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We calculated the exchange energy of a pair of donor-bound electrons placed in the middle of an infinite
quantum well (QW). In order to obtain this energy for any interdonor distance and for any QW thickness, we
have first adapted to a QW the method developed by Gor’kov and Pitaevskii [L. P. Gor’kov and L. P. Pitaevskii,
Dokl. Akad. Nauk SSSR 151, 822 (1963)] for a three-dimensional (3D) distribution of donors, and calculated
the asymptotic form of the exchange energy. Second we have calculated the exchange energy of a “helium atom”
in a QW; and third, inspired by the interpolation procedure proposed by Ponomarev et al. [I.V. Ponomarev et al.,
Phys. Rev. B 60, 5485 (1999)], we have obtained an interpolated expression for any interdonor distance. The
obtained exchange energy is written in units of effective hartree, and the distance between the donors, as well as
the width of the QW, are expressed in units of effective Bohr radius. We calculated the exchange energy for some
commonly studied semiconductor materials, and discussed also the relationship between the exchange energy
and the spin relaxation time for a donor concentration close to the insulator-metal transition.

DOI: 10.1103/PhysRevB.98.195308

I. INTRODUCTION

The association of the carrier-carrier Coulomb interaction
and the antisymmetric character of the state of an electron
pair are at the foundation of the exchange interaction be-
tween localized electrons; this interaction is one of the oldest
topics in quantum mechanics. In the last decade, the strong
interest in controlling and manipulating localized spins in
solid-state systems, such as quantum dots or impurities, has
renewed this topic. Indeed, since the birth of the idea of a
quantum computer [1,2] numerous efforts, both theoretical
and experimental, have been made to physically identify qubit
candidates. Solid-state qubits are a subset of qubits which
present the advantage of scalability due to the use of nanofab-
rication technologies, but which also present challenges to
obtain a suitable protection against interactions from their
environment. Another issue is to fabricate qubits identical to
each other, and to make them properly communicate. Nowa-
days, the two main qubit technologies concern superconductor
and semiconductor materials, for which several qubits have
been identified. In superconducting circuits obtained with
nanotechnologies similar to those of the microelectronics,
qubits based on phase, charge of flux states have reached
a spectacular degree of quantum control [3,4]. One of the
main requirements for qubits is to show long coherence
times, and then in solid-state physics these qubits have to
be protected against environmental interactions. In this sense,
the spin of the low-energy electronic states in semiconduc-
tors is, in principle, an observable well protected from the
environment, and constitutes a good prototype of a qubit.
Moreover, to suppress the relaxation mechanism of itinerant
electrons (D’yakonov-Perel process), the electron spin should
be localized at a nanometer scale. The confinement can be
obtained by nanofabrication as in quantum dots [5–8], or in a
more natural way using the attractive potential of individual
impurities [9–13]. Some years ago, electrons trapped by indi-
vidual donors in semiconductors at low temperature emerged

as one of the possible candidates [8,14–17]. In particular,
it has been experimentally demonstrated that, when donors
are immersed in a quantum well (QW), the spin relaxation
time of electrons localized on donors enhances by two orders
of magnitude with respect to spin relaxation time of free
electrons in QWs [18]. Moreover, by inserting the donors in
a QW, the optical selection rules for circularly polarized light
are purified, allowing a higher degree of optical orientation of
the electron spins than in 3D crystals [18–21].

In this framework, two main challenges are related with the
exchange energy between spin qubits: (i) the enhancement of
the relaxation and coherence times, and (ii) the mechanism of
the entanglement in a pair of qubits. The spin relaxation time
is strongly related to the distance between two electrons local-
ized on donors. Several experimental and theoretical studies
have addressed this issue [12,22–24]. Different mechanisms
contribute to the spin relaxation: at very low concentration
of donors, the coupling of an isolated electron spin with the
surrounding nuclear spins is the dominant interaction, and at
donor concentrations near the metallic transition the exchange
interaction is the main mechanism of the spin-spin interac-
tion between neighboring donors. Controlled entanglement
requires a well-known interaction between spin qubits, the
strength of which fixes the speed of a two-qubit gate. Different
mechanisms of entanglement have been proposed, as for ex-
ample coupling to photons via a cavity mode [25,26], coupling
to virtual excitations of delocalized exciton states [27], dipole-
dipole interaction between charged excitons strongly polar-
ized by an external dc field [28], or the exchange interaction
between two electrons in neighboring qubits [8,9,29].

The most appropriate method to get the exchange energy
in the limit of large distances between donors was developed
by Gor’kov and Pitaevskkii, and Herring and Flicker [30,31].
In this method, the authors calculated the exchange energy
between two “hydrogen atoms”, reducing its expression to
a hyperplane integral in a six-dimensional space, and finally
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getting an analytical formula in 3D. Later, Ponomarev et al.
[32] proposed a procedure to obtain an expression valid for
any interdonor distance. This procedure is based on an inter-
polation between the exchange energy at zero distance (i.e.,
the “helium atom”) and the known asymptotic behavior. The
same authors also calculated the asymptotic and interpolated
exchange energies for artificial two dimensional (2D) sys-
tems: electrons confined to the same plane as the impurities,
and electrons bound to Coulomb centers which are located
outside the plane [33].

In this paper, we have calculated the exchange energy of
a pair of donor-bound electrons placed in the middle of an
infinite QW, for any interdonor distance and for different
QW thicknesses. We calculated first, in Sec. II, the asymp-
totic form of the exchange energy, adapting to a QW the
method developed in Refs. [30,31]. In Sec. III, inspired by
the interpolation procedure proposed by Ponomarev et al.
[32], we calculated the exchange energy of a “helium atom”
inside an infinite QW, and finally reached the values of the
exchange energy valid for any interdonor distance and for
any QW thickness. In Sec. IV, we discussed the behavior of
the exchange energy in different III-V and II-VI materials,
and its relationship with the spin relaxation time at donor
concentrations close to the insulator-metal transition.

II. EXCHANGE ENERGY FOR LARGE DISTANCES
BETWEEN DONORS

A. General framework

We consider two electrons, 1 and 2, localized at low
temperature on two donors A and B. Both donors are located
at fixed positions xA = −a and xB = +a in a semiconductor
matrix. The Hamiltonian describing the system of both donor-
bound electrons is

Ĥ = −�1

2
− �2

2
− 1

r1A

− 1

r2B

− 1

r1B

− 1

r2A

+ 1

r12
+ 1

2a
,

(1)

where �j is the Laplacian operator acting on electron j (j =
1 or 2), rjA and rjB are the distances of electron j to donors
A and B, respectively, and r12 = |�r2 − �r1| is the distance
between the electrons. In the following, the Cartesian coordi-
nates xj , yj , zj of electron j (j = 1 or 2) will be employed.
Here, and in the following, the distances are expressed in units
of effective (bulk) Bohr radius a ∗

B , and the energies in units
of effective hartree E ∗

h ; a ∗
B and E ∗

h are defined as follows:
a ∗

B = a0εr (m/m∗), with a0 = 4πε0h̄
2/me2 ≈ 0.52918 Å

the Bohr radius of the atomic units, and E ∗
h = Eh(m∗/mε2

r ),
where Eh = e2/4πε0a0 ≈ 27.211 eV is the hartree energy
of the atomic units; m is the electron mass, m∗ the effective
electron mass, and εr the dielectric constant.

The Hamiltonian Ĥ being independent on the electron
spins �S1 and �S2, the Pauli principle implies that the two-
electron states are singlet states � = �S |S = 0, Sz = 0〉,
with an orbital part �S symmetric by electron ex-
change [�S (�r2, �r1) = +�S (�r1, �r2)], or triplet states � =
�A|S = 1, Sz = 0,±1〉, with an orbital part �A antisym-
metric by electron exchange [�A(�r2, �r1) = −�A(�r1, �r2)]; �S =
�S1 + �S2 is the total spin of the pair of electrons. As it is well

know that the ground state of such a system is a singlet and the
first-excited one a triplet, the notations �S and ES designate
from now on the wavefunction and energy of the ground state,
and �A and EA the ones of the first-excited state.

The energy difference between the first-excited and the
ground levels, EA − ES = 2J , is called the exchange energy,
or exchange splitting, of the two-electron system. We are
using here, and in all the following, a positively defined
exchange energy, 2J > 0: the Hamiltonian Ĥ of Eq. (1) then
corresponds to the spin Hamiltonian Ĥexc = +2J �S1 · �S2. Let
us stress that the spin-orbit interaction, not taken into account
in Eq. (1), brings additional anisotropic contributions in Ĥexc,
see Refs. [24,34]. We do not write them here, because we are
concerned by the isotropic part of Ĥexc; they are considered in
Sec. IV.

The calculation of the exchange energy 2J , in the limit of
large distances R = 2a between donors, was first explored in
the 1920’s [35]. A more refined, and more correct, method was
later developed in Refs. [30,31] for doped bulk materials (3D
case), and also used in the purely 2D case (see Refs. [32,33])
of two donors placed in a plane. This latter method yields an
integral expression of the exchange energy:

2J (R � 1) =
∫

�

�2 �∇�1.d�, (2)

with �1 = �S + �A and �2(�r1, �r2) = �1(�r2, �r1), the integral
being on the hyperplane � defined by x2 = x1, and the ele-
mental hypersurface d �� pointing towards the x2 > x1 region.
At this stage, �1 can be approximated in Eq. (2) by the
expression

�1(�r1, �r2) = φA(�r1)φB (�r2)χ (�r1, �r2), (3)

where φA(�r ) = φ1(�r − �RA) is the one-electron ground-state
wavefunction on donor A, located at �RA, φB (�r ) = φ1(�r − �RB )
is the one for donor B, located at �RB , and χ (�r1, �r2) is a
slowly varying correlation function manifesting that the two
electrons are avoiding each other: χ (�r1, �r2) = 0 for �r1 = �r2.
The χ function is first determined, and so the calculations in
3D and 2D have been achieved by inserting expression (3) in
Eq. (2), see Eqs. (10).

B. Calculation in an infinite quantum well

The case of two donors placed in the mid-plane z = 0 of an
infinite QW, of thickness L, introduces an extrinsic confine-
ment of the 3D one-electron wavefunctions. This situation is
intermediate between those at 3D and 2D, with L as a variable
parameter. Here, we employed the one-electron ground-state
wavefunction φ1(�r ) studied in Appendix A, with atomic num-
ber Z = 1. Then, following the steps of the method developed
to reach 2J (R � 1) in 3D (Ref. [30]), it turns out that the
function χ (�r1, �r2) obeys the equation

α1

(
∂χ

∂x1
− ∂χ

∂x2

)
+

(
1

2a
+ 1

r12
− 1

a − x1
− 1

a + x2

)
χ = 0,

(4)

considering the positions of both electrons near the x axis,
with x1 > −a and x2 < a; α1 is the radial decreasing rate of
φ1 (see Appendix A) – in 3D, α1 = 1 –. So it appears that
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the function χα1 obeys the equation met in 3D. Considering
the limit conditions χ → 1 when x1 → −a or x2 → a, this
means that χα1 coincides with the 3D correlation function
χ3D. Using the known expression of χ3D(�r1, �r2), see Ref. [30]
or Appendix D, we hence deduced

χ (�r1, �r2) = χ3D(�r1, �r2)1/α1 . (5)

Noticeably, this expression of χ (�r1, �r2) goes to the right 3D
limit [30] when α1 → 1 (for L → ∞), and also to the right
2D limit [32,33] when α1 → 2 (for L → 0).

We are now able to express the exchange energy
2J (R � 1) in its integral form (2). Retaining only derivatives
of φ1 with respect to x1 and x2, and neglecting the terms
containing the derivatives of χ , we are first conducted to

2J = 8α1

∫ a

0
dx1

∫ +∞

−∞
dy1dy2

×
∫

|z1,2|<L/2
dz1dz2 �1(�r2, �r1)|x2=x1

�1 (�r1, �r2)|x2=x1
,

(6)

and then to

2J (R � 1) = 4 α1

(
8

e

) 1
α1

A 4
1 R

3− 1
2α1 e−2α1R

∫ 1

0
dX

×
∫

|Z1,2|< L

2
√

R

dZ1dZ2

∫ +∞

−∞
dY1dY2

× cos2

(
π

√
RZ1

L

)
cos2

(
π

√
RZ2

L

)

× exp

{
−2α1

(
P 2

1 + P 2
2

)
1 − X2

+ X

α1

}

×
[

P12

(1 + X)2(1 − X)

] 1
α1

, (7)

using R = 2a, the change of variables x1 = aX, y1,2 =
Y1,2

√
R, z1,2 = Z1,2

√
R, and the notations Pj =

√
Y 2

j + Z2
j

(j = 1 or 2) and P12 =
√

(Y1 − Y2)2 + (Z1 − Z2)2.
The expression (7) of the exchange energy 2J (R � 1) can

be calculated numerically, for given values of the thickness
L of the QW (for a given L, α1 and A1 are known, see Ap-
pendix A). In order to decrease the numerical integration time,
we turned the 5-dimensional integral (7) to a 4-dimensional
one, using the change of variables

S1 = Y1 + Y2

2
, S2 = Z1 + Z2

2
,

D1 = Y1 − Y2, D2 = Z1 − Z2; (8)

the integration over variable S1 can be performed, and we
finally used the following expression (9) for our numerical
calculations:

2J (R � 1) = 4
√

πα1

(
8

e

) 1
α1

A 4
1 R

3− 1
2α1 e−2α1R

∫ 1

0
dX

√
1 − X2

[
eX

(1 + X)2(1 − X)

] 1
α1

×
∫ +∞

0
dD1

∫ L√
R

0
dD2

(
D2

1 + D2
2

) 1
2α1 exp

[
−α1

(
D2

1 + D2
2

)
1 − X2

]

×
{

cos2

(
π

√
RD2

L

) ∫ L

2
√

R
– D2

2

0
dS2exp

[
− 4α1S

2
2

1 − X2

]

+ 2cos

(
π

√
RD2

L

) ∫ L

2
√

R
– D2

2

0
dS2cos

(
2π

√
RS2

L

)
exp

[
− 4α1S

2
2

1 − X2

]

+
∫ L

2
√

R
– D2

2

0
dS2 cos2

(
2π

√
RS2

L

)
exp

[
− 4α1S

2
2

1 − X2

] }
. (9)

It is easy to check that, when L → ∞ or L → 0, Eq. (9)
goes to the formulas known in 3D or 2D, respectively (see
Refs. [31–33]):

2J3D(R � 1) = 1.6366 R5/2 e−2R; (10a)

2J2D(R � 1) = 30.413 R7/4 e−4R. (10b)

Figure 1 shows the exchange energy 2J (R � 1) as a
function of the distance R = 2a between the pair of donors,
for several values of the QW thickness L. The 2J values
for R ∼ 1, and below, have a priori no physical significance,
because we fixed R � 1 from the start.

III. DETERMINATION OF 2 J (R) FOR ANY R

A. Procedure to get an interpolated expression of 2 J (R)

In Ref. [32], a procedure is proposed to build the exchange
energy 2J (R) for any value of the distance R between the
donors, in the 3D and 2D cases. This procedure makes use of
(i) the asymptotic form of the exchange energy

2J (R � 1) = CRβe−ωR, (11)

followed at 3D and 2D, see Eqs. (10); (ii) the value of the
exchange energy 2J0 = 2J (R = 0) of the 3D and 2D helium
atom; and (iii) two analytical assumptions: ln[2J (R � 1)]
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FIG. 1. Exchange energy 2J (R � 1) for several values of the
QW thickness L, as a function of the distance R between two donor-
bound electrons, centered inside the QW. The curves noted 2D and
3D correspond to the L → 0 and L → ∞ limits, respectively. Inset:
semilogarithmic representation of the same data, for a larger range
of R.

can be expanded as ln(2J0) − γR − ÃR2 · · · , with γ and
Ã both positive, and the second derivative of ln[2J (R)] is
Lorentzian for any distance R:

d2ln[2J (R)]

dR2
= − 2Ãβ

β + 2ÃR2
. (12)

A first integration of Eq. (12) gives the expression of the
first derivative of ln[2J (R)] for any R, and a relationship
between γ and Ã:

A =
√

2Ã/β = 2(ω − γ )

π β
. (13)

FIG. 2. Exchange energy 2J0 of a “helium atom” (full disks)
centered in an infinite QW, as a function of the QW thickness L.
The blue point at L = 0 corresponds to our calculated 2J0 in 2D; the
red dashed horizontal line indicates the value of our calculated 2J0

in 3D (continuous curve: guide for the eyes).

FIG. 3. Fitting parameters C (full disks), β (open diamonds), and
ω (full diamonds) of the exchange energy 2J (R � 1) with Eq. (11),
as a function of the QW thickness L. The values of C read on the
left axis, the values of β and ω on the right axis (continuous curves:
guides for the eyes).

Then, a second integration yields the interpolated formula for
2J (R) given by this procedure:

ln[2J (R)] = ln(2J0) − γR − βAR arctan(AR)

+ β

2
ln(1 + A2R2). (14)

One single parameter, A (or γ ), remains to be determined.
In Ref. [32], the authors have chosen the parameter A by
fitting at best numerical values of 2J obtained for R of the
order of unity or several units. So they proposed interpolated
formulas for 2J (R) in the 3D and 2D cases, using a 2J0 value
in 3D known at their time and, at 2D, a value of 2J0 calculated
by their own. In Appendix C, we propose slightly modified
expressions of 2J (R) for the 3D and 2D cases.

FIG. 4. Interpolated 2J (R) (continuous curve) and large-R
2J (R � 1) (dotted curve) exchange energies for the QW thickness
L = 1.5, as a function of the distance R between two donor-bound
electrons, centered inside the QW. Inset: semilogarithmic represen-
tation of the same data, for a larger range of R.
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B. Interpolated 2 J (R) in an infinite quantum well

In the present study of the exchange energy between two
donors located in the middle of an infinite QW, we faced
two issues in order to build an interpolated 2J (R) with the
procedure described in Sec. III A: (i) the calculation of 2J0

in a “helium atom” centred in the QW; (ii) the creation of the
interpolated 2J (R) starting with an asymptotic 2J (R � 1),
Eq. (9), which does not possess the standard form (11).

Let us first discuss the calculations we made to obtain
2J0 in the middle of an infinite QW. We noticed that, in 3D
and in 2D, calculating the ground energy ES of the helium
atom using the variational method, and the first-excited energy
EA perturbatively, gives a very good approximation of the
exchange energy 2J0, which is found to be shifted from the
exact numerical values by only about 1% (see Appendix B).
So we proceeded in the same way to calculate the exchange
energy of a “helium atom” located in the midplane of an
infinite QW; our calculations of ES and EA are presented in
Appendix B. Figure 2 shows 2J0 as a function of the thickness
L of the QW; as it is observed, 2J0 decreases monotonously
with L, from the 2D value to the 3D one.

Let us now turn to the construction of the interpolated
2J (R) in an infinite QW. The calculated asymptotic values
of the exchange energy 2J (R � 1), see Eq. (9) and Fig. 1,
do not possess exactly the form (11) met in the 3D and
2D cases. But we realized that the fit of 2J (R � 1) with
Eq. (11) is rather satisfactory for values of R ranging from
R = 0.1 to 30; the largest considered distance R = 30 be-
tween the two donors corresponds to residual concentrations
in typical semiconductors. Then we obtained the parameters
C, β, and ω which are shown in Fig. 3; we reached them by
adjusting ln[2J (R � 1)] with lnC + β lnR − ωR. Figure 3
shows these parameters as a function of the thickness of the
QW. Finally, we performed a fit of the values of 2J (R � 1)
between R = 20 and 30 with Eq. (14), using the known values
of 2J0 and β; A was the only fitting parameter [γ is linked to
A, once β and ω are fixed, see Eq. (13)]. We created in this

FIG. 5. Parameters A (full disks) and γ (open squares) entering
in the expression of the interpolated 2J (R) exchange energy, see
Eq. (14), as a function of the QW thickness L (continuous curves:
guides for the eyes). The blue points at L = 0 correspond to the 2D
case; the red dashed horizontal lines indicate the values in 3D.

FIG. 6. (a) Interpolated exchange energy 2J (R) for the L values
shown in Fig. 1, as a function of the distance R between two
donor-bound electrons, centered inside the QW. The curves noted
2D and 3D correspond to the interpolated 2J (R) laws in 2D and in
3D, respectively, see Eqs. (15). Inset: semilogarithmic representation
of the same data, for a larger range of R. (b) Interpolated exchange
energy 2J (R) for L = 1, 1.5, 2, 3, 4, and 3D.

way an interpolated formula for 2J (R) inside an infinite QW,
for any distance R of interest between the pair of donors. An
example of interpolated exchange energy 2J (R) is given in
Fig. 4, for L = 1.5; its coincidence with the asymptotic form
2J (R � 1) occurs for R � 2.

As a special case, we recalculated the interpolated formulas
in 3D and 2D following our procedure. We found

2J3D(R) = 0.729(1 + 0.258R2)
5
4 exp[−0.0005R

− 1.270R arctan(0.508R)]; (15a)

2J2D(R) = 3.604(1 + 1.548R2)
7
8 exp[−0.579R

− 2.178R arctan(1.244R)]. (15b)

These interpolated expressions are remarkably close to the
ones calculated in Appendix C.

Figure 5 shows the values of the obtained parameters A

and γ , as a function of the QW thickness L; monotonous
evolutions of A and γ can be observed between the 2D
(L → 0) and 3D (L → ∞) cases. For L � 6, the A and γ

values are very close to the values at 3D. In Fig. 6, we plotted
the interpolated exchange energy 2J (R) for several values of
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FIG. 7. Electron exchange energy in a common unit of energy, as
a function of interdonor distance for several semiconductor materi-
als, at a fixed value of QW thickness L′ = 10 nm; (a) in linear scales
and for small interdonor distances; (b) in semilogarithmic scales and
for a larger domain of interdonor distances.

L, as a function of the distance R between two donor-bound
electrons, centered inside the QW. Because we consider an
infinite QW with a wavefunction completely confined in the
QW, our calculations do not describe correctly real systems
for L < 1. Indeed, the electron wavefunction of thin QWs,
for which L′ = La ∗

B is smaller than a ∗
B , is in fact larger than

the QW thickness, and then overflows the barrier material
which does not represent an infinite barrier for electrons.
Figure 6(b) shows with more detail 2J (R) for L � 1 and

3D. For L � 1 [see Fig. 6(a)], the exchange energy at very
small R < 1 shows a maximum for 2D and a minimum for
3D with intermediate values for QWs of different L; however,
for R > 2 the situation is inverted and the 3D value is larger
than the value obtained in a QW or in 2D [see the inset of
Fig. 6(a)].

IV. DISCUSSION

The exchange energy 2J (R) between two electrons bound
to donors, placed in the mid-plane of an infinite QW, has
been calculated in units of effective hartree E ∗

h , see Sec. III;
the distance R between the donors, and the width L of the
QW, are expressed in units of effective Bohr radius a ∗

B (see
Sec. II A). In order to be specific, we present in Figs. 7(a)
and 7(b), in common units of energy and of length, the ex-
change energy 2J ′(r ) = 2J (R = r/a ∗

B ) × E ∗
h between two

donor-bound electrons as a function of the distance between
donors, r = Ra ∗

B , fixing the width of the infinite QW at L′ =
10 nm, for some usually studied semiconductor materials. The
parameters for these compounds are indicated in Table I.

We remark in Fig. 7(a), that the 2J ′(0) value is larger
for materials with a higher effective hartree energy. Indeed, a
value close to 100 meV for ZnO is obtained, which is almost
five times larger than the 2J ′(0) value for GaAs. Figure 7(b)
shows that, for large interdonor distances, ZnO exhibits also
the smallest value of exchange energy, meanwhile GaAs has
the largest exchange energy among the materials used for
comparison in this figure. We also remark that, for GaAs,
the exchange energy of two electrons localized on donors
decreases slightly when the interdonor distance increases,
meanwhile for ZnO the decrease is much faster. In general,
the exchange energy is exponentially sensitive to the distance
between donors, and this sensitivity depends also strongly on
the effective hartree energy which fixes the extension of the
electron wavefunction for a given semiconductor material.

Talking about physical applications, the lowest limit of
distance for lithographic techniques, and therefore the closest
available distance for qubits, is of the order of tens of nm.
When the exchange interaction is the main coupling mecha-
nism between spin qubits, a relatively strong exchange inter-
action is needed, but also needed is a long spin relaxation time;
Linpeng et al. [36] have measured in ZnO bulk, with a doping
concentration of the order of 1017 cm−3 (i.e., r ∼ 15 nm), a
relaxation time exceeding 100 ms applying a magnetic field
of 2 T, meanwhile Dzhioev et al. [22] have found a spin

TABLE I. Values of the different parameters determining the electron exchange energy and the spin relaxation time near the insulator-metal
transition, in usually studied semiconductor materials.

Effective mass Dielectric constant Bohr radius Effective hartree Energy band gap Spin-orbit splitting
Material m∗/m0 εr a∗

B (nm) E∗
h (meV) Eg (eV) �SO (eV)

ZnO 0.24a 7.77b 1.71 108 3.44c 0.0035c

ZnSe 0.145b 8.8d 3.21 51.0 2.820e 0.403e

GaN 0.13f 9.7f 3.95 37.6 3.28f 0.02f

CdSe 0.11b 10.16d 4.89 29.0 1.74g 0.462h

CdTe 0.09i 10.31j 6.1 23 1.606e 0.949e

GaAs 0.067k 12.35d 9.75 12.0 1.519e 0.341e

aRef. [46]; bRef. [47]; cRef. [48]; dRef. [49]; eRef. [50]; fRef. [51]; gRef. [52]; hRef. [53]; iRef. [54]; jRef. [55]; kRef. [56].
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relaxation time of about 100 ns in GaAs for an interdonor
distance around 30 nm. Then, when the coupling between two
spin qubits is governed by exchange interaction, the choice
of the most suitable material is the result of a compromise
between large spin relaxation time and large enough exchange
interaction.

In Refs. [22–24], it has been shown that the exchange inter-
action plays an essential role for the spin relaxation of donor-
bound electrons near the metal-insulator transition, in which
the anisotropic part of the exchange Hamiltonian becomes
dominant. Until now, we have only dealt with the isotropic
part, but J also appears as a coefficient of the anisotropic
terms. The complete exchange Hamiltonian in semiconductor
nanostructures is given by [34]

Ĥexc = 2J [�S1 · �S2 cos γ + ( �d · �S1)( �d · �S2)(1 − cos γ )

+ �d · (�S1 × �S2) sin γ ], (16)

where �d is a unit vector and γ is a constant proportional to
the distance between the two electrons; �d and γ both depend
on the crystallographic structure. The first anisotropic term
in Eq. (16) corresponds to the pseudodipole interaction, and
the second one to the Dzyaloshinskii-Moriya (DM) interac-
tion. The magnitude of γ characterizes the strength of the
anisotropic part; for small γ , the anisotropic part is dominated
by the DM term.

The dopant concentration at which the insulator-metal
transition (Mott transition) appears in 3D is fixed by the
expression n

1/3
Motta

∗
B = 0.25 [37], which corresponds to the

distance ≈3a∗
B between the donors. The spin relaxation time

for localized electrons near the insulator-metal transition, in
the insulating phase, is fixed by the anisotropic part of the
exchange Hamiltonian. The expression for the spin relaxation
time in a QW of thickness L’ is then given by [22]

τsa = 3

2

τc

γ 2
, (17)

with τc the characteristic residence time of an electron on a
donor:

τc ≈ h̄

ξJ ′(r )
, (18)

in which ξ is a numerical factor of the order of one, approx-
imately equal to 0.8 in the 3D case [22]. In general, for a
QW, γ can be written for both zinc-blende (ZB) and wurzite
structures as

γ = 2π2 γeb

E∗
ha

∗3
B

(
a∗

B

L′

)2

R, (19)

with R = r/a∗
B , b a parameter equal to 1 or 4 for ZB or

wurtzite crystals, respectively, and γe is the splitting co-
efficient related to the Dresselhaus term of the spin-orbit
Hamiltonian [38,39]. In the ZB structure, this coefficient
γ ZB

e is proportional to the spin-orbit constant α (defined in
Ref. [40]):

γ ZB
e = αh̄3

m∗√2m∗Eg

. (20)

The substitution of Eq. (20) in Eq. (19) leads to the
expression proposed in Ref. [34]. For a wurzite crystal, the

FIG. 8. Electron exchange energy in a common unit of energy
(empty diamonds, left axis) and spin relaxation time (full disks,
right axis) due to the anisotropic exchange mechanism, for different
GaAs QW thicknesses. The distance r = 30 nm is fixed between two
donor-bound electrons.

expression for γ W
e and values for specific materials can be

found in Refs. [38,41].
For GaAs, one of the most studied materials, the interdonor

distance for which the Mott transition appears is around
rMott ≈ 3a∗

B = 30 nm. In Fig. 8 we show for this material,
with α = 0.073 [40] and r = 30 nm, the calculated electron
exchange energy 2J ′ and the spin relaxation time τsa as a
function of the QW thickness. We remark that 2J ′(30 nm)
increases as L′ increases, and that for L′ � 30 nm the ex-
change energy starts to go to the 3D limit value, meanwhile τsa

increases due to the increase of L′. The upper limit for τsa is
fixed by the 3D case, which we have estimated around 130 ns;
as already mentioned, the experimental value measured by
Dzhioev et al. [22] is around 100 ns.

Spin relaxation properties of GaN and ZnO are less known
than those of GaAs. These materials seem very interesting
because they show very long spin relaxation and decoherence
times. Indeed, Beschoten et al. have measured at 5 K and
around 220 mT, a spin coherence time of 7 ns for a doping
concentration of 3.5 × 1016 cm−3 in GaN [42].

In a n-doped ZnO epilayer with concentrations close to
the metallic zone, S. Ghosh et al. found a spin coherence
time of 2 ns at T = 30 K [43]. We now compare this value
with the one which can be estimated using the calculated J

for a QW. In ZnO, γ W
e has been calculated to be 0.33 eV.Å

3

(see Refs. [38,41]), two orders of magnitude smaller than for
GaAs. By using the parameters given in Table I, and for a
doping concentration in the insulating regime near the Mott
transition (r = 5 nm), we are then able to estimate a relaxation
time τZnO

sa ≈ 16 ns for a QW with a thickness equal to 10 nm.
This value is larger than the one obtained for a GaAs QW
of the same thickness, τGaAs

sa ≈ 150 ps (see Fig. 8), and also
larger than the relaxation times measured by Ghosh et al. [43]
on ZnO epilayers close to the Mott transition (0.5 – 2 ns,
for na∗3

B = 0.01 − 0.1). Nevertheless, the cited experimental
values may also depend on spin relaxation processes not
discussed in this work, and induced by the optical excitation
conditions [24].
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TABLE II. Wavefunctions and energies for the 1s and 2s hydro-
genic states in 3D and 2D.

Wavefunction φ Energy E

3D 1s 1√
π

Z3/2 exp(− Zr ) − Z2/2

2s 1
2
√

2π
Z3/2 exp(− Zr/2) [1 − Zr/2] − Z2/8

2D 1s 4√
2π

Z exp(− 2Zρ ) − 2Z2

2s 4
3
√

6π
Z exp(− 2Zρ/3) [1 − 4Zρ/3] − 2Z2/9

V. CONCLUSION

We obtained a general expression for the exchange energy
of two electrons bound to donors placed in the middle of an
infinite QW, valid for any interdonor distance and for any
QW thickness. This tool allows one, in particular, to calculate
the spin relaxation time near the insulator-metal transition in
QWs made of widely used II-VI and III-V direct-band-gap
materials. Due to the low values of the electron exchange
energy and the spin-orbit interaction in ZnO, we deduce that
the spin relaxation time in ZnO near the metal-insulator tran-
sition should be larger than the one found in GaAs, and then
ZnO could be a suitable material for quantum information,
provided the entanglement mechanism between spin qubits be
different from the electron exchange interaction.

APPENDIX A: 1s AND 2s HYDROGENIC STATES
CENTERED IN AN INFINITE QUANTUM WELL

1. Method

A positive electric charge Ze (e: elementary charge) is at
the origin of Cartesian coordinates xyz. The Hamiltonian H

of an electron (charge − e) in the Coulomb potential of Ze is

H = −�

2
− Z

r
, (A1)

where � is the Laplacian operator and r is the distance of
the electron to the origin. The distances are expressed in
units of effective (bulk) Bohr radius a ∗

B , and energies in units
of effective hartree E ∗

h (as mentioned in the beginning of
Sec. II A). The 1s and 2s states in bulk (r =

√
x2 + y2 + z2)

and in 2D (ρ =
√

x2 + y2) are shown in Table II.
We seek the 1s and 2s states when the charge Ze is placed

in the middle of a QW of thickness L, simply modeled by
two infinite barriers located at z = ± L/2; the confinement
potential is supposed to be zero inside the QW (|z| < L/2).
The 1s and 2s wavefunctions centered within this QW are
taken in the following forms:

φ1(ρ, z) = A1 exp (−α1r ) cos

(
π

z

L

)
, (A2a)

φ2(ρ, z) = A2 exp(− α2r ) [1 − α3r]cos

(
π

z

L

)
, (A2b)

where r =
√

ρ2 + z2. The postulated cos(πz/L) envelope
function is a single sinusoid arch, and ensures that the wave-
functions φj (ρ, z), j = 1 or 2, vanish at the boundaries of the
QW. The dependences on r of both φj respect the ones which
are found in the 2D (L → 0) and 3D (L → ∞) limits. In the

following of this Appendix, the prefactors Aj are fixed by
normalization; φ1(ρ, z) and its energy E1 are first determined
by means of the variational method; afterwards, using the
2s-1s orthogonality and the variational method, φ2(ρ, z) and
its energy E2 are obtained.

2. 1s state

The normalization condition of the φ1(ρ, z) wavefunction
gives

A 2
1 = α 3

1

π N (α1L)
, (A3a)

with

N (X) = 1 − π2

X2 + π2
+ π4/2

[X2 + π2]2

− π2

4

(
X + 4

X2 + π2
− 2π2

[X2 + π2]2

)
e−X. (A3b)

The forms of the normalization factors of the 3D and 2D 1s

wavefunctions can be retrieved from this expression: A1 →
α

3/2
1 /

√
π for L → ∞, and A1

√
L/2 → α1

√
2/π for L → 0.

The parameter α1 is obtained by minimization of the mean
energy Ẽ1 = 〈φ1|H |φ1〉, which is the sum of a kinetic term
(possessing, after calculation, a remarkably simple form):

〈φ1| − �

2
|φ1〉 = α2

1

2
+ π2

2L2
, (A4)

and a potential term due to the Coulomb interaction:

〈φ1| − Z

r
|φ1〉 = − Z α1

C(α1L)

N (α1L)
, (A5a)

with

C(X) = 1 − 1

2

π2

X2 + π2
(1 + e−X ). (A5b)

Defining g(X) = XC(X)/N (X), which is a smooth func-
tion close to the identity [g(X) ≈ X], the minimum of Ẽ1 is
found to be reached when α1 is solution of the equation

α1L

g′(α1L)
= Z L. (A6)

After a numerical determination of the derivative g′(X) of
the function g(X), the left-hand side of the above equation
can be calculated for a value of the parameter α1L. One then
obtains the thickness L for which the starting parameter α1L

corresponds to the minimum of Ẽ1; finally, the associated α1

value is calculated through α1 = (α1L)/L, and the energy E1

of φ1 by substitution of α1 in the expression for Ẽ1. The
procedure can be repeated for any starting parameter α1L,
and then allows one to get α1 and E1, and also A1, as a
function of the thickness L of the QW, as shown in Fig. 9 for
Z = 1 and Z = 2. One can remark that parameter α1(Z = 1)
for thickness L coincides with α1(Z)/Z for thickness ZL.
The prefactor A1 goes to

√
Z3/π (3D limit) for L � 1, and

behaves as 4Z/
√

πL for very small L [see Figs. 9(a) and
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FIG. 9. Parameters A1 and α1 of the φ1 wavefunction, and its energy E1, as a function of the thickness L of the QW (thick continuous
curves); the thin red dashed lines correspond to the 3D case. (a), (b): A1 vs L for Z = 1, Z = 2. (c), (d): α1 vs L for Z = 1, Z = 2. (e), (f):
E1 − Econf vs L for Z = 1, Z = 2, where Econf = π 2/2L2.

9(b)]. The parameter α1 goes to Z (3D limit) for L � 1, and
to 2Z (2D limit) for vanishing L [see Figs. 9(c) and 9(d)]. For
decreasing values of L, the extension of the φ1 wavefunction
first inflates slightly in the xy plane (α1 becoming a little
smaller than Z), and secondly globally shrinks for smaller
values of L. The energy E1, when considered by reference
to the confinement energy Econf = π2/2L2, increases mono-
tonically with L from −2Z2 (2D value) to −Z2/2 (3D value)
[see Figs. 9(e) and 9(f)].

3. 2s state

The orthogonality condition between the φ1(ρ, z) and
φ2(ρ, z) wavefunctions implies the following relationship be-

tween α1, α2, and α3:

α3 = β
N (βL)

N (βL) + M (βL)
, (A7a)

with β = α1+α2
2 and

M (X) = 1

2
− 3π2/2

X2 + π2
+ 9π4/4

[X2 + π2]2 − π6

[X2 + π2]3

− π2

4

(
1

2
+ 3X + 6 − π2/2

X2 + π2
− π2 2X + 9

[X2 + π2]2

+ 4π4

[X2 + π2]3

)
e−X. (A7b)
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The relationships between α1, α2 and α3 in 3D and in 2D can
be retrieved as limiting cases of the above expressions: α3 →
(α1 + α2)/3 when L → ∞ and α3 → (α1 + α2)/2 when
L → 0.

The normalization condition of the φ2(ρ, z) wavefunction
gives

A 2
2 = α 3

2

π

{
N (α2L)

[
1 − 2

α3

α2
+ 3

2

α 2
3

α 2
2

]

+M (α2L)

[
−2

α3

α2
+ 3

2

α 2
3

α 2
2

]
+ 1

8
Q(α2L)

α 2
3

α 2
2

}−1

,

(A8a)

with

Q(X) = 3 + 3X4 X4 − 6π2X2 + π4

[X2 + π2]4 − π2

2

(
X3

X2 + π2

+ 3X2 3X2 + π2

[X2 + π2]2 + 6X
6X4 + 3π2X2 + π4

[X2 + π2]3

+ 6
10X6 + 5π2X4 + 4π4X2 + π6

[X2 + π2]4

)
e−X. (A8b)

The energy E2 is obtained as the minimum of the mean
energy Ẽ2 = 〈φ2|H |φ2〉, which only depends on α2 (α1 is
known, α3 is a function of α1 and α2). Ẽ2 is the sum of a
kinetic term:

〈φ2| − �

2
|φ2〉 = 1

4

(
πA 2

2

α 3
2

){
π2

L2

[
Q1(α2L) − α3

α2
Q2(α2L)

+ α 2
3

4α 2
2

Q3(α2L)

]
+ 2α2

2C(α2L)

+ α 2
3 [N (α2L) + 2M (α2L)]

+ 2α2α3[C(α2L) − 2N (α2L)]

}
, (A9a)

with

Q1(X) = 1 −
(

1 + X

2

)
e−X (A9b)

Q2(X) = 3 −
(

3 + 2X + 1

2
X2

)
e−X (A9c)

Q3(X) = 12 −
(

12 + 9X + 3X2 + 1

2
X3

)
e−X, (A9d)

and a potential term due to the Coulomb interaction:

〈φ2| − Z

r
|φ2〉 = − Z

πA 2
2

α 2
2

{
C(α2L) + N (α2L)

×
[
−2

α3

α2
+ α 2

3

α 2
2

]
+ M (α2L)

α 2
3

α 2
2

}
. (A10)

Finding the parameter α2 [and consequently α3, with
Eq. (A7a)] which minimizes Ẽ2 (at given L) requires a long
numerical procedure, which is in contrast with the much easier

work needed for the minimization of Ẽ1. Figure 10 shows A2,
α2, α3 and E2 concerning the φ2 wavefunction, for different
values of the thickness L, with Z = 1 and Z = 2: A2 and
α2 behave with L just as A1 and α1 do; α3 monotonically
decreases with L; however, E2, considered by reference to
the confinement energy Econf = π2/2L2, goes with L from
−2Z2/9 (2D value) to −Z2/8 (3D value) but nonmonotoni-
cally [see Figs. 10(e) and 10(f)].

APPENDIX B: EXCHANGE ENERGY OF A “HELIUM
ATOM” CENTERED IN AN INFINITE QUANTUM WELL

1. Exact results in 3D

The nonrelativistic energies of the (singlet) (1s)2 ground
state and of the first-excited triplet 1s2s state of the helium
atom in 3D are known with an excellent precision: in Ref. [44]
they are calculated with 20 significant digits. We only write
here the first of them:

Eexact
S = −2.9037, Eexact

A = −2.1752, (B1a)

in units of effective hartree (see the beginning of Sec. II A).
The subscript S, or A, recalls that the orbital part of the state
is symmetric, or antisymmetric, under permutation of both
electrons of the atom. The exchange energy 2J0 = EA − ES

is then exactly, in 3D:

2J exact
0 = 0.7285. (B1b)

2. Exact results in 2D

In 2D, the nonrelativistic energies of the (1s)2 ground state
and the first-excited triplet 1s2s state of the helium atom are
also known with a very good accuracy: in Ref. [45] they are
calculated with 13 significant digits. We write here the first of
them:

Eexact
S = −11.900, Eexact

A = −8.296, (B2a)

in units of effective hartree. The exchange energy is then
exactly, in 2D:

2J exact
0 = 3.604. (B2b)

3. Calculation of 2 J0 in an infinite quantum well

The Hamiltonian describing both electrons in a helium
atom is written as

Ĥ = −�1

2
− �2

2
− Z

r1
− Z

r2
+ 1

r12
, (B3)

where �j is the Laplacian operator acting on electron j (j =
1 or 2) and rj is the distance of electron j to the origin of
the coordinates, where the Z = 2 nucleus is located; r12 =
|�r2 − �r1| is the distance between the electrons.

The ground energy ES of the “helium atom” centered in a
QW with infinite barriers is determined here by the variational
method. The ground-state wavefunction �S (�r1, �r2) of the pair
of electrons 1 and 2 is taken as the product of two one-electron
1s wavefunctions: �S (�r1, �r2) = φ1(�r1)φ1(�r2); the mean en-
ergy ẼS = 〈�S |Ĥ |�S〉 is studied as a function of the
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FIG. 10. Parameters A2, α2 and α3 of the φ2 wavefunction, and its energy E2, as a function of the thickness L of the QW (circular dots;
continuous curves: guides for the eyes); the thin red dashed lines correspond to the 3D case. (a), (b): A2 vs L for Z = 1, Z = 2. (c), (d): α2

and α3 vs L for Z = 1, Z = 2. (e), (f): E2 − Econf vs L for Z = 1, Z = 2 (Econf = π 2/2L2).

parameter α1, which now can vary (see Appendix A 1 for the definitions of φ1 and α1), and its minimum is taken for the value
of ES . ẼS is the sum of a kinetic term:

〈�S | − �1

2
− �2

2
|�S〉 = α2

1 + π2

L2
, (B4a)

a potential term due to the Coulomb interaction of the electrons with the Z = 2 nucleus:

〈�S | − 2

r1
− 2

r2
|�S〉 = − 4 α1

C(α1L)

N (α1L)
(B4b)

[N (X) and C(X): see Appendix A], and a Coulomb electron-electron term:

〈�S | 1

r12
|�S〉 = 32π

∫ ∞

0

∫ ∞

0

ρqdρqdzq

ρ 2
q + z 2

q

[∫ L
2

0
dzcos(zqz)

∫ ∞

0
dρ ρ J0(ρqρ) φ1(ρ, z)2

]2

, (B4c)

expressed using the fact that 1/r is the inverse Fourier transform of 4π/q2 [J0(x) is the Bessel function of first kind and of
zeroth order]. This integral is calculated numerically.
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The first-excited energy EA of the “helium atom” centred in a QW with infinite barriers is determined perturbatively here: the
electron-electron interaction 1/r12 is treated as a small correction to the state �A(�r1, �r2) = [φ1(�r1)φ2(�r2) − φ2(�r1)φ1(�r2)]/

√
2

of energy E1 + E2 (φ1, φ2, E1, and E2 are given in Appendix A). The energy EA is of the form EA = E1 + E2 + �E, the
corrective term being �E = 〈�A|1/r12|�A〉; �E is the sum of a direct term:∫∫

d3r1d
3r2

φ1(�r1)2
φ2(�r2)2

r12
= 32π

∫ ∞

0

∫ ∞

0

ρqdρqdzq

ρ2
q + z2

q

[∫ L
2

0
dz cos(zqz)

∫ ∞

0
dρ ρ J0(ρqρ ) φ1(�r )2

]

×
[∫ L

2

0
dz cos(zqz)

∫ ∞

0
dρ ρ J0(ρqρ ) φ2(�r )2

]
, (B5a)

and an exchange term:∫∫
d3r1d

3r2
φ1(�r1)φ2(�r2)φ2(�r1)φ1(�r2)

r12
= 32π

∫ ∞

0

∫ ∞

0

ρqdρqdzq

ρ2
q + z2

q

[∫ L
2

0
dz cos(zqz)

∫ ∞

0
dρ ρ J0(ρqρ )φ1(�r ) φ2(�r )

]2

.

(B5b)

In 3D and in 2D, calculating ES by the variational method
and EA perturbatively gives satisfactory values (for our pur-
pose) of the exchange energy 2J0 = EA − ES : we so ob-
tain 2J0 = −2.124 + 2.848 = 0.724 in 3D, and −7.948 +
11.635 = 3.687 in 2D, which are 0.6% smaller, and 2% larger,
than the exact values, respectively. We are then confident that
our calculated exchange energies 2J0 of a “helium atom”
centred in infinite QWs of different thicknesses, possess an
uncertainty of the 1% order.

Figure 11 shows our calculated values of the ground energy
ES and first-excited energy EA, as a function of the thickness
L of the QW; the exact values in 2D (L → 0) and in 3D (L →
∞) are also indicated. ES and EA monotonically increase
with the thickness L, and their difference, which is 2J0,
monotonically decreases, as shown in Fig. 2.

APPENDIX C: NEW INTERPOLATED FORMULAS FOR
THE 3D AND 2D EXCHANGE ENERGIES

Section III A described the procedure of Ref. [32] to build
an interpolated expression of the exchange energy 2J (R) in

FIG. 11. Ground energy ES (full disks) and first-excited energy
EA (full squares) of a “helium atom”, as a function of the thickness
L of the infinite QW; the continuous curves are guides for the eyes.
The empty circle and empty square, at L = 0, are the exact values
in 2D. The exact values in 3D are indicated by two horizontal red
segments, on the right of the graph.

3D and 2D. In Eq. (14), in which A is the only remaining
free parameter, it is possible, alternatively, to impose that, for
R � 1, the interpolated 2J (R) be in coincidence with the
standard asymptotic form (11). We then obtain the following
expression for A:

A = (C/2J0 )1/β/e. (C1)

So we can propose new interpolated formulas for the ex-
change energy 2J (R) in 3D and 2D, using values of 2J0

which are, nowadays, known with very good accuracy (see
Appendix B):

2J3D(R) = 0.729 (1 + 0.259R2)
5
4 exp[−0.003R

− 1.271R arctan(0.509R)]; (C2a)

2J2D(R) = 3.604 (1 + 1.549R2)
7
8 exp[−0.579R

− 2.178R arctan(1.245R)]. (C2b)

These expressions give 2J (R) values close to the correspond-
ing ones of Ref. [32] for R of the order the order of unity, and
are more satisfactory, by construction, for large values of R.

APPENDIX D: CORRELATION FUNCTION FOR
THE 3D CASE

In Sec. II B, we have found that, in the case of an infinite
QW, the correlation function satisfies

χ (�r1, �r2) = χ3D(�r1, �r2)1/α1 ,

where χ3D(�r1, �r2) is given by the expression [30]:

χ3D(�r1, �r2)

= 2a(2a + x1 + x2)

(a − x1)(a + x2)
exp

(
−a + x1

2a

)

×
⎧⎨⎩

√
(x1 − x2)2 + ρ 2

12 + x2 − x1√
(2a + x1 + x2)2 + ρ 2

12 + 2a + x1 + x2

⎫⎬⎭
1/2
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for x1 + x2 < 0, and

χ3D(�r1, �r2) = 2a(2a − x1 − x2)

(a − x1)(a + x2)
exp

(
−a − x2

2a

)⎧⎨⎩
√

(x1 − x2)2 + ρ 2
12 + x2 − x1√

(2a − x1 − x2)2 + ρ 2
12 + 2a − x1 − x2

⎫⎬⎭
1/2

for x1 + x2 > 0; the notation ρ12 =
√

(y1 − y2)2 + (z1 − z2)2 is employed.
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