(Q,R?) such that
N
427 ai(Voj —7m) =X Vi=1,.,N. (7.24)
j=1
Setting
n; = —26*(Vo; —7;) € Hy™ (), (7.25)

by (7.22), we write (7.24) as 7% = Qn* + X\*. Since 7 € H and Zfil u; = 1, the constraint (7.22)
implies Zf\; v; = 1, whereby Vv € H and n* € H. From (7.22) and (7.24) we obtain

—div (7 = A) =23 ai(v; —uy) in Q (7.26)
(Ti*—)\)'n:O OnaQ.

Choosing © = v, 7 = 7 in (7.23) and recalling that w = 0, we obtain

N N
Z/ T T — Z aij/ (26*(Vo; — 1) - (Vvj — 75) 4 2005 — uzv; — ujv;) do = 0.
— Jo Q

i,j=1
Plugging this in (7.21) entails

N

F*(r") = Z aij/ﬂ (52(Vvi — 1) (Vvj — 75) + vv;) da.

ij=1

This rewrites as

N N N N
F*(T*) = Z\/QEQ(V"UifTi) ~Zaij(ij 7Tj)d$+2/ﬂvi Zaijvj dx.
i=1 j=1 i=1 7j=1

Taking into account (7.24) and (7.26) we arrive at

N N N
F*(r*) = 2;/Q(wl ) (= A )dx+;/ﬂvl ;a”uj 5 div (77 = \) | d.
This can be rearranged as
| N N N |
F (%) = —72/(Vvi—Ti)~(Ti*—)\*)dx+Z/ uj Zaijvi dx—fZ/ v div (77 = A\")dz.
2 i=1 7% j=1"7% i=1 2 i=179
Using again (7.26) we obtain
| N N N 1 | N
F*(r%) = —52/(Vvi—Ti)~(Ti*—/\*)dx+Z/ uj (Z QiU — Ediv (r} — A*)) dm—§Z/ v div (77 =\*)dz.
i=1 7% j=17% i=1 i=179

With (7.24) and the notation (7.25) this leads to

N N
1

i,j=1 1,5=1

1 & 1 &
-5 Z aij/ujdiv n;d$*§ Z aij/vidiv n;dz.
Q Q

ij=1 ij=1
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Using (7.24) and (7.26) yields

N N
* * 1 * * *
F*(r*) = 1 Z/(T] —A*) - njdr + Z a”/ﬂulu]dx Z a”/ujdlv n;dx
j=1 i,j=1 2] 1

l\J\»—A

N
Z/ (Z QU — div (r] — A*)) div n;dx.

Jj=1

Expressing 7* in terms of n* leads to

N
= 52 Z aw/nl “njdz + Z a”/uiujdx Z a”/u] div n;dx

i,j=1 i,j= Q zgl

a”/ i div nidz + — 1 Z a”/ div n; div n;jdz.
Q

7,7=1

Rearranging entails

N
(1) = = E aij /Q n; -njdr+ g oz”/ *le 05 ) (u; -3 div n})dz =: ®(n*). (7.27)

1,5=1 1,7=1

B

To recapitulate, we have shown so far that
F (%) = @(n").
Suppose now that F*(7*) < +oo and 7" = Qn+ A € H for some (\,n) € L*(Q,RY) x (H N
HIV(Q)N). Writing F*(7*) = ®(n*) with 7* = @Qn* + \* and observing, from inspection of (7.27),
that Q(n —n*) = A* — A = &(n) = ®(n*), we infer that F(Qn + \) = @(n).

We are now in position to obtain the dual formulation of F', given for any 7 € H by

F( ) F** = sup Z/Tz *dl‘—F*( *)

T*cH

F*(1%) < 400 = I\, %) € L2(,RY) x (H N HIV(Q)N) s.t. {

We infer from the preceding findings that

N N
F(r)= sup Z/ T - (Z aign; + A )dz — — o / n; -
n* € HN[HVQN =/2 = 2] 1
A* € L2(Q,RY)
Qn*+X* e H

1
_ Z 041]/ - *le n?) (uj idiv n;)d.

4,5=1
Since 7 € H this simplifies as

F(r)= sup Z Ol”/ﬂ n]dx—ﬁ Z a”/nl njd;v—

n*€HNHGY (QIN ;57
Lo, Lo .
Z Qi o div ;) (u; — B div n;)dz.

7,7=1

Recalling that I = —1F(0) we arrive at

1 1 1
I== inf 62 Z Qi / n; - m;dr + Z a”/ §div n; ) (u; — idiv n;)dz.

£ div
n*€HN[HJW (Q)]N i1 ig=1
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The constraint n* € H can be dropped. This is seen by writing optimality conditions and using
Zil\il u; = 1. A change of variable yields (7.20). O

7.3. General case. Consider an arbitrary @@ € Ty. We see it as the matrix representation of a
quadratic form ¢ on RY. Then ¢ can be decomposed as ¢ = ¢~ + ¢, where ¢~ and ¢t are negative
semi-definite and positive semi-definite, respectively, on the linear subspace H = {¢ € RV, > &=
0}. This leads to the decomposition @ = Q™ + QT, where @~ and QT are conditionally negative
semi-definite and conditionally positive semi-definite, respectively. The linearity of the interface
energy with respect to @ allows to combine the two variational formulations. Let us recall that
when N < 4 we have Q =< 0, hence it is natural to assume that QT = 0.

8. APPLICATIONS
8.1. Algorithm. We consider the approximate minimal partition problem

N

min Z(gi,ui>+§ Z aij{Leui,uj) o . (8.1)

(w1, un)€EN | T 1<i<j<N

Consider the decomposition a;; = a;; + au, with (a;;) <0 and (q; ) > 0. Plugging the adequate
variational formulation of each component of the approxunate 1nterface energy, (8.1) rewrites as

N

min inf inf Giy Uj
(u1,esun) €EEN (V15esoN ) EHT ()N (ﬁ,--~7TN)€[Hd”(Q)]N{;< >

g2 1
+ - Z - ( wi, Uj) ?(sz,Vvﬂ 2(112,1}])>

N
Z (13, 15) + (u; — ediv 7, u; — ediv Tj>)}.
1,j=1

We propose an alternating minimization algorithm with respect to the three N-tuples of variables
(u1,...,un), (v1,...,on) and (11,...7n).

(1) Minimizing with respect to (vi,...,vn) simply amounts to setting v; = L.u; for each j.

(2) From inspection of the Euler-Lagrange equations, minimizing with respect to (71,...,7n)
is achieved with 7; = —eVv;.

(3) Minimizing with respect to (ug,...,un) is a quadratic problem with linear constraints,
spatially uncoupled. If Q% = 0, then the problem is linear. It is straightforwardly solved
by

1 if i=k(x
0 otherwise,
where

G=gi+ ézaijvja Cr(z) = min {¢1(z), ..., (N (7)}
J

If QT # 0, then the problem becomes more complicated. In fact, it can be simplified
by performing the decomposition Q = Q* + @~ in such a way that QT satisfies special
properties. For instance, one can always choose QT of the form QT = Iy, with v > 0
large enough. Then the minimization with respect to u amounts to performing at each
point an orthogonal projection onto the simplex of RY. Note that in this case u is no
longer binary valued during the iterations, and that large values of v tend to enhance this

property.
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FIGURE 3. Partition with 4 phases: data FE; (left), obtained result for case (a)
(middle), obtained result for case (b) (right)

The main computational tasks within each iteration is the numerical solution of L.. We use the
standard finite difference scheme with 5 points stencil combined with the Fast Fourier Transform,
since the discrete system writes in terms of convolutions. In the examples under consideration
thereafter the matrix @ is always chosen conditionally negative semi-definite, hence we choose

Q_ = Q7 Q+ =0.
8.2. Examples. Let Ey, E1,..., En be a given partition of 2. We define g;,i=1,..., N, by

Z XE]' :l_XEz

0<j<N
J#i
This means that, in the set F; , ¢ > 1, the label i is favored, whereas in the set Ej there is no
preference, or, said otherwise, no information on which label to choose.

Figure 3 shows an example with for phases with two different sets of surface tensions. The
domain is discretized by 512 x 512 pixels. We use enax = 512 and ey = 1, with the mesh size
fixed to 1. For the initialization each u; uniformly equals 1/4. In case (a) we fix a;; = 1 for all
i,j. We obtain a classical picture with two Fermat points. In case (b) we prescribe a;; = 1 if E;
and F; share a common boundary and o;; = 2 otherwise.

9. VOLUME CONSTRAINTS

In this section we extend the previous algorithm to the minimal partition problem with con-
straints on the measure of each phase. Given mi,...,my € RT such that Zf\il m; = |Q], we

define the set
€N:{(u1,...,uN)eg’N, /uidxzmi Vi}.
Q

The approximate minimal partition problem with volume constraints and g; = 0 is

1
min ¢ — Z o (Leui,uj) o . (9.1)

(u1,...,un)EEN E1§z‘<j§N

Theorem 7.2 yields the formulation
: g2 1
f"Hlnill_l vlelgllf @z Zau ( Us, V) (Vvi,Vv]) — 2<vi,vj>) )
u; >0, [quidz=m;

We implement the same type of alternating minimization algorithm as previously. The only dif-
ference is that the minimization with respect to u is no longer explicit due to spatial coupling.
It requires solving a linear programing subproblem. Standard routines may be used, however we
present a specific algorithm to take advantage of the fact that the number of volume constraints is
usually very small in comparison with the number of pixels. In order to highlight this aspect we
will analyze the algorithm in the continuous spatial setting.
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9.1. Linear programming subproblem. Let ¢ = ((1,...,¢n) € L2(Q)N andm = (my,...,my) €
R%Y be given such that Zil m; = |Q|. Foru = (u1,...,uy) € L?(Q)" consider the primal criterion

N
Alu) = Z Ciud.
— Jo

Our goal is to solve the minimization problem

vafluiﬂ A(u). (9.2)
u; >0, fQ u;dr=m;
In the discrete case, this kind of problem is sometimes called a semi-assignment problem. See
for example [22]. As already seen, removing the volume constraints makes this problem trivial.
Therefore we limit the duality treatment to those constraints. For A = (A1,...,Any) € RY we
define the Lagrangian

L(u,\) = A(u) +§)\i (/Q widz — m> .

By standard duality results (see e.g. [13] Theorem 3.9 and Theorem 3.4, note that Robinson’s
qualification holds for such linear constraints), if u is a minimizer of (9.2) then there exists A € RV
such that

L(u,A\) = min L(v,\). (9.3)
ZlNzl v;=1
’UiZO
Moreover, such A are maximizers over RY of the dual criterion
A*(N) = inf  L(v,\).
(N) st (v, A)

’Uizo

Let us compute this dual criterion. A rearrangement yields

N N
L(v,\) = Z/ (G + M)vidz = > Aim;. (9.4)
i=17% i=1

It follows immediately that

A*()\) = /len{(g + )\Z)i\il} — Z)\ﬂ"ﬂz

Note that A*(A + c¢l) = A*(\) for any ¢ € R, therefore the dual problem can be set over the
quotient space RV /R. We suggest alternating maximizations with respect to each multiplier.
Since the function A* is not smooth some care must be taken as regards to the relevance of such
a procedure. It is supported by the following equivalence.

Proposition 9.1. The N-tuple (A1,...,An) 48 a mazimizer of A* if and only if each \; is a

mazimizer of the partial function N\ = A (A, ooy Mot Aiy Xik1y - - s An). This is also equivalent
to satisfying for eachi=1,...,N
16+ As < min(Gs + A} < ms < {6+ As < minGs + X))y (93)

Proof. Using Lemma 11.1 we obtain on the one hand the superdifferential of A* as

"N (M\,...,A\n) = {(sl—mh...,sN—mN) e RV,

N
G+ 0 < min(6y + A} < 51 = (G < mini + A vie Yo = .
J7F J7F =1
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Since ), m; = |Q] it follows

N (M1, AN) = {(Tl,...,TN) e RV,

N
{G + X <min(G + M) < my + 75 < {6+ A Smin(G + M) Vi, Y 7= 0}~
i i

i=1
We derive the optimality condition

0€ " A" (A1, An) = [{Gi+Ni < m;n(Cj+Aj)}| <mi < [{G+Ai < m;n(CjHj)}l Vi=1,...,N.
JF NE]

On the other hand the partial maximization with respect to A; provides in a similar (simpler) way
the optimality condition

0€ 7 A" (A, An) = [{G + A <min(G 4+ A H < ma < [{G + A < min(G; + A7)},
JF J7F

This means that
0€ "N (A1,..., AN) <= 0€ A" (M\,..., n) Vi=1,...,N,

completing the proof. O

Each iteration of the alternating procedure consists in solving (9.5), i.e., finding A; such that
[{As <min(G; + A7) — GH < ma < [{A < min(G+ A7) = G-

In the discrete framework this only requires sorting the values of min;;(¢; +A;) — ¢; and selecting
the m;-th largest value. Once the multipliers (A1,...,Ax) have been fixed, the primal solution
(u1,...,uy) is searched among the minimizers of (9.3). In view of (9.4) this minimization is
straightforward, as in the unconstrained case. Note that in case of multiple solutions one that
satisfies the volume constraints has to be chosen, however this situation is unlikely in practice due
to numerical errors.

9.2. Examples. In figure 4 we consider 5 phases: 4 interior phases and the remaining set, called
exterior phase (in white). We use the indices I to represent an arbitrary interior phase and E for
the exterior phase. The computational grid is made of 512 x 512 pixels and we choose e, = 64,
€min = 1. The volume constraints are given by the initialization. In case (a) we fix ayy = ayg = 1.
In case (b) we set ayy =1 and oy = 0.5. In case (c¢) we choose ar; = 1 and ayp = 2. Case (d) is
the same as case (c¢) except that epax = 512.

In figure 5, we again consider 5 phases, but one of them is not subject to optimization. We
use the indices L to represent the 3 first phases (liquid), S to represent the fixed phase (solid, in
black), and V for the remaining set (vapor, in white). The grid contains 600 x 400 pixels and we
USe Emax = 16, émin = 1. The surface tensions are chosen as ap;, = ars = ary = agy = 1 in case
(a), arr, = aps =1, ary = agy =2 in case (b), arr, = 0.5, ars = 1, ary = agy = 2 in case (c).

10. CONCLUSION

In this paper we have introduced and analyzed a I'-convergence approximation of a class of
interface energies for minimal partition problems. We have derived variational formulations of
this functional that permit the implementation of alternating minimization algorithms. Our main
numerical application has been the computation of equilibrium shapes of incompressible phases
with surface tensions. The extension of this approach to other types of interface energies and to
dynamical problems could be subjects of future research.
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-

FIGURE 4. Partition with 5 phases and volume constraint: initialization (top left),
obtained result in case (a) (top middle), obtained result in case (b) (top right),
obtained result in case (c) (bottom left), obtained result in case (d) (bottom right).

L L
L J L

FIGURE 5. Partition with 5 phases and volume constraint: initialization (top left),
obtained result in case (a) (top right), obtained result in case (b) (bottom left),
obtained result in case (c¢) (bottom right).

11. APPENDIX

Lemma 11.1. Let fi,..., fxy € LY(Q) and define the function ® : RN — R by

D(ty,...,tN) = max (f;(z) + t;)dx.

q 1<i<N
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Then ® is convexr and its subdifferential is

6<I>(t1,...7tN) = {(81,...,SN) S RN7

{fi+ti> mg?((fj +t)H <si <[{fi+t:i> maX (fj +t5)} Vi, Zsz = |Q|}
VE)

Proof. Tt is obvious that ® is convex, since the integrand is itself convex as supremum of convex
functions. Let us compute the subdifferential at 0. Then the subdifferential at (Zy,...,#y) will be
inferred with the help of the change of functions f; = f; +¢;. We must show that

8@(0,...,0):{(817..., ~) €RY, |{fl>maxfj}|<SZ<|{f1>mafo}|Vz ZSZ |Q|}

=1
Assume that (s1,...,sy5) € 09(0,...,0). By definition we have

O(ty,...,tn) = @(0,...,0) > > sty V(t1,...,tn) €RY,

that is,

N
N
A 12%\702( z) +t;)dz — . A, fi(z)dx > ;Sm V(t1,...,tn) ERT.

Choosing t; = 1 for all 4, then ¢; = —1 for all 4, yields already

N
Zsz- :/dx: |€2].
i=1 Q2

Fix k and take t, = —t, t > 0, t; = 0 if i # k. We have

sktz/ﬂ(max filw) — max (fi(a )thi)) da.

1<i<N 1<:i<

The integrand vanishes whenever f(x) < max;z fi(z). Thus

sut > /{ o (fk< )~ mas (i(e) + m) d.

This can be rewritten as

spt > /{ min (fx(x) — fi(z) — t;)dx,

fr>max; 2 fi} 1=isN

that is,

iz [ win (tmin () ~ £1(0) ) do
{fk >max;£k fz} i#k
Adding and substracting t yields

sut 2 t)(f > max )|+ [

{fe>max;+p fi

min (0:minte) = i) ~ )

Dividing by ¢ entails

sk > [{fx > max fi}| +/ min (0’ min (f(z) = fi(x)) 1) d.
i#k {fr>max;» fi} t

Letting ¢t — 0% yields by monotone convergence

sk > {fr > r?;gfi}\-
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Now fix k and take tx, =t, ¢t > 0, t; = 0 if i # k. We have

spt < /Q ( max (fi(z) +1t;) — max, fl(x)> dx.

1<i<N

This entails

sut < {5 > max i} + [

{fe<max;xp fi} 1SisN

(12335\](fi(z) +1;) — max fi(l“)> dz.
Rearranging yields

spt < t{fr > m;lgifi}\ +/

max(0, fi(z) + ¢t — max fi(z))dz.
{fr<max;xk fi} i#k

Hence
— max; ,
sk < {fr > max f;}| —|—/ max(0, fu(z) = maxizk fi(2) + 1)dz.
i#k {fx<maxixy fi} t
Letting ¢t — 07 yields by monotone convergence
< > il
sk < [{fi 2 max fi}|
Assume now that
N
{fi > max f;}] < s < [{fi > max fi} Vi, D s =9
J#t J#t =1
Thus, there exists a partition Q = U ; A; such that
{fi>maxf;} C A C{fi zmax f;} Vi,  |Ail =s; Vi.
J# J#i

Indeed, such a construction is immediate for N = 2, then one proceeds by induction setting
g = maxi<;<n—1 fi.- In each A; it holds

max (fi() +6) = max file) >t

1<i<N
It follows
N N N
i t;)dx — (z)dz > trdr = tr| Akl = t .
[ max (i) + )i = [ o e =S [ tude =3 tlan) =3t
This completes the proof. Il
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